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Abstract—The deployment of translucent optical networks
is considered the most promising short term solution to
decrease costs and energy consumption in optical backbone
networks. In fact, translucent wavelength switched optical
networks (WSONs) have recently received great attention
from the research community due to their technological
maturity. However, the inflexibility and coarse granularity of
WSONs is (re-)fostering research interest in sub-wavelength
switching technologies such as optical burst switching (OBS).
In OBS, however, the majority of research works neglect
the impact of physical layer impairments by considering
either fully transparent (i.e., with optical 3R regeneration)
or opaque (i.e., with electrical 3R regeneration) networks.
For this very reason, in this paper we present a translucent
OBS (T-OBS) network architecture which aims at bridging
the gap between the transparent and opaque solutions. In
the T-OBS network the problem of routing and regenerator
placement and dimensioning (RRPD) emerges. Joint RRPD is
a complex problem and, in order to approach it, we propose
to decompose it into the routing and RPD subproblems. As a
consequence, we provide a mixed integer linear programming
formulation of the routing problem and several heuristic
strategies for the RPD problem. Illustrative numerical results
prove the effectiveness of these methods at minimizing the
number of electrical 3R regenerators deployed in the network.
Considering a broad range of network topologies, we show
that the proposed RPD heuristics ensure a proper quality of
transmission performance whilst at the same time providing a
cost-effective T-OBS network architecture.

Index Terms—Optical burst switching; Physical layer im-
pairments; Routing and regenerator placement.

I. INTRODUCTION

O wing to the natural evolution of optical networks from
traditional opaque toward transparent architectures, the

consideration of physical layer impairments (PLIs) such as
crosstalk, chromatic and polarization mode dispersion, noise
accumulated due to amplified spontaneous emission (ASE), etc.
has become unavoidable [1]. In an opaque network, the
impact of PLIs can be neglected due to the fact that optical
signals (carrying traffic) terminate at each node (i.e., each
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transmission is a point-to-point connection), and, thus, are
implicitly regenerated. In contrast, in a transparent network,
optical signals originated at source nodes must reach their
final destination optically bypassing all intermediate nodes.
This approach considerably reduces the network cost since
neither optical–electrical–optical (O/E/O) conversions nor
electronic processing is required at any node along the path.
However, the limited transmission reach of optical signals and
the lack of full all-optical regeneration devices prevent the
deployment of transparent optical networks [2], at least until
these limitations are overcome.

Hence, the consideration of translucent architectures [3]
as a feasible intermediate step in the migration toward fully
transparent optical networks has gained huge momentum.
Note that, in translucent networks, regenerators1 are only
available at selected nodes, a fact which makes this archi-
tecture an ideal yet feasible candidate for bridging the gap
between the transparent and opaque solutions. Indeed, due to
the technological maturity of translucent wavelength switched
optical network (WSON) architectures, they have already
caught considerable attention from the research community
(see, e.g., [4,5]).

This is not, however, the case for optical burst switching
(OBS), which is a well-known approach providing sub-
wavelength switching granularity [6]. So far, the research
efforts on OBS have been mainly geared toward evaluating
the opaque and transparent architectures. Considering either
of these two network scenarios allows one to neglect the impact
of PLIs, thereby notably simplifying the design and operation
of OBS. Indeed, as long as realistic core node parameters
(e.g., node degree and link and wavelength capacity) are
considered, the optical signal degradation between two
neighboring core nodes is not an issue [7]. Unfortunately,
however, the high cost of O/E/O devices on the one hand, and
the lack of mature optical technology able to perform fully
optical 3R regeneration on the other, hamper the deployment
of these architectures. Therefore, there is no way to neglect
the severe impact that PLIs have on the performance of
OBS networks. For this very reason, in [8], we presented a
translucent OBS (T-OBS) network architecture in which core
nodes switch incoming data bursts to their output ports either
in an all-optical fashion or through regenerators when signal
regeneration is required.

1 If not specifically given differently, in this paper the term regenerator implicitly
refers to the electrical 3R regenerator in which the regeneration of the optical
signal is achieved by means of the O/E/O conversion.
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For translucent optical networks to attract continuing
interest, they should be designed in such a way that both
the cost and the power consumption are minimized. Both
constraints are clearly related to the number of regenerators
deployed across the network and, therefore, their number
must be reduced as much as possible. For this reason, the
definition of algorithms either for regenerator placement
(RP) [9] or for routing and regenerator placement (RRP)
(see, e.g., [10,11]), if routing and wavelength assignment
(RWA) constraints are added to the problem, is essential
to the problem’s success. These techniques are aimed at
minimizing the number of regenerators deployed in a WSON
by finding their optimal location. The use of RP or RRP
solutions is nevertheless not viable for OBS due to its
statistical multiplexing nature. Indeed, in contrast to WSONs,
where there exists a one-to-one correspondence between a
path and a regenerator, in OBS, regenerator resources are
statistically shared (i.e., according to their timely availability)
by all bursts requiring regeneration. To tackle this issue,
in [8] we introduced the so-called routing and regenerator
placement and dimensioning (RRPD) problem. Here it is worth
stressing the novelty of our solution which incorporates the
dimensioning phase that clearly distinguishes it from the RRP
problem applied in WSONs. This phase is needed to ensure
that only a small portion of bursts (e.g., 10−4) competing for
regenerator resources cannot be regenerated and thus are
dropped due to their accumulated PLI. Recently in [12], and
driven by the fact that the joint RRPD problem leads to a very
complex model formulation, we presented a formal model to
solve R+RPD, that is, we simplified RRPD by decoupling it into
the routing and RPD subproblems. To this end, we provided
mixed integer linear programming (MILP) formulations to
solve both the routing and RPD subproblems separately.
However, RPD is still complex when large problem instances
are considered, and, consequently, we proposed and evaluated
two straightforward RPD methods, both aimed at grouping
regenerators in as few nodes as possible.

In this paper, we extend the preliminary works presented
in [8] and [12] with the goal of developing heuristics able
to provide a high quality trade-off between optimality and
computational complexity. Specifically, we illustrate a model
to capture the impact of the main PLIs which uses the
optical signal to noise ratio (OSNR) as the signal quality
of transmission (QoT) performance indicator. Afterward, and
using such a PLI model as a constraint, we deal with RRPD by
tackling the routing and RPD subproblems separately. First,
we present MILP formulations aimed at minimizing congestion
in network bottleneck links (a routing subproblem). Second, we
develop a set of heuristic methods whose aim is to minimize the
number of regenerators required to keep losses caused by PLIs
under a reasonable degree of control (an RPD subproblem).
The RPD heuristics are based, among others, on the ant colony
optimization (ACO) [13] theory and the biased random-key
genetic algorithm (BRKGA) [14]. Then, we thoroughly assess
the quality of these heuristics by comparing their performance
with that of the MILP optimal and heuristic formulations
presented in [12] over a range of backbone network topologies.
Finally, we study, by means of simulation, the performance
of the proposed T-OBS network under the presented R+RPD
strategies.

It is worth noting that the study herein presented follows a
static/offline approach since RRPD decisions are taken during
the network planning stage. The consideration of a dynamic
traffic scenario, by contrast, would result in an online routing
and regenerator allocation problem, an issue which is left out
of the scope of this paper.

The rest of the paper is organized as follows. In Section II,
we survey the previous work in the topics covered by this
paper. In Section III, we give a complete description of both the
proposed T-OBS network architecture and the OSNR network
model we use to capture the impact of the main PLIs. In
Section IV, the RRPD problem is defined. Later, Sections V and
VI present, respectively, a formal model to solve the routing
problem and several heuristic methods to help solve the RPD
issue. All strategies proposed are exhaustively tested and
evaluated in Section VII. Finally, concluding remarks are made
in Section VIII.

