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ABSTRACT

Packet delay is a crucial performance metric for real-time,
network-based applications. Obtaining per-flow delay mea-
surements is particularly important to network operators,
but is computationally challenging in high-speed links. Re-
cently, passive delay measurement techniques have been pro-
posed that outperform traditional active probing in terms of
accuracy and network overhead. However, such techniques
rely on the empirical observation that packet delays across
different flows are temporally correlated, an assumption that
is not met in presence of traffic prioritization, load balancing
policies, or due to intricacies of the switch fabric.

We present a novel data structure called Lossy Difference
Sketch (LDS) that provides per-flow delay measurements
without relying on any specific delay model. LDS obtains
a notable accuracy improvement compared to the state of
the art with a small memory footprint and network over-
head. The data structure can be sized according to target
accuracy requirements or to fit a low memory budget.

We deploy an actual implementation of LDS in an opera-
tional research and education network and show that it ob-
tains higher accuracy than temporal correlation-based tech-
niques without exploiting any knowledge about the under-
lying delay model.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—network monitoring; C.4 [Performance of Sys-
tems]: General—measurement techniques; G.3 [Probability
and Statistics]: General—Probabilistic algorithms
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1. INTRODUCTION
Packet delay has become a key network performance met-

ric, together with other metrics such as throughput and
packet loss. This growth in importance of packet delay is
mainly due to the emergence of a new class of network-based
applications that demand extremely low end-to-end latency.
For instance, algorithmic trading applications require end-
to-end latencies to not exceed few microseconds, otherwise
they may lose significant amount of revenue in the form of
lost arbitrage opportunities [21]. High-performance comput-
ing applications form another class of such applications with
message latencies directly impacting the amount of time it
takes for the job (e.g., weather simulation) to be finished.
Finally, modern data center applications have soft real-time
deadlines [3] that typically are in the order of milliseconds,
but once backend computation requirements are factored in,
very little time is left for network delays.

Now, consider a network operator that is running and
managing a network environment that supports low-latency
applications, such as a data center network. Typically, many
data centers host several thousands of machines connected
via a network fabric that is often constructed out of com-
modity networking equipment (e.g., switches and routers).
Depending on the requirements (e.g., full bi-section band-
width), the network is often connected in a multi-rooted tree
topology (e.g., a fat-tree) with several thousand switches
providing multiple paths between servers for load-balancing
purposes. Further, the cluster itself may be shared across
several tens to hundreds of customers running tens to hun-
dreds of different applications with potentially very differ-
ent network usage patterns. Given the complexity stemming
from the sheer number of network elements as well as the va-
riety of networking-based applications, it becomes extremely
difficult to debug and troubleshoot latency anomalies (such
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as delay spikes) throughout the network without proper la-
tency measurement tools at various points in the network.

Traditionally, such measurements have been obtained us-
ing active probing in wide-area ISP networks [5, 24, 6, 28].
However, end-to-end network delays are an order of mag-
nitude smaller in data center networks—order of microsec-
onds compared to milliseconds. To capture delay dynam-
ics at such microsecond granularity, high probing frequency
(e.g., 10,000Hz [17]) is required, which makes this approach
prohibitively expensive in practical scenarios. Further, diag-
nosing end-to-end delay anomalies requires measurements at
various vantage points in the network—ideally, at each pair
of interfaces within each switch in the network, so that the
root cause can be localized down to a router or a switch. The
network operator could then conduct a more extensive anal-
ysis, such as study the set of customers or applications that
may be routed through that switch to carefully investigate
the root cause of the problem.

Unfortunately, native switch/router support for packet de-
lay measurements is sorely lacking. Today, NetFlow and
SNMP form the two main measurement solutions that a
router supports. Neither, however, focuses on delay mea-
surements. In some environments such as the London Stock
Exchange, operators resort to specialized measurement boxes
(e.g., Corvil [1]) that can detect these delays at high fidelity.
However, because of the high costs and the hassles of admin-
istering a new box in the network, such an approach does not
scale well. The complexity of packet latency measurements
comes fundamentally from the fact that we cannot easily just
store a packet timestamp at two monitoring points, without
incurring high storage and communication complexity, since
the complexity is linear in the number of packets. It is there-
fore important to overcome the linear relationship between
number of collected timestamps and network overhead for
any solution to be scalable.

Recent work [17] proposed the lossy difference aggrega-
tor (LDA) to overcome the linear relationship between sam-
ple size and network overhead by intelligently aggregating
timestamps between the two measurements points. LDA,
however, provides only aggregate latency estimates across all
packets, which may be inadequate for diagnosing customer-
specific or application-specific latency issues [18]. As pointed
out by prior work [18], flows may exhibit significant diversity
in their latency characteristics at a given router, and hence,
per-flow measurements are important for network operators.
Unfortunately, the problem of measuring per-flow delay is
harder in the environments we consider, since the number
of flows can be quite large; collecting and exchanging per-
flow state becomes prohibitively expensive.

The problem of measuring per-flow delay has been very
recently explored in [18, 19]. Both papers exploit the key
observation that packets exhibit significant temporal delay
correlation in specific settings, i.e., packets that are trans-
mitted close in time experience similar delays, even if they do
not belong to the same flow. RLI [18], the most recent of the
two, exploits this observation to inject simple active probes
periodically and uses linear interpolation to estimate per-
packet delay. At the downstream monitoring point, these
estimated per-packet delays can be aggregated into per-flow
latencies using only three counters per-flow.

While the assumption that packets exhibit temporal cor-
relation is valid in a restricted subset of systems, this as-
sumption does not hold true in more general scenarios where

there is prioritization across packets with two or more paral-
lel queues. For example, many modern routers support dif-
ferent queuing for prioritizing real-time traffic (e.g., VoIP,
video) over regular data transmissions (e.g., Web). Thus,
in these cases, there exists very little correlation between
the delays of packets that end up traversing two different
queues. Similarly, in many modern data center networks,
packets are routinely load balanced across multiple paths us-
ing ECMP—temporal delay correlation may potentially ex-
ist across any given path but certainly not across paths. Fi-
nally, modern switch fabrics (e.g., Clos-network-based switch
fabrics used in Juniper’s T-Series routers [2]) are often com-
posed of intermediate stages of switching with each packet
being sent to a random intermediate location; the latency
of a packet through the router may be different depending
on the path within the router. (In such switches, packets
are re-sequenced back because TCP does not interact well
with reordering, but such reordering needs to be only on a
per-flow basis.)

Thus, the assumption of temporal delay correlation is not
universally applicable; unfortunately, schemes such as RLI
will produce grossly inaccurate latency estimates if the as-
sumption does not hold, posing a major hurdle for deploy-
ing RLI on a global basis. Switch vendors do not wish to
be bothered about the specifics of the deployment scenario,
and instead would like to have one scheme that is universally
applicable across all possible scenarios. Our objective in this
paper is to accomplish this task. Specifically, we focus on de-
vising a scalable delay-model-agnostic mechanism to obtain
per-flow latency measurements at microsecond granularity
across two measurement points in the network.

In this paper, we propose a technique called lossy delay
sketching (LDS) that essentially combines the model inde-
pendence nature of LDA with sketching techniques that do
not rely on per-flow state to obtain model-free and scalable
per-flow delay estimation. LDS essentially maintains a series
of hash buckets, with each bucket consisting of a timestamp
sum and the number of packets that hash to the bucket
(similar to an LDA bucket). In accordance with the spirit of
sketching, LDS maps each flow to a random subset of buck-
ets, that are potentially shared (partially or fully) by other
flows. To minimize the effect of interference, we randomize
the fate-sharing by maintaining different banks of buckets,
similar to a sketch, with a different hash function.

While the basic idea of blending LDA with sketches makes
intuitive sense, several problems must be overcome to design
such a data structure. For instance, flows may differ in their
delay properties as well as their sizes significantly. It is im-
portant to ensure the interference due to collisions does not
impact the accuracy of the flow’s latency estimates. We
present theoretical analysis on determining the size of LDS
in order to reduce this interference.

Thus, the main contributions of this paper are as follows.

• We propose a new data structure called LDS that ob-
tains per-flow delay estimates and that does not rely
on delay models (Section 2). It blends LDAs that are
model independent with sketching techniques that pro-
vide per-flow measurements without per-flow state.

• We present a comprehensive theoretical analysis of the
data structure and show how to size it to achieve the
desired accuracy (Section 3).
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• We introduce a series of practical enhancements to
LDS that allow network operators to fine-tune the data
structure for the specifics of an actual deployment sce-
nario (Section 4).

• We evaluate LDS with real traffic collected at a large
academic network (Section 5). Our results indicate
that sketching is superior to existing techniques when
temporal correlation is not present. Sketching is par-
ticularly accurate for large flows, even in the presence
of loss. Additionally, the accuracy of a selected subset
of flows can be easily incremented.

Finally, Section 6 covers the related work in the literature,
while Section 7 concludes the paper.

2. DELAY SKETCHING
Our main goal is to measure the one-way delay introduced

by a network between two measurement points on a per-flow
basis. While we can typically support any definition of flow,
usually, this will consist of the 5-tuple formed by source
and destination IP addresses, originating and destination
ports, and protocol. We mainly focus on obtaining per-flow
average latency, but we also outline in Sec. 4 how we can
obtain second moments as well.