II. RELATED WORK

Due to the fact that WSONs rely on already mature
technology, the study and evaluation of translucent WSONs
have recently received increasing attention from the research
community (e.g., [2,3]) and a standardization activity has
started in the Internet Engineering Task Force (IETF) within
the Common Control and Measurement Plane (CCAMP)
working group [4]. For a translucent optical network to work
properly, a limited set of regenerators must be strategically
deployed across the network for signal regeneration pur-
poses [15]. This is a planning problem where a clear trade-off
between network construction costs (i.e., O/E/O devices are
expensive) and service provisioning performance (i.e., proper
optical end-to-end QoT must be ensured) exists. Therefore,
both the RWA and the RP issues must be carefully engineered.
However, both the RWA and the RP problems as well as the
joint RRP problem are known to be N-complete [9], and, hence,
heuristic approaches are generally employed [16]. For a recent
compelling work on the joint RWA and regenerator allocation
problem in translucent WSONs we refer the reader to [17] and
to its references. So far, the research on OBS has been mainly
focused on both the opaque and the transparent network
architectures, and as a result of this, the vast majority of the
research works consider that either the physical layer is ideal
(i.e., without impairments) or signal regenerators are available
at every channel (i.e., OBS is either fully transparent or fully
opaque). Recently, however, owing to the increasing interest in
assessing the effect of the PLIs in the optical network field, we
find a few interesting works that involve the PLI constraint in
the evaluation of the OBS network performance. For example,
in [18] the authors deal with a burst scheduling method
which incorporates the impairments constraint, and in [19],
several impairment-aware algorithms to provide manycasting
services in OBS networks are proposed. However, the most
interesting work regarding PLIs in OBS networks can be found
in [7], and its complementary study [20]. In both papers, the
authors present an extensive analysis and evaluation of the
design and maximum size and throughput of OBS core nodes.
To this end, the authors consider the effects of a range of
PLIs such as amplifier noise, crosstalk of WDM channels,
gain saturation and dynamics. Nonetheless, the authors focus
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on an opaque OBS network where all nodes are equipped
with regenerators, which are also responsible for performing
wavelength conversion.

III. TRANSLUCENT OBS NETWORK MODEL

In this section, we provide extensive details on the proposed
translucent OBS network model. First, we specify an all-optical
OBS node architecture which incorporates a limited number of
shared electrical regenerators. Second, we present the analytic
model that we consider for the calculation of the OSNR level.
Finally, a power budget and noise analysis of the characteristic
signal path between two adjacent OBS nodes is provided.

In general, in an OBS network there are two types of
nodes, namely, edge and core nodes. In OBS, the transport
of client data, which are aggregated from different sources
(e.g., IP packet traffic, Ethernet), is based on the following
principles. Edge nodes are in charge of both assembling client
input packets into outgoing bursts and disassembling incoming
bursts. For each outgoing burst, edge nodes emit a separate
burst control packet (BCP) in advance, to reserve resources
(i.e., bandwidth on a desired output channel) along the way
from the ingress node to an egress node. Core nodes and
their corresponding control units are responsible for reading
and processing BCPs and for switching individual bursts
accordingly. In OBS, core nodes are generally assumed to be
wavelength conversion capable.

A. Node Architecture

The node architecture here presented is based on the
model proposed in [7], which initially assumes an opaque
operation. To be precise, the authors present two semi-
conductor optical amplifier (SOA)-based node architectures
for OBS networks, namely, broadcast-and-select (BAS) and
tune-and-select (TAS). Both architectures rely on the SOA
technology and on wavelength converters performing electrical
3R regeneration as their fundamental switching modules.
SOAs acting as switching elements (SW-SOA) bring some
interesting advantages such as high on/off ratios and high
loss compensation characteristics. Despite this, however, SOA
technology also entails some non-desirable effects such as
power consumption, noise and non-linearity that must be
taken into account during the node design process. Among
these architectures, the authors conclude that TAS is more
appropriate for OBS networks because BAS displays some
major drawbacks (e.g., high power requirements and large
interchannel crosstalk) inherent to its architecture.

In this paper, we modify the aforementioned opaque TAS
OBS core node architecture by replacing each in-line electrical
wavelength converter with a block consisting of a tunable
laser and a wavelength conversion-type SOA (WC-SOA) device.
Hence, this modified TAS node architecture (depicted in Fig. 1)
is able to perform an all-optical switching operation. The
node consists of N input/output fibers with M channels each
and a limited number R of regenerators available. After the
signal is amplified by the erbium-doped fiber amplifier (EDFA)
pre-amplifier at each node input port, it is demultiplexed and
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Fig. 1. T-OBS node architecture [8].

passes through a fixed-input and variable-output WC-SOA.
Then, the signal is split into N + 1 branches, one per fiber
plus an extra branch that allows access to the regenerator
pool, which consists of a set of R fixed receivers, an electrical
buffering stage and a set of R lasers emitting in predefined
wavelengths (i.e., λ1, . . . ,λR ). The signal is then transported to
the output ports of the node following the decisions of the OBS
node controller by turning the SW-SOAs either ON or OFF.
After the combiner stage, an EDFA booster amplifier provides
the signal with enough power to cope with the losses of the first
fiber span. Note also that, in this case, the combiners behind
the SW-SOA port merge NM+R signals at each output port as
a consequence of the presence of the regenerator pool.

It is worth mentioning that since the output of the WC-SOA
is handled by the OBS node controller, all wavelengths from
all input ports have the same privileges when requesting a
regenerator, and, thus, fairness in the access to the regenerator
pool is provided by this architecture.

We also point out that our offline planning approach
requires that a burst, whenever sent on a path, will be regen-
erated only at the nodes that are specified as regenerative sites
for this particular path. To signalize these sites, source nodes
include in the BCPs the information regarding the set of nodes
where their corresponding data burst has to be regenerated.
We assume that BCPs do not suffer from non-compliant OSNR
levels since, for processing purposes, they always undergo an
O/E/O conversion (i.e., are regenerated) at each node.

In the following subsections, we evaluate the performance of
the proposed node architecture by means of an OSNR model.

B. OSNR Model

In this OSNR model, the impact of PLIs is captured by
considering the power of both the signal and the noise, which
are affected by different gains and losses along the path, at
the destination node. This model considers the ASE noise
introduced by both the EDFA and SOA amplifiers as well
as the splitting and attenuation losses as the significant
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signal impairment factors [21]. In the literature, OSNR is
generally defined as the ratio between the signal channel
power and the power of the ASE noise in a specified bandwidth
(e.g., 0.1 nm is usually taken by convention). For instance,
for a transparent WSON an OSNR model is proposed and
evaluated in [22], and it is experimentally validated in [21].
Thus, all bursts arriving at the destination node with an
accumulated OSNR value lower than a predefined quality
threshold (Tosnr) cannot be read correctly, and, thus, are
discarded. Although ASE noise is commonly considered as
the most severe impairment limiting the reach and capacity
of optical systems, in OBS networks, non-linear impairments
arising both from its inherent ON–OFF switching nature and
from dynamic power fluctuations generated by gain changes
in amplifiers may strongly impact system performance.
Indeed, these fast ON–OFF transitions cause sudden power
variations in every single channel, resulting in a variety
of non-linear phenomena degrading the optical signal, for
instance, cross-phase modulation (XPM)-induced crosstalk
in a burst caused by neighboring bursts co-propagating
simultaneously over several common links. To take these
effects into account, we use an OSNR penalty on the OSNR
threshold as defined in [21]:

Tosnr = Tosnr−min +Tosnr−pen, (1)

where Tosnr−min represents the OSNR tolerance of the
receiver and Tosnr−pen accounts for the OSNR penalties
due to maximum tolerable polarization mode dispersion
(PMD), residual chromatic dispersion (CD) and all the other
non-linearities. We assume that Tosnr−pen is configured by the
network operator according to the transmitted signal bitrate,
modulation format, etc. [21]. Note that in systems where
non-linear impairments are dominant either larger values of
Tosnr−pen should be set up (with a possible impact on the
network performance) or more accurate and computationally
efficient analytical models to capture dynamic PLIs have to be
developed. To quantify the OSNR degradation along the optical
path, we define the optical path OSNR (Posnr) by adapting
the model described in [23]. Specifically, the OSNR consists
of two main components, namely, the link and node OSNRs
that we denote as Losnr and Nosnr, respectively. Since a link
is composed of several amplifier spans, each ending with an
in-line EDFA amplifier, the longer the path the higher the
impact of the ASE noise in the OSNR received. Similarly,
to minimize the ASE effect caused by the internal node
amplifiers, gain values should be designed such that each node
presents an OSNR level as high as possible. We can compute
Posnr for an optical end-to-end path traversing k links by using
the following equation [23]:

Posnr = 1/

(
k∑
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1
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+
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)
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Fig. 2. Signal path between two TAS OBS core nodes.

where AS j
osnr is the amplifier span OSNR, which can be

calculated as

AS j
osnr[dB]= P j[dBm]−QN[dBm]−F j[dB]−G j[dB], (4)

where P j , QN, F j and G j , correspond to the output power after

the jth amplifier span, the quantum noise, the noise figure
and the gain of the jth amplifier (i.e., either EDFA in-line
or pre-amplifier), respectively. The expression that we use to
compute Nosnr is equal to the one that we have defined for
ASosnr; however, due to the presence of several components
(e.g., amplifiers, splitters and combiners) in our translucent
node, both an equivalent noise and a gain figure, namely, Feq
and Geq, respectively, have to be derived.

In the next subsection, we provide specific values for all
these parameters by considering performance values obtained
from datasheets of commercially available or lab trial devices
(see, e.g., [24–26]).

C. Power Budget and Noise Analysis

We consider the power and noise constraints together
in order to evaluate the OSNR of a signal that follows
the characteristic path between two TAS neighboring nodes
depicted in Fig. 2. Component specifications are provided
in Table I and the power constraints for this analysis are
the output power of the node (i.e., output of the EDFA
booster amplifier) set to 0 dBm/channel and its input power
(i.e., input of the EDFA pre-amplifier) set by link losses to
−16 dBm/channel.

From Eq. (4) and bearing in mind that the objective is to
have an Nosnr as high as possible, it can be inferred that both
Feq and Geq must be designed so that their resultant values
are minimized. For this particular case, the equivalent noise
and gain figures of the TAS node are obtained as follows:

Feq = Fwc−soa + MFsw−soa −1
Gwc−soa
Lsplitter

+ Fedfa−booster −1
Gwc−soaGsw−soa
LsplitterLcombiner

, (5)

Geq = Gwc−soaGsw−soaGedfa−booster
LsplitterLcombiner

. (6)
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TABLE I
PARAMETER VALUES CONSIDERED

Channels (M) 32

Span length 65 km

Fiber attenuation 0.2 dB/km+3 dB (cable margin)

Quantum noise −58 dBm

EDFA (pre-amp)

Noise figure 5.5 dB
Max. gain 20 dB
Max. output power 13 dBm
Min. input power −30 dBm

EDFA (booster)

Noise figure 5.5 dB
Max. gain 15 dB
Max. output power 18 dBm
Min. input power −15 dBm

EDFA (in-line)

Noise figure 5.5 dB
Max. gain 25 dB
Max. output power 18 dBm
Min. input power −25 dBm

WC-SOA

Noise figure 9 dB
Max. gain 16 dB
Max. output power 5 dBm
Min. input power −25 dBm

SW-SOA

Noise figure 10 dB
Max. gain 10 dB
Max. output power 3 dBm
Rise–fall time 500 ps

WDM demux Insertion loss (M = 32) (≈5.5) dB

Splitter Insertion loss (0.5–1) dB

Combiner Insertion loss (1.5–2) dB

Large

Path length (km)

Tosnr

USA–Can

Basic
Core
German

Fig. 3. (Color online) OSNR evaluation for some European and
American network end-to-end optical paths.

The most critical point is the combiner where, in the worst
case, the ASE noise power from M SW-SOAs is merged. Both
the pre-amplifier and booster EDFAs and the WC-SOA and
SW-SOA have to be used to compensate the internal losses.
Their gain values must be carefully designed so that both
equivalent figures are minimized and the power constraints
are respected. In order to minimize Feq, it can be deduced from
Eq. (5) that, as long as the saturation output power is not
reached, it is better to set the gain on the WC-SOA. In this
way, the impact of the M ASE powers is reduced. The EDFAs’
pre-amplifier and booster and SW-SOA gains, by contrast, are

kept as low as allowed by the system power requirements.
The exact setup for each component depends on the number
of input/output ports of each particular node, which eventually
define the splitting losses that are to be covered by Geq.

In Fig. 3, we show the result of the application of the
OSNR model presented considering the optical end-to-end
paths of the pan-European core transport network in three
different topology configurations (large, basic and core),
a German backbone topology and an American backbone
network (USA–Can). See Appendix A for the simulation
details. All network paths are computed making use of the
routing algorithm presented in Section V. One can observe
that, with the exception of the German topology, the length,
and thus the number of amplifier spans, have a strong impact
on the received OSNR. In the German network, which is
characterized by much shorter links and by a high number
of nodes (see Appendix A), by contrast, it is the number of
intermediate nodes that has the greater impact on the OSNR
figure. The next Section is devoted to presenting a formal
model to solve the RRPD problem considering both the T-OBS
network architecture and the OSNR network model described.

IV. RRPD PROBLEM

A. Problem Definition and Solution Approach

In this section, we present our approach to the offline
RRPD planning problem in T-OBS networks and detail the
assumptions we make in order to solve it. The objective of
our offline RRPD problem is to find, for a given set of traffic
demands, 1) the set of explicit paths to be used to route bursts
through the network, 2) the placement of regenerator sites
in selected nodes on those paths having unacceptable OSNR
at the receiving end and 3) the number of such regenerators
in each node in order to guarantee a given target burst loss
probability.

The complexity of the RRPD problem is high due to the
joint consideration of the routing, regeneration placement and
regenerator dimensioning problems. In order to reduce this
complexity, in our approach we decouple the routing problem
from the RPD problem. The main reason supporting this
decision is the fact that in OBS networks routing must be
carefully engineered since the main source of performance
degradation is the contention between bursts that arise due to
both the lack of optical buffering and the generally considered
one-way resource reservation scheme. Hence, given a set of
traffic demands, we first find a proper routing that minimizes
burst losses due to congestion in bottleneck network links.
Afterward, this routing solution is used as input information
to solve the RPD problem which eventually aims at minimizing
the number of regenerators deployed in the network.