Our architecture is oblivious to what locations exactly
constitute the measurement points. Thus, we can imagine
obtaining per-flow measurements within a switch or a router
across an ingress and egress interface. Alternately, we can
obtain measurements across two different routers. Note that
both measurement locations are merely viewpoints along the
path that packets follow, and do not need to be (although
they could be) the emitter or final destination of the traffic.
We call the first measurement point sender , and the sec-
ond, receiver . We consider the reverse path measurements
separately with the receiver becoming the sender and vice
versa.

2.1 Assumptions
Single stream. We assume that the sender and receiver

observe the same stream of packets. In general, this is
highly dependent on the particular scenario. For instance,
suppose we consider an ingress (egress) switch interface as
the sender (receiver). The receiver (sender) may obtain
(transmit) packets from (to) many different ingress inter-
faces. Thus, we assume there is a simple way to filter out
the packets that travel from the sender to the receiver. Note
that we do not assume packets flow through a single queue,
or even in a FIFO order—just that we have a way to sep-
arate out packets that appear at both the sender and the
receiver. Within switches, there are often internal headers
that contain the port at which they originated and the port
to which they are headed to, that we can use for this pur-
pose. Across routers, we can leverage prefix-based filtering
to identify the set of packets that travel through one given
path (forwarding is prefix-based). Such routers do not need
to be co-located or close in terms of network hops.

Packet loss. We assume packets can be lost between the
sender and receiver. Depending on the scenario, the packet
loss rates may differ significantly. For example, in a financial
trading network, we may imagine the network to suffer from
minimal packet loss. However, in a real backbone network,
packet loss may be slightly more common. Typically, while

some amount of loss resilience is required in our data struc-
tures, we assume the loss rates are still quite low (say <1%)
as TCP may not work well under higher loss rates.

Time synchronization. We also assume the clocks of the
sender and receiver are synchronized. This is a common re-
quirement of one-way packet delay measurement techniques
[17, 19, 18]. Although techniques have been proposed that
do not require clock synchronization (e.g., [25, 22, 29]), re-
moving this assumption was out of the scope of this pa-
per. To achieve fine grained precision, packet timestamping
clocks can be synchronized to the GPS signal (i.e., using
Endace DAG cards), or using the IEEE 1588 protocol [16].
Both these methods are capable of sub-microsecond preci-
sion and thus suitable for our needs [10]. (In our evaluation,
we obtained traces from a production network that already
uses IEEE 1588 protocol to synchronize measurements.)

Embedding timestamps in packets. Similar to prior work
[17, 18], we assume that it is not possible to embed times-
tamps within IP packets because existing IP headers do not
have a placeholder for timestamps, and it would require sig-
nificant changes to router forwarding paths and other third-
party components making it difficult. We note however that
our solutions are important even in the context where router
vendors can put a timestamp in a packet, as the number of
flows may be still large.

In fact, for ease of exposition, we present a simple data
structure called SDS using the timestamp assumption, i.e.,
assuming packets can be embedded with timestamps. We
will, however, get rid of this assumption in Sec. 2.3 when we
describe our main data structure LDS.

2.2 Simple Delay Sketch (SDS)
As mentioned before, we initially assume the sender can

embed a timestamp into the packets to be measured for easy
exposition of the delay sketching idea. (We will relax this in
the next section.) Thus, the receiver can obtain delays for
each packet, but still need a scalable mechanism to store per-
flow latencies, which is obtained by the data structure we
describe in this section. The main idea of our technique is to
explore sketching techniques that have been studied before
in the literature to obtain measurements without maintain-
ing per-flow state, and requiring very few memory accesses
per packet. Such techniques will allow us to compute a com-
paratively smaller compressed summary of the traffic that
allows recovering approximate measurements. We assume
measurements are performed in fixed time intervals, which
we refer to as measurement intervals.

A canonical sketch data structure that we can exploit in
our setting is the multi-stage filter [13]. In this data struc-
ture, each stage has C associated counters, which are ini-
tialized to zero. Then, for each incoming packet, a hash of
its flow identifier is used to determine which counter will be
updated in the 1st stage. If, for example, one wishes to mea-
sure flow sizes, then the packet size is added to that counter.
Since every flow always hashes to a particular position, its
associated counter can be queried to obtain an upper bound
on its size (only an upper bound, since other flows can hash
to the same position, i.e., can collide). Additional stages can
then be added that are independent replicas of this scheme,
thus randomizing collisions. Then, the estimated size of a
given flow is the minimum of all of its associated counters
in each stage. The Count-Min Sketch [9] is also based on a
similar approach.
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Figure 1: Basic data structure. In each cell, s stores
the sum and n the number of packets that hash to
that cell.

1: procedure Update state(flow, τ )
2: for i=1, R do
3: j ← (hash(i, flow)%C) ⊲ Compute ith hash
4: SDS[i][j].S ← SDS[i][j].S + τ
5: SDS[i][j].N ← SDS[i][j].N + 1
6: end for
7: end procedure

Figure 2: SDS – Per-packet operations

Our initial idea is to use this sketching technique for per-
flow delay measurement. The data structure we propose
called Simple Delay Sketch (SDS) contains a series of cells
organized in a matrix of R rows and C columns. Each row
r has an associated pseudo-random hash function hr that
returns a value in the range [0, C − 1]. Each cell of the
matrix contains a tuple of values <s,n>, with s storing the
sum and n the number of packets that hash to that cell. The
data structure is graphically depicted in Figure 1.

Update. When a packet that belongs to a flow with iden-
tifier f arrives, for each row r, a position in the matrix is
determined using its hash function hr, which yields position
(r, hr(f)). Then, the cells in these positions are updated
as follows. The s values of each cell are increased by the
delay of the packet (i.e., the current time at receiver minus
the timestamp embedded in the packet at sender), while n
values are increased by one (i.e., maintains a count of the
packets that hashed to that cell). In other words, s values
contain the sum of all packet delays that hit that cell, while
n values represent packet counts. Note also that the per-
packet cost of this measurement scheme is, for each row, a
hashing operation and two counter updates. The full algo-
rithm is described in Figure 2.

Delay Estimation. If the data structure were single-row
and infinitely large, and the hash functions were perfectly
random, each non-empty cell would measure the average
delay of the packets of a particular flow. That is, the data
structure would be collision-free, since two flows would not
hash to the same position. Therefore, to obtain the (exact)
average delay of flow with identifier f , one would simply
divide the s and n values of cell (0, h0(f)).

1: procedure Estimate delay(flow, SDS)
2: Nmin =∞
3: for i=1, R do
4: j ← hash(i, flow) ⊲ Compute ith hash
5: if SDS[i][j].N < Nmin then
6: Nmin = SDS[i][j].N
7: Smin = SDS[i][j].S
8: end if
9: end for

10: return Smin/Nmin

11: end procedure

Figure 3: SDS – Delay estimation algorithm

However, in practice, rows cannot be large enough, and
there is a non-zero probability of several flows colliding (i.e.,
hashing to the same cell in one or more rows). When several
flows collide, the value obtained by dividing the s and n val-
ues is a weighted average of the delays experienced by said
flows, where weights correspond to the number of packets of
each flow. Therefore, in practice, flow delays can not be ex-
actly obtained, but only estimated from the data structure.
To minimize the impact of collisions over measurement ac-
curacy, it is desirable to have a large number of rows. For a
given flow, we can obtain one estimate of its average delay
for each of the rows, to then choose the one that is least
contaminated by other flows.

Several strategies can be devised to obtain the estimates.
For example, one could produce a final estimate by com-
bining several cells, such as taking the mean or the median
of the available estimates, like other sketching techniques
do (e.g., see [9]). In our case, using the average would be
problematic for flows that collided with larger ones in any
of the cells, because the weight they would carry in their
estimates would be small. This would invalidate the advan-
tages of provisioning multiple rows to randomize collisions.
Likewise, using the median would tend to drag each estimate
towards the median delay of all flows.

We find it best to choose the cell that has the lowest n
value to produce an estimate. This has two interesting prop-
erties. First, if one of the cells is collision free, the algorithm
will choose it and, thus, produce an error-free result. Other-
wise, it will pick the cell where the fewest amount of packets
have collided, i.e., the one where the measured flow carries
the highest possible weight. The full algorithm is described
in Figure 3.

Of course, the cell with the smallest n will not necessarily
produce the best estimate among all cells. For example, it
may have collided, in one cell, with a large flow that has
an extremely similar average delay. However, this strategy
always chooses, among all the cells, the one where the mea-
sured flow carries the highest possible weight. In Sec. 3,
we analyze the accuracy that this data structure offers, and
provide guidelines to dimension and parametrize it.

The SDS data structure we presented in this section is a
first-cut approach to blending the ideas of LDA with sketch-
ing techniques. However, SDS is only applicable if we as-
sume embedding timestamps within packets—an assump-
tion which is hard to achieve in practice, at least in the
short term if not in the longer term. We now study a new
data structure LDS that relaxes this assumption.
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2.3 Lossy Difference Sketch (LDS)
In this section, we discuss our main data structure called

lossy difference sketch (LDS) to obtain per-flow latency mea-
surements without requiring the timestamp assumption. The
LDS data structure starts with the basic SDS data structure,
and uses the following ideas to make it practical:

1. To get rid of the timestamp assumption, the sender
and receiver maintain separate copies of the data struc-
ture (described in the previous section), and the sender
periodically transmits its copy to the receiver. The re-
ceiver then post-processes both sketches to obtain the
delays of all packets that hash to each cell (Sec. 2.3.1).
We need the sender and receiver to use consistent hash-
ing (same hash function) to ensure packets hash to the
same cell in both cases.