Accordingly, in Section V we present an optimal routing
algorithm based on an MILP formulation. Later, in Section VI,
we propose and detail four different heuristic methods to solve
the RPD problem.
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B. General Notation

We use G = (V ,E ) to denote the graph of the T-OBS network;
the set of nodes is denoted as V , and the set of unidirectional
links is denoted as E . Let P denote the set of predefined
candidate paths between source s and termination t nodes,
s, t ∈ V and s 6= t. Each path p ∈ P is identified with a subset
of network links, that is, p ⊆ E . Adequately, subset P e ⊆ P

denotes all paths that go through link e. Let sp and tp denote
the source and termination nodes of p. Let Np be the set
of all nodes constituting path p and let Vp denote the set of
intermediate nodes on path p such that Vp = Np \ {sp, tp}. Let
D denote the set of demands, where each demand corresponds
to a pair of source–termination nodes. Let hd = λd /µ denote
the average offered burst traffic load for demand d ∈D, where
λd is the average burst arrival rate and µ is the average burst
service rate. Finally, let Pd ⊆ P denote the set of candidate
paths supporting demand d, where P =⋃

d∈DPd . Each subset
Pd comprises a (small) number of paths, for example, k
shortest paths.

V. ROUTING ALGORITHM

For the routing algorithm, we consider a modified MILP
formulation of the linear programming (LP) algorithm pro-
posed in [27]. To be precise, the presented algorithm consists
in solving, sequentially, two MILP models in order to find a
solution to the routing problem. The objective is to distribute
the traffic over a set of candidate paths so that congestion
in network bottleneck links is reduced. The network applies
source routing, and hence the source node determines the path
that a burst must follow in the network.

Let variable y represent the average traffic load on
the bottleneck link. The first MILP formulation aims at
minimizing the load on such a particular link:

minimize y (RMILP1)

subject to∑
p∈P e

xphd − y≤ 0, ∀e ∈ E , (7a)

∑
p∈Pd

xp = 1, ∀d ∈D, (7b)

xp ∈ {0,1}, ∀p ∈P , (7c)

where the selection of path p from set Pd is performed
according to a decision variable xp, which says that a burst
flow is routed over path p iff xp = 1. Moreover, there is only one
path p ∈Pd such that xp = 1. The traffic load ρp of path p ∈P

is hence ρp = xphd .

Despite minimizing the average traffic load on the bot-
tleneck link, many solutions to this problem may exist and
most of them exploit unnecessary resources in the network
(i.e., solutions that select longer paths). Therefore, the next
MILP is solved in order to obtain, among the solutions of
Eq. (RMILP1), the one that entails the minimum increase of
the average traffic load offered to the remaining network links.
For this purpose, let us denote y∗ as an optimal solution of

Eq. (RMILP1), then we solve the following problem:

minimize
∑

e ∈ E
∑

p∈P e

xphd (RMILP2)

subject to∑
p∈P e

xphd ≤ y∗, ∀e ∈ E (8)

and subject to the routing constraints given by Eqs. (7b) and
(7c). Note that, in constraint (8), we ensure that the maximum
average traffic load on the bottleneck link is bounded by the
solution of Eq. (RMILP1).

These MILP models, if sequentially solved, determine the
path p that will be in charge of carrying the traffic for each
demand d. Hence, only one path pd ∈ Pd is selected as the
valid path to be followed by all bursts belonging to demand
d. Thus, we can now denote Q as the set of valid paths,
Q = {

pd ,d ∈D
}
.

VI. HEURISTIC RPD ALGORITHMS

The objective of the RPD problem is to determine both the
sites where regenerators must be placed and the amount of
such regenerators in every selected site so that a successful
regeneration for a given percentage of bursts is guaranteed.
This implies that only a given (small enough) ratio of bursts
cannot be regenerated due the fair competitive (statistical
multiplexing) access to the regenerators and consequently are
lost.

Let P o ⊆Q denote the subset of paths for which the OSNR
level at receiver t is non-compliant with the QoT requirements,
and, thus, paths p ∈P o that require regeneration at some node
v ∈ Vp. For each path p, there may exist many different options
on how to build an end-to-end OSNR compliant path, composed
by its transparent segments, since the node or group of nodes
where the regeneration can be performed is generally not a
unique solution. Thus, let Sp = {s1, . . . , s|Sp |} denote the set of
different options to establish an OSNR compliant path for each
path p ∈ P o, where si ⊆ V , i = 1. . . |Sp| and |Sp| depends on
the length of the transparent segments in path p. To obtain
Sp, p ∈ P o, a precomputation phase is executed to obtain all
possible regeneration options using the OSNR model described
in Subsection III.B as the QoT constraint. To illustrate this
concept by means of an example, let us consider an OSNR
non-compliant path po between source node 1 and destination
node 5 crossing intermediate nodes 2, 3 and 4. In po, the
precomputation phase may find three different regenerator
allocation options (e.g., s1 = {3}, s2 = {2,4} and s3 = {2,3,4}),
all of them ensuring that the OSNR level at every node along
po is above the system Tosnr threshold.

We assume that for each path p ∈ P o, the selection of the
regeneration option s from set Sp is performed according to a
decision variable zps such that the following constraints are
fulfilled: ∑

s∈Sp

zps = 1, ∀p ∈P o, (9a)

zps ∈ {0,1}, ∀s ∈Sp,∀p ∈P o. (9b)
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The goal of the RPD algorithm is hence to select for
each path p ∈ P o the regenerative option s ∈ Sp which
minimizes the total number of regenerators deployed in the
network. In the following subsections, we propose four different
offline heuristic RPD algorithms. For the sake of clarity, we
consider an objective function denoted by g(·) which accounts
for the calculation of the number of regenerators required.
This is achieved by calling the dimensioning function whose
pseudo-code is shown in Procedure 5 in Subsection VI.E.
Although this procedure may be called several times within the
RPD heuristics next presented, the solutions of Procedure 5 are
precomputed only once at the very beginning of the algorithm
and stored in an ordered array, thereby substantially reducing
the time complexity (see details in Subsection VI.E). Hence,
we do not include this factor in the complexity analysis of the
heuristic RPD algorithms presented below.

A. KL Local Search (KLS) Algorithm

The KLS algorithm is a heuristic algorithm which is based
on the KL local search technique [28]. In this algorithm, we
assume a neighboring solution is achieved by means of a flip
operation which consists of a permutation of the regeneration
sites for a specific set of demands. The pseudo-code of the KLS
algorithm is shown in Procedure 1. Let Rz be the set of all
regeneration vectors that define for each path p ∈P o the node
or set of nodes where the regeneration is performed, that is,
Rz = ⋃

p∈P o zp, where zp = (zp1, . . . , zp
∣∣Sp

∣∣). Then, let Ro be
an initial (randomly selected) solution to the problem where
constraints (9a) and (9b) are met for each zp, p ∈P o.

Similarly, let R tb, R i and Rb denote, respectively, the
global best solution obtained so far, the best solution of a whole
iteration and one of the solutions of the iteration in progress.
Moreover, letΩR be the set of valid solutions obtained once the
loop between lines 5–13 in Procedure 1 is completed.

Between lines 5 and 13, starting from solution Rb, we
iteratively take, for each p ∈ P o, vector zp ∈ Rb, and then we
set it to z∗p, which is the solution for vector zp that minimizes
the number of regenerators to be deployed taking into account
the current solutions for all other paths, that is, solutions in
the current Rb. Once a choice is made for p, then it remains
fixed until the loop is initiated again.

It is also worth noticing that in line 12, an update of the
current solution is performed even if it entails worsening Rb.
Procedure 1 does this in order to increase the probabilities
of escaping from the local optima and in the hope that some
neighboring solution generated during an iteration will turn
out better than the current global best solution R tb.