2. Since packet losses and reordering can occur between
the sender and receiver, this may make the cells incon-
sistent across the sender and receiver. We detect losses
easily since the number of packets does not match
across the sender and receiver cells. We detect re-
ordering using a separate field in each cell that stores
a stream digest for each cell, similar to prior work [27,
20] (Sec. 2.3.2).

3. To handle packet losses, we map packets that belong to
the given flow across several contiguous cells in essence
forming a virtual LDA for each flow. We also use a
stage of sampling to reduce the probability of a packet
loss completely corrupting all cells for a given flow.
We randomize the set of flows that collide in each row
so as to randomize the fate-sharing. This randomiza-
tion allows us to minimize the interference of other
colliding flows on the estimates for any particular flow
(Sec. 2.3.3).

The following subsections will discuss these ideas in detail.

2.3.1 Removing the Timestamp Assumption

The main problem when measurement points cannot em-
bed a timestamp in the packets is that we cannot com-
pute the packet delay at receiver . Thus, neither can we
directly aggregate delays in the data structure as described
in Sec. 2.2. However, we can achieve the same effect by us-
ing a simple, yet extremely powerful technique introduced
in [17]. Ref. [17] states that to measure average delay of
a set of packets, one does not need to embed a timestamp
in the packet or transmit individual timestamps between
sender and receiver . Instead, we can proceed as follows. In
both measurement points, compute the sum of all packet
timestamps, and maintain a packet count. Then, to com-
pute average delay, compare the aggregate timestamps and
divide over the total number of packets.

We leverage this idea in designing LDS as follows: In both
measurement nodes, we maintain a sketch as the one de-
scribed in Sec. 2.2, where each position aggregates the packet
timestamps observed at each point, instead of packet delays.
Both measurement nodes use the same hashing functions in
order to map flows to the same counter positions. Then, at
the end of the measurement interval, one of the resulting
sketches is sent to the other measurement point. The ag-
gregate timestamps at sender are subtracted from those at
receiver . The result is exactly equivalent to a sketch that
aggregates packet delays.

After this step, the average delay of the packets that hit
a cell can be simply obtained by dividing its s and n, where
s is now the sum of timestamps kept in each cell, instead
of the aggregate packet delays. Assume a series of pack-
ets p1, p2 . . . pk, with timestamps t1, t2, . . . tk at sender and
t′1, t

′
2 . . . t′k at receiver. The delay of the ith packet is then

t′i− ti. Our data structure calculates s
n

=
P

k

i=0
t′
i
−

P

k

i=0
ti

k
=

P

k

i=0
t′
i
−ti

k
, i.e., the average packet delay.

Note that, while we focus on average delay estimation,
other useful estimates, including per-flow delay standard de-
viation, can also be mined from the data structure as de-
scribed later in Sec. 4.

2.3.2 Detecting Losses and Reordering

When packets are lost some of the n fields in receiver
would be smaller than those obtained by sender . This is
an important problem, because our data structure relies on
the difference of s values at sender and receiver to calculate
average packet delays, as explained in Sec. 2.2; using cells
where the set of packet delays aggregated in each measure-
ment point differs introduces severe error [17]. In general,
when packet counts n do not match, the set of timestamps
aggregated in the corresponding s fields will not be con-
sistent. Thus, in LDS, we do not use such cells for delay
measurement.

Packet reordering poses an additional challenge: n fields
can match, while the set of aggregated packet timestamps
might differ. This is a problem that is analyzed in more de-
tail in [20]; in summary, at the boundaries of measurement
intervals, packets might jump to the next (or previous) in-
terval. This, coupled with loss, can easily cause matching
packet counts, and mismatching sets of packet timestamps.
As introduced in [27, 20], this problem can be solved by
attaching, to each sketch position, a small digest d of the
packets that hit such cell, which can be achieved simply
with an extra hashing operation as follows.1

In LDS, thus, each cell will consist of the additional d field
along with s and n for each cell. This value contains a digest
of all packets that hashed to a cell. We require digests to
be computationally lightweight, and to provide a means to
detect loss and packet reorders with high probability. As
discussed in [27, 20], an easy way to achieve this is to cu-
mulatively XOR the hashes of the packet contents. This
scheme guarantees that, using b bit hashes, mismatches will
be detected with probability 1 − 2−b.

It is easy to see that, with this basic data structure, no
accurate delay estimates can be produced for (i) those flows
that experience even a single loss or reordering, and (ii) for
those that collide with flows that have experienced such con-
ditions. For such flows, packet digests (and often, n values)
in sender will not match those at receiver , and thus will al-
ways be invalidated. We next discuss the mechanism used
in LDS to make the flow estimates more robust to packet
losses or reordering.

2.3.3 Robustness against Loss and Reordering

To make LDS more robust to losses and reordering, we
leverage the basic idea used in LDA, which consists of parti-
tioning each flow’s packets into k sub-streams, and mapping

1In the final data structure described in Sec. 2.3.4, the hash
value provided by h′ is used, thus saving this extra hashing
operation.
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each packet to one of k different cells in every row. To coor-
dinate both measurement nodes, the cell that a given packet
will hit is also determined by a hash function, although this
time of the full packet instead of only headers, so that suc-
cessive packets of the same flow are scattered across the k
cells.

This way, if one cell is hit by lost or reordered packets, only
a subset of packets that belong to the flow are thrown away.
The remaining cells to which the flows’ packets are mapped
will possibly remain intact, thus providing with reasonable
estimates for the flow. To reduce the chances of losing cells
to losses and reordering, we additionally place a packet sam-
pling stage that will reduce the absolute number of packet
losses, but also reduce the number of good estimates (simi-
lar to LDA). As analyzed in detail in [14], the LDA operates
optimally when the sampling rate p is set to L/k, where L
corresponds to the absolute number of losses in the packet
stream. In Sec. 4.2 explores how to configure sampling rates
in real deployments.

Now, we have two choices for the k cells. First, we can
essentially replace each counter in the SDS data structure
with k different cells. Second, we can allocate k (contiguous
or random) cells in the counter matrix independently to each
flow. If the k cells are contiguous, we can think of them as
overlapping virtual LDAs (vLDA) per-flow, but they are not
dedicated per-flow. In LDS we use this second approach,
since it has the advantage of allowing a larger k without
reducing the number of cells, thus increasing the robustness
against loss at the cost of introducing extra collisions in the
data structure.

2.3.4 Final Data Structure

The final data structure LDS is formally described as fol-
lows. LDS contains a matrix of R rows and C columns.
Each cell of the matrix contains a tuple of values <s,n,d>,
which keep aggregate timestamps, packet counts, and packet
digests respectively. Both the sender and receiver maintain
separate LDS copies, that is transmitted by the sender at the
end of the measurement interval. Each row r has now two
associated pseudo-random hash functions hr and h′

r. While
hr returns a value in the range [0, C − 1], h′

r returns a value
in the range [0, k − 1], where k is a configuration parameter
of our algorithm that, as we shall see, represents the length
of the virtual LDAs in our data structure. Once a packet
that arrives at time t hits a cell, its s is increased by t, n
is incremented by 1, and d is XORed with the digest of the
new packet.

Update. When a packet with payload x and flow identifier
f arrives at time t, for each row r, a position in the ma-
trix given by (r, (hr(f)+h′

r(x))mod C) is determined. That
is, the flow hash is used to obtain a base position in each
row, while the packet payload’s hash determines an offset to
that position in the range [0, k − 1]. Thus, the packets of a
given flow are randomly distributed among the neighboring
cells. To coordinate this randomization between sender and
receiver, they both use, again, the same pre-arranged (con-
sistent) hash functions. Figure 4 presents a diagram of this
scheme, while Fig. 5 formally describes this algorithm.

This scheme has the advantage of, while not introducing
the full overhead of embedding a LDA in each cell, still ob-
tains its advantages, by spreading the packets of each flow
across several cells thus gaining protection against loss or
reordering. If a flow experiences losses, they will invalidate

nS n S n S n

hr
p

Row i

Packet

hr

S n S n

Virtual LDA for flow

Flow key

Header + 

payload

Offset into the virtual LDA

Base of the virtual LDA

Figure 4: Virtual LDA extension to the data struc-
ture (d fields are not depicted).

1: procedure Update state(pkt, f , τ )
2: ph← hash packet(pkt)%k ⊲ k is vLDA size
3: for i=1, R do
4: fh← (hash(i, f))
5: j ← ((fh + ph)%C)
6: LDS[i][j].S ← LDS[i][j].S + τ
7: LDS[i][j].N ← LDS[i][j].N + 1
8: LDS[i][j].D ← LDS[i][j].D ⊕ pkthash
9: end for

10: end procedure

Figure 5: LDS – Per-packet operations

some, but not necessarily all of the counters, which gives the
algorithm a chance to recover its delay. As will be discussed
in Sec. 3, this feature increases the amount of collisions.
Therefore, to support the same number of flows, it still has
to be larger than the basic data structure presented in Sec. 2.

Delay Estimation. When producing an estimate of a given
flow, all associated usable vLDA cells are initially selected.
After this step, the question of how to estimate flow delays
arises. The algorithm now has to choose among the usable
cells to produce an estimate. In the event that, for a flow,
none of its cells are invalidated, it has R k cells that can
produce delay estimates (for each row, all cells of the flow’s
vLDA).

Again, several strategies could be used to select which cells
are going to be used for estimation. For example, one could
aggregate all usable cells of each row into a single one, thus
obtaining one candidate delay estimation per row and, like
in the previous data structure, choose the one with the least
amount of packets.

Such a strategy is impractical, because it unnecessarily
gives up the advantages of having the packets spread across
several positions in the data structure. Instead, it is bene-
ficial to selectively discard specific positions with high mea-
surement interference.

We thus adopt the following strategy. First, among all
cells, we choose the one with the smallest number of pack-
ets. Assuming that each vLDA cell contains 1/kth of the
packets of the measured flow, this is the cell that has expe-
rienced least colliding packets. Let the number of packets
aggregated in this cell be n. Then, from the rest of the cells,
we select those that contain, at most, n (1 + α) packets,
where α is a configuration parameter that reflects a maxi-
mum percentage of tolerable interference. Too large an α
leads to the inclusion of interfering packets, while setting
it too small discards valid samples. We empirically found
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1: procedure Delay Estimation(f , L1, L2)
2: Nmin =∞
3: for i=1, R do
4: fh← hash(i, f)
5: for j = fh, (fh + k)%C do ⊲ k is vLDA size
6: if L1[i][j].N == L2[i][j].N &&
7: L1[i][j].D == L2[i][j].D then
8: cell = {L2[i][j].S − L1[i][j].S, L1[i][j].N}
9: S = S

S

cell ⊲ Stores all valid cells
10: Nmin = min{Nmin, cell.N}
11: end if
12: end for
13: end for
14: for cell ∈ S do
15: if cell.N < (1 + α)Nmin then
16: Ssum+ = cell.S
17: Nsum+ = cell.N
18: end if
19: end for
20: return Ssum/Nsum

21: end procedure

Figure 6: LDS – Delay estimation algorithm

α = 0.1 to represent a good trade-off between these two
factors in our setting.

Then, the resulting set of cells are aggregated to pro-
duce a final estimate. Since, within each vLDA, packets are
randomly distributed across cells, the possibility of double
counting packets exists. Note that this is not problematic
for the measurement of average delay.

The pseudocode in Fig. 6 captures our delay estimation
mechanism more formally. Here L1 and L2 are the sender-
and receiver-side LDSes. Note that k refers to the configured
vLDA size for each flow. Also, we assume both L1 and L2
have already been updated with the same hash functions
hash(i), i = 1 . . . R.

3. ANALYSIS
In this section, we analyze our data structure and provide

guidelines on how to dimension it in order to obtain the
desired level of accuracy. We start with the analysis of SDS
and then extend it to the more general case of LDS.

3.1 Simple Delay Sketch
One could hope to dimension the data structure so that

measurements are error-free with high probability, i.e., flows
are highly likely to be free from collision in, at least, one of
the cells. Unfortunately, this would require a great deal of
memory since, for example, when using a single row with as
many counters as flows, the probability that a given flow is
collision free is only e−1 (as in a standard Bloom filter with
a single hash function). In order for this probability to grow
beyond 95%, we require a number of counters that is well
above of the number of flows we want to measure.

As explained, in our data structure, colliding flows cause
interfering measurements, and estimates produced by each
row are an average delay weighted by the number of packets
of the colliding flows. In other words, in practice, larger flows
tend to have less error, since they will most often collide with
small flows, rather than larger ones.

In order for a flow to be accurately measured, the to-

tal number of packet in flows that collide with it must be
sufficiently small so as not to significantly impact its delay
estimate. Specifically, we say that a flow suffers only small

collisions if the number of colliding packets is no more than
some threshold x. To compute the probability Q of small
collisions we consider first the number of flows colliding with
a given flow, and then the number of packets that they bring.
Letting Ki denote the probability of i colliding flows, and Si

the probability that these i flows bring no more that x pack-
ets in total, then Q =

Pn
i=0 Ki Si, assuming n background

flows. By definition, S0 = 1, since a flow is always correctly
measured when it is free from collision.

We aim to dimension the data structure in a way that the
probability Q of only small collisions stays high. Assuming a
uniform distribution of hash values, Ki is probability of ob-
taining i items under the Binomial distribution B(n, 1/C),
yielding a mean number n/C of colliding flows. To compute
Si we need to assume some distribution of flow sizes. We
will assume Pareto distributed flow sizes. This distribution
is often used to model flow sizes (e.g., [15, 23]) and can be
fitted to the characteristics of the network data we use in
the evaluation in Sec. 5. The sub-exponential property of
the Pareto distribution implies that, if Tk is the sum of the
sizes of k flows, then Pr [Tk > x] ≈ k Pr [T1 > x] for large x
at fixed k. In other words, when Tk is very large, this tends
to be because one entry in the sum is very large, not because
several are moderately large. Using this property, we obtain
Q ≈

Pn
i=0 Ki(1 − iP ) = 1 − n

C
∗ P , where P = Pr[T1 > x]

under the (fitted) Pareto distribution. The accuracy of ap-
proximation increases for small n/C and large x.

Using this analysis, we can adapt the size of our data
structure to obtain the desired probabilistic accuracy bound.
For example, using Pareto parameters that match our traffic
(see Sec. 5), we obtain a probability Q ≈ 91% of small colli-
sions comprising at most 50 packets, with half as many coun-
ters as flows (n/C = 2), structured in 1 row. This means
that, for example, flows with 1000 or more packets have a
91% probability of small collisions comprising no more than
5% of their packets. Incidentally, a numerical computation
of Q without the subexponential approximation differed by
a few tenths of absolute percent in this example.

The formulation of this example illustrates a key require-
ment to measure a flow accurately: not only must it suffer
only small collisions but the flow itself must be large. (How
large depends on the delay distribution.) To simplify the
analysis, we stipulate a large flow to be one with at least x
packets, where x is the threshold total packets for small col-
lisions. With this formulation, we call a flow survivable in
storage if it is both large, and suffers only small collisions.
What then, is the maximal storage capacity of survivable
flows? Suppose n flows are stored. The average number of
large flows is nP and so the average number of survivable
flows is nPQ = nP (1 − nP/C). This expression is maxi-
mized at n = C/(2P ), yielding C/4. This is reminiscent of
the collision free capacity C/e of the standard Bloom filter.
The difference is that the proposed structure can store up to
C/4 survivable flows out of a potentially far larger C/(4P )
that are presented for storage.

In fact we do not expect the operating regime to accom-
modate the maximal number of flow because the probability
of large (i.e., not small) collisions is 1 − Q = nP/C = 1/2.
We now investigate operating regimes with rare large colli-
sions in the generality of multiple R ≥ 1 rows. We assume
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the primary design aim is to limit the probability of large
collisions, with a secondary aim of maximizing the num-
ber of survivable flows under that constraint. In the case
of multiple rows, a large flow is survivable if it has small
collisions in at least one row. With R rows, the total re-
sources C are divided up evenly between rows, and so sub-
stituting C/R for C in Q, the relevant survival probability is
Q(R) = 1− (1−Q)R = 1− (nP/CR)R. For a cleaner analy-
sis it is convenient to change variables from n to z = nP/C,
which can be thought of as the offered load of large flows
per unit storage. Then Q(R) = q(z, R) := 1− (zR)R.

As a function of R for fixed z, q(z,R) is maximized at
R = 1/(ez). But only R ≥ 1 are physical. (In this analysis
we omit consideration of integrality; in practice we round
to an integer at the end). Thus maxR≥1 q(z, R) = q(z) :=
q(z, max{1, 1/(ez)}). q(z) is a decreasing function of z which
takes the value 1 − z for z > 1/e (corresponding to R = 1)

and 1− e−1/(ez) for z ≤ 1/e (corresponding to the case R >
1). Assuming we wish a small probability ε < 1/e ≈ 0.63
of large collisions, then we should be in the small z < 1/e

regime, so we would want to chose z such that ε > e−1/(ez),
which corresponds to the choice R = − log(ε), modulo dis-
cretization, then making sure the offered load z is less than
zmax = −1/(e log(ε)). The relative gain of allowing multi-
ple rows can be seen as follows: under the constraint R = 1,
achieving the same bound on the probability of large col-
lisions would require z = 1 − q(z, 1) ≤ ε. Hence allow-
ing R > 1 allows us to increase the offered load by a ra-
tio −1/(eε log(ε)) > 1 for target ε < 1/e. Conversely,
maintaining the same load achieves a dramatic reduction
in the frequency of large collisions. In the previous example
z = nP/C = 0.0875, so we are in the regime z ≤ 1/e, lead-
ing to optimal R = 4.20. Rounding to the nearest integer
R = 4, we obtain q(4, z) = 0.9850, as compared with the
previous q(1, z) = 0.91.

3.2 Lossy Difference Sketch
The introduction of the Virtual LDAs in the LDS has

several side effects. The principal consequence of further
spreading flow packets across the data structure is that fewer
positions remain unused and, more importantly, more colli-
sions occur. However, this is to some extent compensated
by the fact that every flow is spread across k positions, and,
thus, collision randomization is higher. In this section, we
will investigate how these factors change the previous anal-
ysis.