To evaluate the complexity of this algorithm let us first
define δ as the number of nodes constituting the largest
possible path contained in P o, that is,

δ=max{|Np| : p ∈P o}. (10)

Thus, an upper bound on the maximum number of regener-
ation options (i.e., the maximum size for set Sp) for a path
p ∈P o can be derived as

Θ= 2(δ−2) −1. (11)

Procedure 1 KLS Heuristic
INPUT: P o,Ro,ΩR ←;
OUTPUT: g(R)

1: R tb ←Ro
2: ΩR ←ΩR ∪ {Ro}
3: Rb ←Ro
4: repeat
5: for all path p ∈P o do
6: Px ←Po\{p}
7: Take zp from Rb
8: Determine z∗p which minimizes g(·) considering, for all

path p ∈Px, the option zp selected in Rb
9: Let Rp be a new solution

10: Rp ←Rb ∪ {z∗p}\{zp}
11: ΩR ←ΩR ∪ {Rp}
12: Rb ←Rp
13: end for
14: Take R i from ΩR which minimizes g(·)
15: Rb ←R i
16: ΩR ←Rb
17: if g(R tb)> g(R i) then
18: R tb ←R i
19: end if
20: until r tb ≤ r i
21: R ←R tb

Then, the complexity of Procedure 1 is given by

O(M · |E | · |P o| ·Θ), (12)

where M|E | (the number of regenerators required in an
opaque OBS network) defines an upper bound on the number
of iterations at the worst case improvement (i.e., one per
iteration) of the cost function. |P o| accounts for the number
of iterations in the for all loop in Procedure 1 and the last term
represents the maximum number of regeneration options (Θ).

B. Regenerator Grouping (RG) Algorithm

The RG method (LCR in [12]) aims at selecting those
regenerator sites which lead to solutions having the smallest
possible number of nodes equipped with regenerators. The
idea is that, since the access to the regenerators is subject
to statistical multiplexing, grouping regenerators in few sites
instead of spreading them throughout the network (thus
having few regenerators in many sites) may increase its
effectiveness.

In this particular algorithm, in contrast to the others, we do
not make use of the precomputed set of regeneration options
Sp, p ∈ P o, but instead the OSNR level of each candidate
transparent segment is evaluated (see lines 13 and 19 in
Procedure 2). Hence, let Kp denote the node or set of nodes
where the regeneration is performed for path p. Let K =⋃

p∈P oKp be the set of all nodes where the regenerators have
to be installed for all paths p ∈ P o. Let Ωp be the set of
subpaths of p to be processed. Then, Procedure 2 is executed.

Procedure 2 iteratively processes each path p ∈ P o with
the aim of ensuring that the OSNR signal level meets
the predefined Tosnr threshold at each node v ∈ Np. To
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Procedure 2 RG Heuristic
INPUT: P o

OUTPUT: g(R)
1: K ←;,Ωp ←;
2: for all path p ∈P o do
3: Ωp ←Ωp ∪ {pd}
4: Kp ←;
5: Tp ←K ∩ {Vp}
6: if Tp 6= ; then
7: Select node v ∈ Tp which is closer to the middle of the

path (with respect to the number of hops)
8: Kp ←Kp ∪ {v}
9: Ωp ←Ωp ∪ {ps−v, pv−t}\{p}

10: end if
11: while Ωp 6= ; do
12: Take the first subpath q from Ωp
13: if q meets OSNR then
14: Ωp ←Ωp\{q}
15: else
16: repeat
17: Let q∗ be a clone of q
18: Remove the last link (and node) from q∗
19: until q∗ meets OSNR
20: Consider tq∗ as the regenerative node,
21: Kp ←Kp ∪ {tq∗ }
22: Ωp ←Ωp ∪ {q\q∗}
23: end if
24: end while
25: K ←K ∪ {Kp}
26: end for
27: Generate R from K and compute g(R)

provide a regenerator grouping-like behavior, in lines 5–10, the
algorithm searches among all the previously processed paths
if there are nodes v ∈ Vp with regenerators already installed,
and, if so, it takes the node v ∈ Vp that is nearest to the
middle of the path (with respect to the number of hops) and
selects it as the first regeneration point for path p. Hence, two
new subpaths are added to Ωp. Between line 11 and 24, the
algorithm performs a loop that adds regeneration sites to path
p until Ωp becomes an empty set. Once Procedure 2 finishes,
the set of nodes K where the regeneration has to be performed
is obtained. Note that in line 27, set K is mapped into set R

so that we can apply the objective function g(R) (Procedure 5
in Subsection VI.E).

In this case, the complexity of the algorithm is given by

O
(∣∣P o∣∣( (δ−1)(δ−2)

2

))
, (13)

where the second term is the upper bound on the maximum
possible number of iterations required to create a feasible
path, that is, when a regenerator is required at every node
v ∈ Vp, p ∈ P o. Such an operation is performed once per path
p ∈P o, and, hence,

∣∣P o∣∣. Note that δ≥ 3 for all paths p ∈P o,
since all paths with two nodes (just source and destination) are
feasible.

C. ACO Algorithm

In this section, we propose the application of the ACO [29]
methodology to solve the RPD problem. ACO was introduced in
the early 1990s as a nature-inspired meta-heuristic for solving
hard combinatorial optimization problems. In the field of
optical networks, ACO algorithms have been used, for example,
to solve the problem of RWA (see, e.g., [30–32]). ACO methods
try to mimic the behavior of real ants in their task of foraging
for food. Initially, an ant explores the area surrounding its nest,
and when a food source is found, it evaluates the quantity and
quality of its finding. Based on this measurement, the ant on
its way back to the nest will deposit more or less quantity of
a chemical pheromone, thereby creating a so-called pheromone
trail which will subsequently help other ants to find the best
possible food source. If these other ants also find food, they
will reinforce the same trail by depositing more pheromone.
However, if the quantity or quality of the food found decreases,
the pheromone trails will tend to evaporate over time, thereby
reducing the trail attractiveness.

In our problem, for each path p ∈ P o = {p1, . . . , p|P o|}, we
have a set of possible regeneration options Sp = {s1, . . . , s|Sp |}.
Let us define a variable instantiation as the assignment of a
regeneration option s j ∈Sp to a path pi ∈P o, that is, pi = s j .
Once an assignment for each path is performed, a feasible
solution for the RPD problem is obtained. Note that we are
dealing with an unconstrained problem, and, thus, each path
can take any s ∈ Sp independently of the decision taken by
other paths. Finally, let us also call the combination of a path
pi with a regeneration option s j a solution component which

we denote by c j
i . Hence, we define the set of possible solution

components for path pi as C i . Note that |C i | = |Spi |.

1) Pheromone Model: The pheromone model consists of a

pheromone trail parameter T
j

i for each solution component

c j
i as proposed in [29]. This pheromone trail parameter

provides the pheromone value (τ j
i ), and much as in our case

τ
j
i is a function of the algorithm iteration (i.e., τ j

i = τ
j
i (t));

this dependence will, however, be made explicit only when
necessary. Eventually, we denote the whole set of pheromone
trail parameters by T . Given the fact that our interest lies in
minimizing the number of regenerators and that this is better
achieved if they are aggregated in as few nodes as possible, we
consider that the pheromone value τ

j
i for solution component

c j
i depends exclusively on the quantity of pheromone deposited

on each regeneration node v ∈ s j (recall that s j consists of the
set of nodes where the regeneration for path pi is performed).
Hence, we assume that each node v ∈ V has an amount of
deposited pheromone equal to ϕv. Note that ϕv is like τ

j
i

dependent on the algorithm iteration. Thus, the pheromone
value for solution component c j

i can be obtained as follows:

τ
j
i =

∑
v∈s j

ϕv. (14)

Besides, we consider for each solution component c j
i a

desirability factor (i.e., heuristic information) denoted by η(c j
i ),
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which provides a bias toward regeneration options with fewer
regeneration nodes. In this case, the desirability factor is
obtained as follows:

η(c j
i )= 1∑

v∈s j
σ

, (15)

where σ is a user-predefined constant parameter.