The Virtual LDA divides up the packets of a flow amongst
k locations in each of R rows. Accurate estimation of a given
flow depends on having only small collisions in at least one
of these locations. Thus we adapt our notion of survivability
as follows for general k: A given flow is survivable if it is
large (the number of packets exceeds some value x) while at
the same time suffers only small collisions (of size no more
than x/k) at at least one of the Rk locations it occupies in
the Virtual LDA.

In this section we examine a simplified model of the Vir-
tual LDA that admits an extension to the analysis of Sec-
tion 3.1 to approximate the probability of survivability. This
shows that, from the collision survivability point of view, the
Virtual LDA is no worse than the multirow data structure
described in Section 3.1, and is actually expected to be bet-
ter. This property, coupled with the superior loss resilience
of the Virtual LDA, recommends it as the better choice.

Our model and analysis are as follows. For a specific flow,
let Uℓ be the number of its packets hashed to a location
ℓ, and Vℓ the number of packets from all other flows that
are mapped to that location. The estimation algorithm first
determines the location ℓ of minimal Uℓ + Vℓ. Since we are
concerned principally with the case that the specific flow has
some large number u of packets, our first simplification is to
ignore the sampling variability amongst the Uℓ and approxi-
mate the Uℓ as taking the same value (i.e., the average u/k).
Thus the problem of minimizing Uℓ + Vℓ is thus reduced to
that of minimizing the Vℓ.

Because the locations allocated to a given flow in a row
are contiguous, the Vℓ are in general dependent, because if
packets from a background flow hash to location ℓ, the other
packets from the same flow are more likely to collide at a
neighboring location ℓ′. This dependence leads to positive
correlations amongst the Vℓ, meaning that the joint prob-
ability of collisions occurring at all locations of a flow is
greater than the product of the marginal probability of col-
lisions occurring at each site. Conversely, the corresponding
survival probability is bounded below by that of a model
where collisions are independent: it is conservative to use
this as our second simplification. Thus we model the dis-
tribution Ki of the number of colliding flows as a Bernoulli
B(nk, R/C) random variables.

For our final simplification, we note that under our Pareto
model, the probability that the number T (k) of packets sam-
pled from a background flow to each of the k locations in a
row exceeds a level x obeys Pr[T (k) ≥ x] ≈ Pr[T1 ≥ kx] for
large x, where T1 the length of the background flow; see [26].
Coupled with the subexponential approximation for sums of
flow lengths, we approximate the probability of a small num-
ber of packets (at most x/k) due to i colliding flows at some
site ℓ as Si = Pr[Vℓ < x/k|i colliding flows] ≈ 1− iP where
P = Pr[T1 > x] under the (fitted) Pareto distribution.

Thus, under our simplifications, the probability of small
collisions is Q(Rk) = 1 − (nkRP/C)Rk. The optimization
and dimensioning strategy is then immediate by compari-
son with Section 3.1: (i) choose a value k based on targets
for loss resilience; (ii) for a given small target survivabil-
ity rate 1 − ε, calculate the number of rows by rounding
max{1,− log(ε)/k} to the nearest integer.

4. PRACTICAL ENHANCEMENTS
In this section, we introduce a series of enhancements to

the LDS data structure that make it more practical for real
deployment. We start by defining a mechanism to boost
the accuracy for a selected subset of flows of particular in-
terest to network operators. We then investigate how to
parametrize the sampling rates to support a wide range of
loss ratios. Finally, we note that the data structure contains
additional information that can be used to mine other in-
teresting metrics, including per-flow packet loss and heavy
hitter detection.

4.1 Weighting of Flows
As formally analyzed in Sec. 3, the LDS intrinsically pro-

duces better estimates for large flows. This is due to the
fact that, when flows collide, estimates are average delays of
said flows, weighted by the amount of packets.

However, often times, small flows are of interest (a no-
table example are DNS flows, which usually consist of only
one packet per direction). On the other hand, operators
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might be particularly interested in measuring a particular
set of flows with higher accuracy. For example, one could
increase the accuracy for certain subnetworks where critical
services are hosted, or where troubleshooting activities call
for precise examination of network delays (a practical use
case for flow weighting is presented in Sec. 5).

We provide a mechanism to raise the accuracy of flows
at will. This can be very simply accomplished by weighting
flows according to some pre-defined policies driven by the
operator’s desires. Such policies can define a flow’s weight
according to any information present on packet headers. The
default weight for non-policed flows is defined as 1 for sim-
plicity.

These weights are taken into consideration straightfor-
wardly by slightly modifying the update procedure. When
a packet of a flow f arrives, its headers are examined and
a weight w is determined according the existing weighting
policies. Then, a cell of each row is selected as explained in
Sec. 2.3.4. For each of the cells, their s value is increased by
w times the packet timestamp, while n values are increased
by w (recall that, previously, s values were increased by the
timestamp and n values by 1).

No modification is required to the estimation procedure.
When all flow weights are equal, the estimates are identical
to those of Sec. 2.3.4. Otherwise, flows are weighted by their
number of packets times their weight. It shall be noted, how-
ever, that this extra accuracy will always come at expense
of the accuracy of the estimates for flows with lesser weight.
Thus, it is not advisable to heavily increase the weight of
a large percentage of flows, as it will dramatically reduce
the accuracy for all the others. We will analyze the effect of
weighting from a practical standpoint in Sec. 5.

4.2 Multi-Bank LDS
As explained in Sec. 2.3.3, to maximize the collection of

delay samples in front of packet loss, each vLDA should
sample the incoming packet stream at rate L/k, where L
corresponds to its associated number of losses and k to its
length. However, in a real scenario, the absolute number of
losses that each flow will experience is unpredictable, which
raises the question of how to set the sampling rate. On the
one hand, a reasonable amount of loss has to be supported,
which calls for low sampling rates. On the other, aggressive
sampling will miss small flows and fail to collect enough
packets for those that do not experience loss.

Inspired by [17], we propose dividing the counters of the
LDS in several banks, and have each bank sample the in-
coming packets at a different rate. This way, at least one of
the banks will suit the actual loss rate of each flow.

A natural way to divide counters in banks is to set a
different sampling rate on a per-row basis. In the evalua-
tion provided in Sec. 5, we show that configuring one row
for worst-case loss scenarios, and maintaining increasingly
higher sampling rates in the other rows, does not sacrifice
accuracy in normal scenarios with low loss, while still provid-
ing protection against high loss. When a flow surpasses the
target worst-case threshold, the LDS will be unable to pro-
vide delay estimates for that flow. In such a case, however,
the data structure can provide an estimate for its number of
lost packets, as will be explained in Sec. 4.3.

This variant of the LDS requires very few changes to the
algorithms detailed in Sec. 2.3. Now each row has an as-
sociated sampling stage, which is also implemented using

pseudo-random hashing to coordinate measurement nodes,
while the estimation procedure only needs to be modified
to be aware of the sampling rate that each cell has applied.
In particular, packet counts need to be inverted before de-
ciding which LDS cell will be selected to produce a final
estimate. After the cell selection procedure, delay estimates
are produced normally.

4.3 Mining Other Estimates
The LDS data structure can be mined to extract addi-

tional information of practical interest to network opera-
tors. Firstly, the data structure can provide per-flow delay
variance estimates by examining the differences across the
delays recorded in buckets dedicated to a given flow. The
procedure to obtain this estimate was originally proposed
and is thoroughly described in [17]. Our data structure has
a comparatively smaller number of buckets per flow, but the
same method could be applied to obtain rough delay vari-
ance estimates. This additional estimate can be extremely
useful in practice to detect unexpected delay variations, such
as jitter or delay peaks.

If we ignore the s fields and focus only on the n fields of
each cell, the data structure behaves similarly to a Count-
Min Sketch [9]. Consequently, an estimate of the length
of a given flow can be obtained as follows. For each row,
aggregate all vLDA cells to obtain a packet count. Then,
take the minimum of such values. This is the final estimate.
It can be easily shown that this estimate is, at best, error
free, and, in the presence of collisions, it can only be greater
than the actual value. This is an interesting property for
certain problems and, especially, for heavy hitter detection.
The accuracy of this technique is analyzed in greater detail
in [9].

Simply by attaching another counter to each cell, where
packet sizes are aggregated, we can also estimate flow sizes
in bytes. Both these new counters and the existing could be
used for heavy hitter detection in terms of bytes or packets
respectively. Additionally, one could obtain crude estimates
for the average packet sizes. In this paper we divide the
aggregate delay over the number of packets to estimate av-
erage flow delays. Likewise, total flow sizes could be used
to obtain a per-flow average packet size. Finally, we note
that per-flow packet loss can be obtained by comparing the
n fields of our data structure as collected in sender and re-
ceiver .

5. EVALUATION
With the objective of evaluating the LDS data structure in

a realistic scenario, we deployed two network monitors in an
operational network. For the sake of reproducibility, we col-
lected a packet delay trace, rather than directly processing
live traffic. We then ran a series of experiments using LDS
and two state of the art techniques that will be described in
Sec. 5.1. We note, however, that all the traffic measurement
procedures, including LDS and both reference techniques,
were fast enough to run on-line and, therefore, the results
we present are completely equivalent to live traffic analysis.