The pseudo-code of our ACO RPD algorithm is shown
in Procedure 3. First, pheromone values for all nodes are
initialized to a constant predefined parameter, that is, ϕv =
k,v ∈ V . Then, over a number of global iterations, a number
of ants are generated to construct, independently, a solution
to the problem by selecting, for each path p ∈ P o, a solution
component according to a state transition rule. Hence, each ant
performs the complete set of variable instantiations. Since the
order in which paths are processed does have impact on the
goodness of the solution, each ant has a different, randomly
generated order for processing the paths in P o. In our ACO
heuristic, we rely on two different pheromone updates, namely,
a local and a global update. Whilst the former tries to bias
the ant toward regeneration options which contain nodes with
its own pheromone (i.e., due to previously processed paths),
the latter aims at keeping track of high quality solutions
by depositing more pheromone on nodes belonging to those
solutions so that subsequent ants can more easily find the best
trails. The state transition rule and both types of pheromone
updates are next described. It is worth mentioning that some
of the mathematical expressions here presented are borrowed
from [29] and [32].

2) State Transition Rule: This rule is responsible for
selecting the next solution component (regeneration option)
in the ant regenerator allocation process (see line 10
in Procedure 3). To be precise, the transition is based
on a pseudo-random-proportional rule aimed at balancing
the exploration and exploitation abilities of the algorithm.
Assuming the ordered set of paths to be processed, Λ =
{p1, . . . , p|P o|} (see Procedure 3), the selection of the solution

component c j
i for path pi is made according to the following

rule:

c j
i =

max
c j

i∈C i
{τ j

i [η(c j
i )]β} if r ≤ r0

Q if r > r0

 , (16)

where r ∼U(0,1), and r0 ∈ [0,1] and β ∈R+ are user-predefined
parameters. While β determines the relative importance of
the heuristic information, r0 balances between exploitation
and exploration: if r ≤ r0, the algorithm favors the solution
component with the best compromise between pheromone and
heuristic value, whereas if r > r0 the algorithm explores the
space of solutions by choosing a solution component c j

i ∈ C i
according to an empirical distribution whose probability mass
function is defined by fQ (q) = Pr(Q = q) = Pr{c j

i ∈ C i : Q(c j
i ) =

q}= p(c j
i ), where

p(c j
i )=

τ
j
i [η(c j

i )]β∑
ck

i ∈C i

τk
i [η(ck

i )]β
. (17)

3) Local Update: The modifications on ϕv,v ∈ V caused by
the local pheromone update process only have impact on the
trail followed by the ant in progress (see lines 6 and 13 in
Procedure 3). The main objective of this rule is to bias the ant
toward nodes it has already visited during the construction of
the solution with the aim of aggregating regenerators across
the network. After selecting each solution component c j

i , all

the nodes contained in s j update their pheromone values τ j
i .

The updating rule is defined as follows:

ϕv(t+1)=ϕv(t)+αe−ψ∆r , ∀v ∈ s j , (18)

where α,ψ ∈ R+ are two more user-specified parameters and
∆r = |s j | − 1. Note that when the option selected s j only
contains one regeneration node ∆r = 0, thereby maximizing the
quantity of pheromone deposited by the ant. Moreover, ψ is a
decay constant which also controls the amount of deposition.

4) Global Update: After a group of MaxAnts have con-
structed their respective solutions (stored in ΩIT ), a global
updating rule is applied to all solution components contained
in each Rx ∈ ΩIT . The aim of this rule is to guide the next
group of ants toward high quality solution components. To this
end, node pheromone values are updated as follows:

ϕv(t+1)= (1−ϑ)ϕ(t)+ϑe−φ(g(Rx)−g(RBEST )),

∀v ∈ s j :Ωx 3 s j ,∀Ωx ∈ΩIT , (19)

where ϑ,φ ∈R+ are two user-predefined parameters. Note that
ϑ controls the speed at which pheromone evaporates and φ is
another decay factor. Finally, the exponential factor favors the
deposit of pheromone on those regeneration nodes belonging
to the best solutions obtained by each group of ants. All the
parameters required to define the ACO RPD heuristic here
presented will be adjusted in Section VII.

The worst case complexity of this algorithm is given by

O(GlobItr ·MaxAnts · |P o| ·Θ), (20)

where the first three factors represent the repeat-until and for
all loops, and Θ in this case represents the maximum number
of solution components that an ant may need to evaluate before
applying the state transition rule.

D. BRKGA Algorithm

BRKGA is a type of genetic algorithm (GA) which has
recently been proposed to effectively solve complex optimiza-
tion problems, for instance, network related problems such as
routing in IP networks and RWA in optical networks [33,34].
In most cases, this meta-heuristic is characterized by being
able to obtain high quality solutions in very short times.
In BRKGA, each individual is an array of ng genes called
a chromosome. In addition, each gene is assigned a value,
called an allele, in the real interval [0,1]. Each chromosome
encodes a solution of the problem and a fitness level (i.e., the
objective function value g(·)). Like any other GA algorithm,
BRKGA evolves a set of p individuals, called a population,
over a number of generations until a stopping criterion is met
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Procedure 3 Ant Colony Optimization (ACO)

INPUT: P o,Sp ∀p ∈P o,GlobItr, MaxAnts
OUTPUT: g(RBEST )

1: InitializePheromoneValues(T )
2: RBEST ←;, count ← 0
3: repeat
4: ΩIT ←;,ant ← 0
5: repeat
6: Local Pheromones TLOC ←T

7: Ωx ←;
8: Λ← random order of paths in P o

9: for all path p ∈Λ do
10: cx

p ← getNextSolutionComponent(TLOC)
11: Take sx from cx

p
12: Ωx ←Ωx ∪ {sx}
13: UpdateLocalPheromones(cx

p,TLOC)
14: end for
15: Generate Rx from Ωx
16: if g(Rx)< g(RBEST ) then
17: RBEST ←Rx
18: end if
19: ΩIT ←ΩIT ∪ {Ωx}
20: ant ← ant+1
21: until ant ≥ MaxAnts
22: UpdateGlobalPheromones(ΩIT ,T )
23: count ← count+1
24: until count ≥GlobItr

(e.g., number of iterations, generations without improvement).
The subsequent generations consist of individuals which are
created by means of (1) a mating process (two chromosomes of
the current population are combined), (2) a set of high quality
chromosomes of the current generation (called elite set pe),
which are copied unchanged, and (3) a set of new randomly
generated chromosomes (called mutants) pm, which should
help the algorithm escape from local optima.

To produce offspring through the mating process, two
chromosomes of the current population (one elite and another
non-elite) are selected at random and then combined. The
offspring can inherit alleles from both parents (though with
a bias defined by the probability of inheriting from the elite
parent ρe). In order to compute the fitness of each chromosome,
a deterministic algorithm, called a decoder, is used. The
decoder is the only problem-dependent part of the BRKGA
algorithm, and, hence, is the only part that needs to be
specifically developed to solve the RPD problem.

The pseudo-code of our decoder algorithm is shown in
Procedure 4. In this case, each chromosome contains ng = |N |
genes (i.e., one per node in the network), and the metric value
for each node corresponds to the value of the allele (i.e., the
value of the gene). We select the option s ∈Sp which minimizes
the cost in terms of that metric. This cost corresponds to the
sum of the alleles for all the nodes in a regeneration option
(denoted by c(s) in Procedure 4).

Considering a population size p = ng = |N | and a maximum
number of generations MG, the complexity of the BRKGA is
given by

O(MG · |N | ·Proc.4). (21)

Procedure 4 BRKGA Decoder Algorithm

INPUT: N , chromo, P o,Sp ∀p ∈P o

OUTPUT: f itness
1: for all node n ∈N do
2: n.metric ← chromo.getGene(n)
3: end for
4: Rx ←;
5: for all path p ∈P o do
6: for all option s ∈Sp do
7: for all node n ∈ s do
8: c(s)← c(s)+n.metric
9: end for

10: end for
11: Select s ∈Sp with minimum c(s) and generate zp
12: Rx ←Rx ∪ {zp}
13: end for
14: f itness ← g(Rx)

The complexity of the decoder algorithm in Procedure 4 is
obtained as follows:

Proc.4=O(|P o| ·Θ · (δ−2)), (22)

where each term represents, respectively, |P o| the most outer
loop (line 5), the maximum number of regeneration options
(loop in line 6) and the largest path p ∈ P o having all its
intermediate nodes as regeneration sites (loop in line 7).

E. Regenerator Dimensioning

Given the set of valid paths p ∈ P o, in this step, a solution
for the RP R =⋃

p∈P o zp and the number of regenerators to be
installed in the nodes is determined.

Let ρo
v denote the offered traffic load requiring regeneration

at node v. To estimate ρo
v (approximately) we add up the traffic

load ρp offered to each path p ∈ P o that both crosses and
undergoes regeneration at node v:

ρo
v = ∑

p∈P o:Vp3v

∑
s∈Sp :s3v

zpsρp. (23)

Similarly,

ρv = ∑
p∈P o:Vp3v

ρp (24)

denotes an estimation of the maximal traffic load that is
subject to regeneration at node v ∈ V .

Eventually, we define a regenerator pool dimensioning
function Fv(·) : (R+,R+) 7→ Z+, which for a given traffic load
ρo

v determines the minimum number of regenerators to be
allocated in node v. This number must ensure that a given
target burst blocking probability (BQoT) for bursts competing
for regeneration resources is met. Assuming Poisson arrivals
and fairness in the access to regenerator pools among bursts,
such a function is given by the following discontinuous,
step-increasing function:

Fv(ρo
v)=

⌈
B−1(ρo

v,BQoT)
⌉

, (25)
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where B−1(ρo
v,BQoT) is the inverse function of the erlang B

loss formula, which for a given number of regenerators r ∈ N
available at node v can be calculated as

B(ρo
v, r)= (ρo

v)r /r!
r∑

k=0
(ρo

v)k/k!
. (26)

It is worth noticing that the Poisson arrivals which lead
to an erlang B formula for the dimensioning of regenerator
pools can be replaced with another distribution for which the
blocking probability is attainable.

For the purpose of computation, it is convenient to define
ar as the maximal load supported by r regenerators given
a BQoT, i.e., ar = B−1(r,BQoT). Although there is no close
formula to compute the inverse of Eq. (26), we can make use of
a line search method to find the root ρ∗ of the function f (ρ) =
BQoT−B(ρ, r) so that the value of ar is approximated by ar = ρ∗
for any index r. As a result, the regenerator dimensioning
algorithm, which we apply to find the number of regenerators
in a pool, is presented in Procedure 5.

Procedure 5 Regenerator Pool Dimensioning

INPUT: R,P o

OUTPUT: Fv
1: for all nodes v ∈ V do
2: Compute ρo

v according to R

3: r ← 0
4: while ρo

v > ar do
5: r ← r+1
6: end while
7: Fv ← r
8: end for

Let R denote the number of regenerators required in the
most loaded node, that is, R = max{Fv(ρv) : v ∈ V }, then
Procedure 5 is a polynomial time algorithm of complexity O(R).
We point out that a vector a = (a1, . . . ,aR ), which determines
the number of regenerators required for all cases between 1
and R, can be precomputed once at the very beginning of the
RPD algorithm.

VII. RESULTS AND DISCUSSION

In this section, we first present the details of the simulation
scenario considered. Then, we use CPLEX [35] to obtain
the results of the optimal MILP formulation (MP1) [12] and
compare its results with those of all the RPD methods proposed
in Section VI as well as with those of the load-based MILP
heuristic (MP2/3) also proposed in [12]. Finally, we study the
performance of the T-OBS network architecture under selected
RPD methods in order to prove that they are effective at
keeping OSNR losses under control.

A. Network Scenario and Parameter Tuning

The evaluation has been performed by considering five
different network topologies (see details in Appendix A). In

TABLE II
P o SIZE VALUES

Network USA–Can German Core Basic Large

|Po| 657 752 55 462 919

TABLE III
BRKGA PARAMETER VALUES

p ng MG ρe pe pm

|N | |N | 100 0.7 0.2 0.2

this work, we consider 19 dB as the Tosnr−min threshold, a
value which is commonly used for the experimental assessment
of translucent optical networks with such network links [21].
Moreover, we introduce an additional 2 dB OSNR penalty
(Tosnr−pen) so as to account for the signal degradation caused
by non-linear impairments. Hence, we set Tosnr to 21 dB in all
our experiments. Note that Tosnr also determines the number
of paths that require regeneration (i.e., |Po|), and, hence, the
level of complexity that is given to the problem. |Po| values are
reported in Table II.

It must be pointed out that, as shown in Eq. (11), the
size of set Sp, p ∈ P o is exponential to the size of the input.
Hence, depending on the network instance (see topology details
in Appendix A), this fact may lead to heuristic algorithms
requiring very high, and thus impractical, computational
times. In view of this, our strategy is to consider a maximum
of K = 25 options to fill Sp, that is, Sp = {s1, . . . , sK }. To
be precise, the 25 smallest regeneration options, ordered
according to their size |s j |, j = 1. . . |Sp|, are considered. Since
all the RPD methods rely on random parameters to generate
their respective solutions (e.g., the randomly built initial
solution Ro in KLS), we conduct a set of independent runs
for each method and take as the result the best value found.
However, both the ACO and BRKGA meta-heuristics require
some additional parameter tuning. After performing some
preliminary experiments, we set the parameters of the BRKGA
meta-heuristic to the values summarized in Table III. Due
to both the facts that ACO requires the tuning of a rather
large set of parameters and that these may require a different
setup in each network topology, we perform a large set of
experiments considering a number of different values for
each parameter. The constant parameters σ and k are set
to 0.1 and 1, respectively. Besides, we observe that the best
solutions are always obtained when values of r0 close to 1 are
considered. Thus, we fix r0 to 0.9. To obtain the rest of the
parameter values, we run the ACO algorithm with GlobItr =
500, MaxAnts = 100, loads of 15 and 20.8 erlangs and the
values proposed in Table IV, thus conducting 450 experiments
per network topology. Note that we assume that both decay
factors have the same value. We observe that the results do
not report any significant dependence on the network load
scenario considered. The parameter values selected are shown
in Table V.