The first monitor was deployed in a 10 Gb/s link that
connects a large research and educational networking con-
sortium to the rest of the Internet. The second was lo-
cated in the 1 Gb/s access link of one University part of
this consortium. We obtained a copy of the traffic that tra-
versed both links in both directions and used Endace DAG
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Figure 7: Timeseries of a sample of the packet de-
lays, with outbound delays portrayed as negative
values.
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cards [12] to simultaneously capture packets in both mea-
surement points. We synchronized DAG clocks using the
PTP protocol, which reportedly provides sub-microsecond
accuracies [10] and thus is accurate enough for fine grained
delay measurement.

We then wrote a CoMo module [4] to analyze the trace
and extract, for each packet, its flow identifier, packet identi-
fier, and exact one-way delay. The trace averages 27Kpkts/s
and contains around 7.76 million packets that belong to ap-
proximately 146000 flows.

Figure 7 shows a time series of a sample of the packet
delays for each traffic direction. Two features are appar-
ent from this figure that make inbound traffic (i.e., destined
towards the University network) more interesting. First, in-
bound packet delays present higher variability. Second, two
delay modes are clearly appreciable in the inbound traffic, as
can be also confirmed in the CDF of the packet delays pre-
sented in Figure 8. Therefore, unless otherwise noted, the
experiments presented next in the evaluation are performed
on the inbound traffic.

5.1 Comparison with Existing Methods
The objective of this section is to compare the accuracy

of LDS with the state-of-the-art on per-flow delay measure-
ment. We choose the NetFlow Multi-Point Estimator (MPE)
[19] and the Reference Latency Interpolation (RLI) [18] as
representatives of a recently introduced class of techniques
that exploit temporal delay correlation to refine measure-
ments from a few samples.

The Multi-Point Estimator is conceived as an extension
to NetFlow, and requires routers to use coordinated sam-
pling. Under this assumption, for each sampled flow, there

exist two delay samples from which to estimate the flow de-
lay (NetFlow records include a timestamp of the first and
last packet). Additionally, based on the empirical observa-
tion that packets that travel close in time experience similar
delays, the method can interpolate the delay between these
two samples using the NetFlow records of other flows that
start or end within the duration of the measured flow. The
main difference between MPE and RLI is that, while MPE
relies on a modified version of NetFlow, RLI injects active
probes to obtain the necessary delay samples and assumes
that packets between two probes experience the same delay.

We evaluate LDS with three different configurations: one
that provisions half as many counters as flows (n/C ≈ 2)
(to obtain a configuration that, as will be discussed, is com-
parable with MPE), while the other two are 10 times larger
and smaller than this reference LDS. Consistently with the
example in Sec. 3, we structure the sketch in 4 rows, which
yields a sketch of 17500 × 4 counters for the first configu-
ration. Given that loss is negligible in our scenario, we set
the vLDA length k = 1, and the sampling rate p = 1. We
analyze the impact of loss in detail in Sec. 5.2.

Figure 9 plots the CDF of the relative error obtained by
each flow in the traffic, for different flow sizes. The figure in-
cludes the accuracy of MPE with a sampling rate of 1% and
10%,2 RLI with 1KHz probing, and a simple method that
estimates the delay of each flow to be the average delay of
all packets. The figure shows that LDS greatly outperforms
both MPE and RLI. The increase in accuracy compared to
MPE can be explained by two primary causes. First, MPE
completely misses a large number of small flows (e.g., more
than 50% with 10% sampling). For these flows, we estimate
their delay as the average delay of all packets, instead of
simply assigning an error of 1. In contrast, LDS can always
obtain an estimate for all flows. Second, for the flows it
does collect, it interpolates the delays using other flows, but
in our case these are not necessarily correlated, as can be
observed in Figure 8. While RLI outperforms MPE, its ac-
curacy is also far from LDS, especially for large flows, and
requires significantly more memory and state maintenance.

Figure 9 (left) shows that, as predicted by the analysis,
large flows are very accurately measured. A still notable ac-
curacy for flows of 100 or more packets is also observed in the
middle plot. Figure 9 (right) shows the per-flow accuracy
for all flows, including also those with less than 100 pack-
ets. According to the analysis in Sec. 3, these flows are not
considered to be survivable, since they tend to experience
large collisions. These flows however only account for 20%
of the packets in our trace. Even in this case, the accuracy
of LDS is consistently above the state of the art. This result
shows that the estimate of LDS for unsurvivable flows is in
practice more accurate than just using the average delay of
all packets.

LDS also features better memory usage. For example,
with 10% sampling, MPE captures around 70000 flows, so
(generously disregarding the fact that NetFlow stores flow
keys) it consumes roughly as much memory as the 17500×4
LDS. Thus, with the same memory budget, LDS clearly out-
performs MPE in terms of measurement accuracy. Note also
that, even when LDS uses 10 times less memory than MPE
(C = 1750×4), it obtains significantly higher accuracy, espe-
cially for medium sized to large flows. LDS also outperforms

2Note that MPE uses sampling to control the memory usage,
while for LDS sampling is only a measure against packet loss.
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Figure 9: CDF of the relative error of various measurement methods for flows with > 1000 pkts. (left), with
> 100 pkts (center) and all flows (right).
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Figure 10: Median and 95-pct of relative error, bin-
ning flows by number of packets (top) and number
of packets and average delay (relative to avg. flow
delay; bottom).

RLI, which requires even more memory than MPE, since it
maintains per-flow state.

Figure 10 (top) plots the median and 95-percentile of the
relative error of flows binned by size. Consistently with the
analysis of Sec. 3, the figure shows that larger flows are more
accurately measured. Our method compares extremely fa-
vorably to both MPE and RLI. Only with 7,000 counters we
obtain significant improvements for flows larger than 1,000
packets. When using 70,000 counters, which take about
1MB, flows with 500 to 999 packets obtain 1.2% median
relative error, which falls to 0.4% and 0.06% for the larger
size bins.

Figure 10 (bottom) bins flows both by size and average
delay with a fixed sketch size of 70,000 counters. The figure
shows how the errors are slightly larger as delay deviates in
extreme values for the mean. This happens because smaller
flows show more extreme values, but interferences tend to
drag measurements toward the mean.

5.2 Measurement under Packet Loss
We now analyze the effect of packet loss to our data struc-

ture. Under small loss rates, it is desirable to keep the vLDA
length parameter k small, since increasing it increments the
number of collisions in the sketch. However, increasing k

provides higher protection against loss. Additionally, sam-
pling helps contain loss, since a large number of losses in a
single flow can potentially invalidate the k counters.

We wish to dimension our data structure to support a
given maximum number of losses per flow. The main intu-
ition behind this approach is that, when flows experience a
large amount of losses, performance degradation is more a
consequence of loss than delay; thus, delay measurements
cease to be meaningful (note that LDS can be mined to es-
timate per-flow loss, as explained in Sec. 4.3).

In this experiment, we arbitrarily set a target number of
losses of 500 packets per flow. However, we also wish the
LDS to be able to capture a large sample size if losses are
much lower. Thus, we use a multi-bank configuration of
LDS, as described in Sec. 4.2. We provide 4 rows with k = 5
vLDA buckets, like in the previous scenario, increase the size
of each row of the sketch by a factor of k, and set α = 0.1.
We then pick suitable packet sampling rates for each row.
With k = 5, each vLDA cell needs to support 100 losses,
according to our target number of losses. This means that
the sampling rate should be set to 0.01 to support this worst-
case loss. Then, we wish the rest of the banks to tolerate
lower loss in order not to sacrifice the accuracy of LDS in the
normal case. We set the rest of the banks with increasing
sampling rates of 0.1, 0.5 and 1 to tolerate up to 50, 10 and
5 losses respectively. For comparative purposes, we also set
two LDS with a fixed sampling rate in all rows of 0.05 and
1.

Since, in our scenario, losses are negligible, we introduce
random, uniform loss to test such configurations. Consis-
tently with the assumptions made in Sec. 2.1, we perform 3
series of experiments with loss rates 0.1%, 0.5% and 1%. It
should be noted that uniform loss is one of the most harmful
loss models to LDS, for three main causes. First, losses are
spread among a large number of flows, instead of being con-
tained within a few. Second, the absolute number of losses
that hit each bucket heavily varies according to the lengths
of the involved flows. Recall from Sec. 2.3 that the optimal
sampling rate for each bucket depends on its absolute num-
ber of losses. Third, this loss model penalizes large flows,
which are precisely those that our method can measure most
accurately.

Figure 11 shows the results we obtained. We start by not-
ing that neither 5% nor 100% sampling single-bank LDSs
perform satisfactorily. The former maintains its accuracy
under higher loss, but is too conservative and underperforms
on low loss. Conversely, 100% sampling is too optimistic and
does not offer protection against loss. Thus, its cells become
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Figure 11: CDF of the relative of several LDS parametrizations under varying uniform loss rates. Solid lines
represent flows with at least 103 packets, while dashed lines, flows with more than 100 packets.

too quickly invalidated under increasing loss, causing mea-
surements to be lost.

In contrast, the multi-bank LDS performs consistently
well under all loss rates. This desirable behavior is a con-
sequence that, in all three scenarios, most flows experience
losses that are well tolerated by at least one of the banks.
Therefore, very seldom a flow invalidates all of its buckets,
and accurate measurements are always produced.

The accuracy of LDS in Fig. 11 is still above that of RLI
and MPE without loss (as presented in Sec. 5.1). However,
MPE and RLI are more robust to loss. Hence, in scenarios
with high loss and temporal correlation, we expect MPE and
RLI to be a better choice.

5.3 Flow Weighting
We now test a more realistic use case of our technique.

We envision a data center that hosts network services for a
series of customers. Not all customers, though, are equally
sensitive to network delay. We group the hosted services in
three classes. First, bronze customers are not overly con-
cerned about packet delays in the data center. For example,
those could include bulk data transfer applications, such as
backup, static web content serving, e-mail relaying, or com-
puting intensive tasks.

Second, silver customers are somewhat dependent on net-
work delay, but they do not require strict compliance of low-
delay QoS requirements. A class that would fit these well
are interactive services, such as remote shells, highly inter-
active web applications (e.g., Google is known to seek low
delay to enhance the user’s browsing experiences of AJAX-
powered web applications), or web services for third party
applications.

Finally, gold customers host applications that are extremely
sensitive to delay, and wish to closely track the QoS of the
services they are offering. Perfect examples for this class
of applications involve multi-media streaming, audio/video
conferencing, or remote gaming. Financial services such as
automated trading could also fit this category, although,
given that, in their case, low-delay data transmission is crit-
ical, they are unlikely to be hosted in shared infrastructure.

Since we do not have access to network traffic from a data
center that hosts such applications, we adapt our scenario
as follows. We randomly assign each flow to one of the cat-
egories. Bronze customers take 90% of the flows; silver cus-
tomers, 9%, and gold customers, 1%. This approach ensures
that the results are not an artifact of flow sizes, since large

flows tend to be more accurately measured. In a real setting,
these weights can be adjusted to the specific characteristics
of the traffic under measurement.

We experiment with different sizings of the data structure,
and various weights for each of the customer classes. Fig-
ure 12 shows the result of a series of experiments. We have
tested two reference configurations. One that uses 40,000
counters (first row), an another that uses 100,000 counters
and provides greater accuracy (second row). The first con-
figuration fits in 625KB, and the second, in around 1.5MB.
As for flow weights, we have tested three different config-
urations, which can be observed in each column: assigning
weights of 1, 25 and 100 (first); 1, 10 and 100 (second), and,
1, 50 and 2500 (third).

The figure shows the relative error for the full set of flows
(solid lines) and only for flows with more than 100 pack-
ets (dashed lines). Besides the error of each customer class,
the figure also shows, as a reference, the result of apply-
ing no weighting. An important observation to be made
is that flows from classes that have higher weights obtain
significantly greater accuracy. The accuracy boost greatly
depends on the actual weights; for example, when gold cus-
tomers carry weight 2500, they obtain extreme accuracy.
However, this penalizes the accuracy of bronze customers.
In this case, we have ensured that the accuracy of bronze
customers is not highly penalized, because few flows belong
to higher priority classes. If, otherwise, the number of flows
in each class was more balanced, the only option to increase
accuracy for the flows of a given class without significantly
diminishing that of a lower priority class would be to in-
crease the sketch size. In other words, this method is only
applicable to increase the accuracy of a small subset of flows.

6. RELATED WORK
One-way packet delay has been measured both using pas-

sive and active schemes. Active monitoring methods (e.g.,
[5, 24, 6, 28]) are based on injecting probe traffic in the
network under study, and inferring one-way delay from the
delays incurred by such probes. In contrast, passively mon-
itoring network delays has been traditionally accomplished
by recording packet timestamps in two measurement points,
and exchanging such timestamps for comparison. Because
these techniques generate huge data volumes, they require
aggressive sampling to reduce the overhead. Further, packet
sampling has to be coordinated across nodes, since the times-
tamps recorded at both measurement points must corre-
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Figure 12: CDFs of the relative error with various flow weights and sketch sizes. Solid lines correspond to
flows with more than 100 packets, while dashed lines include the full set of flows.

spond to an equal subset of all packets. This effect can
be achieved using consistent hashing, i.e., using same pre-
arranged hash function—an idea used before in trajectory
sampling [11]).

More recently, LDA [17] has been proposed as a mecha-
nism to overcome the linear relationship between sample size
and overhead. LDA has been further analyzed in [27, 14] as
well. Since our paper borrows some of the ideas of LDA,
we have discussed this idea in great length. The problem
of obtaining per-flow latency estimates in a scalable fashion,
which is exactly the problem we attempted to solve in this
paper, has received recent attention [18, 19]. [19] proposes
modifying NetFlow [7] to allow measurement of one-way de-
lay. If NetFlow samples packets using consistent hashing,
the first and last timestamp fields of NetFlow records can be
used to obtain two delay samples of a given flow that can be
refined from using samples from other flows in between these
two timestamps. The core idea of temporal delay correla-
tion forms the basis for Reference Latency Interpolation [18],
that we also discussed in detail in the paper. The biggest
difference between RLI and our work is that we do not as-
sume temporal correlation of packet delays. Removing the
dependence on this assumption is beneficial in many ways,
as explained in Sec. 1.

Besides packet delay measurement techniques, sketching
is also very relevant to this work. Most relevant to us are
two similar data structures: Multi-Stage Filters [13], which
are designed for elephant flow detection, and the Count-Min
Sketch [9], which can provide per-flow estimates with proba-
bilistic accuracy guarantees. Other sketching techniques are
reviewed and compared in [8].

7. CONCLUSIONS
We have presented a sketch-based data structure capable

of producing per-flow one-way delay estimates. Although
sketching naturally produces the best estimates for larger

flows, this data structure can enhance the accuracy of arbi-
trary flows. For measurement in networks with packet loss,
we have combined our sketching technique with a recently
appeared data structure called Lossy Difference Aggregator.

State-of-art techniques rely on temporal correlation of de-
lays to produce their estimates. However, in practice, routers
can use various queueing policies for different kind of traffic,
which greatly reduces the effective of said techniques. In
our evaluation, we show how our technique achieves higher
accuracy than such techniques when using a similar amount
of memory, even in the presence of packet loss.

We have also presented a practical deployment scenario
where our technique and its ability to improve measurement
for arbitrary flows could be very useful. In particular, our
technique could very well cater a data center with shared re-
sources, where various applications present diverse degrees
of dependency on network delay. In such a scenario, our
technique can be used to obtain extremely precise measure-
ments for the most critical applications, while still providing
an acceptable degree of accuracy for other applications.
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in network monitoring applications. In Proc. of
USENIX Annual Technical Conf., 2007.

[5] J. Bolot. Characterizing end-to-end packet delay and
loss in the internet. Journal of High Speed Networks,
2(3):289–298, 1993.

[6] B. Choi, S. Moon, R. Cruz, Z. Zhang, and C. Diot.
Practical delay monitoring for ISPs. In Proc. of ACM
CoNEXT, 2005.

[7] Cisco. NetFlow.
http://www.cisco.com/web/go/netflow.

[8] G. Cormode and M. Hadjieleftheriou. Methods for
finding frequent items in data streams. The VLDB
Journal, 19(1):3–20, 2010.

[9] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58 – 75,
2005.

[10] L. De Vito, S. Rapuano, and L. Tomaciello. One-way
delay measurement: State of the art. IEEE
Transactions on Instrumentation and Measurement,
57(12):2742–2750, 2008.

[11] N. Duffield and M. Grossglauser. Trajectory sampling
for direct traffic observation. IEEE/ACM
Transactions on Networking, 9(3):280–292, 2001.

[12] Endace. DAG network monitoring cards.
http://www.endace.com.

[13] C. Estan and G. Varghese. New Directions in Traffic
Measurement and Accounting: Focusing on the
Elephants , Ignoring the Mice. ACM Transactions on
Computer Systems, 21(3):270–313, 2003.

[14] H. Finucane and M. Mitzenmacher. An improved
analysis of the lossy difference aggregator. ACM
SIGCOMM Computer Communication Review,
40(2):4–11, 2010.

[15] S. Fred, T. Bonald, A. Proutiere, G. Regnie, and
J. Roberts. Statistical bandwidth sharing: a study of
congestion at flow level. In Proc. of ACM SIGCOMM,
2001.

[16] IEEE. IEEE/ANSI 1588 standard for a precision clock
synchronization protocol for networked measurement
and control systems, 2002.

[17] R. Kompella, K. Levchenko, A. Snoeren, and
G. Varghese. Every microsecond counts: tracking
fine-grain latencies with a lossy difference aggregator.
In Proc. of ACM SIGCOMM, 2009.

[18] M. Lee, N. Duffield, and R. Kompella. Not all
microseconds are equal: fine-grained per-flow
measurements with reference latency interpolation. In
Proc. of ACM SIGCOMM, 2010.

[19] M. Lee, N. Duffield, and R. Kompella. Two samples
are enough: opportunistic flow-level latency estimation
using netflow. In Proc. of IEEE INFOCOM, 2010.

[20] M. Lee, S. Goldberg, R. Kompella, and G. Varghese.
Fine-grained latency and loss measurements in the
presence of reordering. In Proc. of ACM
SIGMETRICS, 2011.

[21] R. Martin. Wall street’s quest to process data at the
speed of light.
www.informationweek.com/news/infrastructure/

showArticle.jhtml?articleID=199200297.

[22] S. Moon, P. Skelly, and D. Towsley. Estimation and
removal of clock skew from network delay
measurements. In Proc. of IEEE INFOCOM, 1999.

[23] K. Park, G. Kim, and M. Crovella. On the
relationship between file sizes, transport protocols,
and self-similar network traffic. In Proc. of
International Conference on Network Protocols, 2002.

[24] V. Paxson. Measurements and analysis of end-to-end
Internet dynamics. Technical Report CSD-97-945,
University of California at Berkeley, 1998.

[25] V. Paxson. On calibrating measurements of packet
transit times. In ACM SIGMETRICS Performance
Evaluation Review, volume 26, pages 11–21. ACM,
1998.

[26] C. Y. Robert and J. Segers. Tails of random sums of a
heavy-tailed number of light-tailed terms. Insurance:
Mathematics and Economics, 43(1):85 – 92, 2008.

[27] J. Sanjuas-Cuxart, P. Barlet-Ros, and J. Solé-Pareta.
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Summary Review Documentation for 

“Sketching the Delay: Tracking Temporally Uncorrelated 
Flow-Level Latencies” 

Authors:  J. Sanjuas-Cuxart, P. Barlet-Ros, N. Duffield, R. Kompella 
 
Reviewer #1 
Strengths: Entire scheme has been implemented and tested on 
real traces. 
Reasonable analysis of data structure space requirements and 
accuracy. 
 
Weaknesses: Relatively incremental approach.  Scheme requires 
O(#flows) state; perhaps this is unavoidable.  Some claims 
(accuracy/state requirement) in paper are inflated.  The paper does 
not describe how to set many different parameters. 
 
Comments to Authors: The assumption of synchronized clocks 
is big, but is not paid due attention.  The accuracy of the algorithm 
depends entirely on the synchronization of the sender and receiver 
clocks: how expensive are the DAG cards used to timestamp 
packets?  How does this cost compare to the high frequency active 
probes mentioned in the Introduction? 
 
The LDS algorithm is a relatively simple merge of existing 
techniques. Handling lost/reordered packets is the most difficult 
problem, and that is dealt with, rather inelegantly, by smearing the 
measurements over multiple buckets and hoping that some 
measurements survive. 
 
The virtual LDS scheme is not likely to be effective if some flows 
incur heavy losses, as might be the case with best effort flows.  
The evaluations only assume <1% loss, which is overly 
conservative. 
 
How is the \alpha parameter set?  Does choosing a small \alpha 
lead to high variance in results? 
 
The x parameter (threshold of collision by number of packets) 
ignores per-flow variability.  If a low latency flow gets mapped to 
flows with less than x packets but each with much higher latency, 
then the low latency flow's estimates will be affected 
disproportionately.  It is not clear why the number of interfering 
packets is chosen as the measure of interference. 
 
Evaluation: 
 
The base parameters use half as many counters as flows.  Is the 
total memory used not sufficient to maintain per flow statistics?  
Some of the experiments use 10 times more counters than flows - 
might as well keep per-flow state? 
 
In general, the parameters in the experiments are chosen given the 
trace statistics, which says nothing about how one would set the 
parameters on a live network.   
 

The experiments were performed, post-hoc, on a trace.  Is it 
possible to perform experiments, live, on a high speed link?  The 
other methods, NetFlow MPE for instance, are operating on a live 
link, and a offline comparison does not seem fair.  Especially 
when the comparison requires  O(#flow) state to provide a per-
flow measure of latency. 
 
Nits: 
 
Section 2.3.3:  How are individual packets mapped to one of k 
cells? 
 
Figure 7: how many cells were used in the experiments? 
 
The paper is unnecessarily long: A lot of the simple ideas 
presented in pseudocode can be removed.                                                                        
 
Reviewer #2 
Strengths: The authors provide nice and intuitive algorithmic 
optimizations to advance the state of the art in delay estimation at 
the flow level. 
 
Weaknesses: The work appears too incremental to a large body of 
prior work by some of the authors. 
 
Comments to Authors:  The paper does a nice job of building up 
a nice algorithmic solution to the problem proposed. The results 
indicate the performance advantages of the proposed scheme and 
its accuracy. 
 
However, my understanding of the paper is that it is very 
incremental to prior work. The LDS scheme as described, appears 
to be the LDA scheme enhanced with some sketch based data 
structures to track flows better. Seems like a very simple 
optimization beyond prior work. 
 
Unfortunately, I am unable to judge how this paper is a significant 
enhancement over prior art. 
	
  
Reviewer #3 
Strengths: -cute idea 
- relevant problem 
- extensive evaluation with real traces 
- well written. 
 
Weaknesses: - fairly incremental to the authors’ own prior work 
- not sure how feasible the synchronization assumption is 
 
Comments to Authors: How feasible is microsecond level 
synchronization? The paper depends quite heavily on it. I imagine 
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that it should be fine, given that such synchronization is regularly 
achieved in some systems (e.g. cellular wireless networks). But 
what is the cost? 
 
Some of the parameters in the experiments are unclear. For 
example, how is the \alpha parameter set? 
 
What happens if packets are lost? Does it not distort the 
measurements? 
 
Reviewer #4 
Strengths: - Novel approach for estimating delays in the network, 
even when there is no assumption on the temporal dependencies 
of the flows.  
- Experimental evidence shows the improvement over state of the 
art approaches in realistic scenarios. 
 
Weaknesses: There are not enough theoretical guarantees on error 
that validate the goodness of the LDS approach. 
 
Comments to Authors:  1. This paper removes the assumption of 
temporal correlation but the flows are not necessarily 
"uncorrelated". 
 
2. In Section 3.2, it is not clear why the minimization problem 
(U_l + V_l) is reduced to minimization problem of V_l. Is it 
practical to make the assumption? 
 
3. Under packet loss scenario, the result shows the MB-LDS 
performs better than LDS.  But it does not have any comparison 
with other state of the art approaches. 
 
4. How MB-LDS performs under higher packet loss scenario? 
 
5. In Figure 8, the bronze customers' accuracy does not look 
affected with the higher weights in gold and silver. The proportion 
of flows is the reason. It will be interesting to first see how the 
proportion are affecting the bronze customers when they are not 
that asymmetric. 
 
Reviewer #5 
Strengths: A more practical and effective technique for per-flow 
delay measurement; solid presentation; good evaluation. 
	
  
Weaknesses: Evaluation focuses on average delay. 
 
Comments to Authors: The paper present LDS, a new sketching-
based technique and associated data structure to obtain per-flow 
latency measurements. LDS does not rely on model assumptions 
about the relation between delays across flows, has lower memory 
requirement and network overhead than existing techniques and a 
data structure that can resized based on necessary accuracy.  
 
I expected to see but did not find references to papers that 
evaluate the impact of prioritization, load balancing, etc on the 
effectiveness of other techniques.  
 
The presentation of LDS is well done, with a step-by-step 
introduction of the ideas starting with SDS and relaxing 
assumptions to introduce LDS, flow weighting and multibank-
LDS. 

 
The presentation includes results from an evaluation of LDS using 
data collected from links connecting a research and a university 
networks to (rest of) the Internet. The evaluation section does a 
pretty good job at presenting the advantages and potential issues 
with the technique.  
 
I did not see an analysis of the effectiveness of the technique in 
capturing other estimates than average. Sec. 4.3 briefly discusses 
how other information could be mined but there is no follow-up in 
the evaluation on the effectiveness of the approach to capture, for 
instance, delay variations. 
 
It would be good to drop an example of number of flows that 
makes collecting and exchanging per-flow state prohibitively 
expensive 
	
  
Response from the Authors 
 
The first and third reviewers raise concerns over the assumption 
of clock synchronization. This assumption is common to many 
one-way delay measurement methods, including active techniques 
based on probing. The authors agree that it is an assumption that 
raises difficulties, even if they can be solved with the methods 
presented in the paper. Removing this assumption was out of the 
scope of this paper. We have provided references to papers that 
specifically deal with the clock synchronization issue.   
 
The paper introduces a "half as many counters as flows" 
configuration since it has the advantage that results make for a fair 
comparison with other methods that require similar memory usage 
(e.g., MPE). The evaluation also tests a configuration with fewer 
counters satisfactorily (fig. 5). We further stress that LDS still 
outperforms the competition using 10% of this amount of 
memory. 
 
The reviewers raise the question of whether LDS works under 
higher loss. Low loss is an assumption of our paper (Sec. 2.1). We 
argue that delay measurements might not be particularly 
interesting when loss is very high, since TCP does not work under 
high loss. We now point that under such conditions, other loss-
tolerant methods might be a better option than LDS, since k 
should be larger and would require more memory. 
 
The number of packets in each bucket provides an assessment of 
the amount of interfering packets (x) although the reviewers raise 
the valid point that the measurements can be damaged if delays 
differ largely in magnitude. While other alternatives exist (e.g., 
combining multiple cells), we defend our choice in Sec. 2.2. Also, 
we have extended the discussion on how to map packets to each 
virtual LDA cell (Sec. 2.3.3) 
 
In the evaluation, we have included our choice of the α parameter. 
We also explain that the results of the experiments are equivalent 
to an on-line setting, that LDS can actually run on-line, and 
discuss the accuracy of reference methods under loss. The 
evaluation also acknowledges that weighting is only useful to 
increase the accuracy for a small set of flows. 
 
We ensured that other less critical concerns raised by the 
reviewers were discussed in the paper to our best ability. 
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