B. Resolution Methods Comparison

First, in Table VI, we provide the number of regenerators
as well as the optimality gaps found by CPLEX when solving
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TABLE IV
ACO PARAMETER VALUES EVALUATED

ψ=φ 0.25, 0.75, 1.75
ϑ 0.001, 0.01, 0.1
β 0.5, 1, 2, 3, 4
α 0, 0.001, 0.005, 0.01, 0.1

TABLE V
ACO PARAMETERS SELECTED FOR EACH NETWORK

TOPOLOGY

Network ψ=φ ϑ β α

USA–Can 0.75 0.1 4 0.1
German 0.25 0.001 4 0.01
Core 0.25 0.001 4 0.005
Basic 0.25 0.01 4 0.01
Large 0.25 0.001 4 0.005

MP1 with the time limit set to 1 h. In addition, we include
the number of regenerators required when an opaque network
scenario is considered. In this experiment, we assume a
target BQoT = 10−3, and loads equal to 20.8 and 15 erlangs.
One can observe that in both the Core and Basic networks
(i.e., the smallest problem instances) CPLEX is able to obtain
results equal or very close to optimality, whereas in the
larger networks gaps of up to 25.6% are reported. Second,
in Table VII, we report the results (amount of regenerators
to be deployed) of all the RPD heuristics presented (MP2/3
included) in the same network scenario. In addition, Table VIII
reports the average computational times required by each of
the methods when the load is set to 20.8 erlangs. Whilst in
the Core network all methods perform quite similarly, in all
the other topologies both the BRKGA and MP2/3 stand out as
the best methods. However, BRKGA always provides the best
solution to the problem and it is only slightly outperformed
by MP1 in the Basic instance. Furthermore, it reaches its
solutions within very short running times compared to all the
other methods evaluated. Hence, BRKGA stands out as a very
powerful algorithm providing a high quality trade-off between
optimality and complexity. To further study these algorithms,
in Fig. 4, we show the results of all the heuristics in some of
the considered networks and for some exemplary BQoT target
values. Again, it is possible to see that BRKGA always obtains
the best results, though it is closely followed by MP2/3 in all
the networks, except for the USA–Can topology, where MP2/3
exhibits a very poor performance and it is even outperformed
by ACO. In the next subsection, we evaluate the performance
of some of these heuristic methods when applied to the T-OBS
network architecture proposed.

C. Impact on the T-OBS Network Performance

The RPD heuristics proposed in this paper must ensure
that burst losses due to unacceptable OSNR levels are kept
under control, and, thus, that the predefined target loss rate
BQoT is met. In order to verify that this is accomplished,
we conduct a set of simulations over both the German and
Large network topologies. Aiming at providing illustrative
plots of the scenario in hand, we consider the best and worst
RPD heuristic for each network, that is, the BRKGA as the

TABLE VI
MP1 RESULTS AND OPTIMALITY GAPS OBTAINED BY

CPLEX

Method USA–Can German Core Basic Large

Load = 20.8
MP1 634 606 146 752 1231
Gap (%) 9.4 22.7 0 0.7 2.7

Load = 15
MP1 482 486 115 581 981
Gap (%) 7.9 25.6 0 0.5 7.2
Opaque 3904 5632 1472 2624 3648

TABLE VII
RPD ALGORITHMS RESULTS EVALUATION

Method USA–Can German Core Basic Large

Load = 20.8
MP2/3 654 518 147 761 1241
BRKGA 607 511 146 756 1223
ACO 636 538 147 769 1271
KLS 708 659 148 803 1296
RG 727 585 148 870 1378

Load = 15
MP2/3 498 404 116 586 951
BRKGA 465 397 115 582 940
ACO 502 426 116 595 972
KLS 563 536 116 638 1028
RG 570 467 117 678 1076

TABLE VIII
RPD ALGORITHMS EXECUTION TIME (SECONDS)

Method USA–Can German Core Basic Large

MP2/3 43 116 1 19 59
BRKGA 10 19 1 3 10
ACO 117 174 6 33 142
KLS 37 103 1 15 64
RG 1 2 0.5 1 1.8

best method in both cases, and the KLS (German) and RG
(Large). In addition, we include the transparent and opaque
scenarios and use them as benchmark references. In both
experiments we consider BQoT values equal to 10−3 and 10−5.
The results obtained are presented in Fig. 5 for the German
network and in Fig. 6 for the Large network. One can note
that with the progressive and even placement of regenerators
(i.e., regenerators are fairly distributed among all regenerator
sites) the burst loss probability (BLP) moves toward either the
target performance BQoT or the opaque performance. In both
Fig. 5 and Fig. 6, once all the regenerators are deployed, we
can observe two different situations: if BQoT is set to 10−3,
OSNR losses are still predominant due to the low contention
losses of this scenario; if BQoT is set to 10−5, in contrast,
contention losses become predominant in the network. Note
that in both figures provided, the BLP found in the case
where contention losses are predominant slightly improves
that of the opaque case. This is due to the differences in node
architectures between the opaque and translucent networks:
whilst the opaque network relies on in-line regenerators as
in [7], our translucent architecture operates in the feed-back
mode as proposed in [8], and, hence, bursts remain in the
electrical buffer until a free wavelength is found at the
desired output link. Finally, and due to the fact that we are
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Fig. 4. (Color online) RPD algorithms performance in the USA–Can, German, Core and Large networks under different BQoT targets.
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Fig. 5. (Color online) BRKGA versus KLS performance comparison in
the German network.

addressing an offline planning/dimensioning of the network,
in this last experiment, we evaluate the impact that load
variations have on both losses due to contention in network
links and losses resulting from unacceptable OSNR levels. To
this end, we dimension the T-OBS network considering the
Large topology, a load of 9 erlangs and a target BQoT = 10−3.
In this scenario, BRKGA provides a solution requiring 633
regenerators to be deployed. Table IX reports the share of
burst losses for different load values. Although we can observe
that for higher loads the percentage of OSNR-based losses
inevitably increases, we assume that the dimensioning of the
network is made according to a worst case scenario. Therefore,
it can be concluded that our approach guarantees that OSNR

B

B

B

B

Fig. 6. (Color online) BRKGA versus RG performance comparison in
the Large network.

losses are kept well below those caused by burst contentions in
network links.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed several methods to solve
the RRPD problem in a translucent OBS network. To this end,
we have focused on the problem of PLIs in OBS networks. In
particular, we have presented a T-OBS network architecture
consisting of all-optical TAS nodes equipped with a limited
number of O/E/O regenerators. Then, we have provided an
OSNR model to evaluate the impact of the main PLIs (i.e., ASE
noise and splitting losses) and illustrated a method to compute
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TABLE IX
SHARE OF BURST LOSSES FOR A BRKGA DIMENSIONING IN

THE LARGE NETWORK

Load 7 7.5 8 8.5 9 9.5 10

Contention (%) 93.7 90 88.5 84.6 80.1 73 67.1
OSNR (%) 6.3 10 11.5 15.4 19.9 27 32.9

a power budget and noise analysis between two TAS OBS
core nodes. Afterward, this model has been used to address
the RRPD problem. To be precise, we have decomposed
RRPD into the routing problem and the RPD problem and
eventually solved the resulting R+RPD problem. We have
presented an unsplittable routing strategy which is based
on an MILP formulation aimed at reducing congestion in
bottleneck network links. The routing solution obtained has
then been used as input for the RPD problem. To solve RPD,
we have proposed several heuristic methods which are aimed
at minimizing the number of regenerators required to meet a
predefined target loss performance due to the impact of PLIs.
We have thoroughly evaluated and compared these methods
against both an optimal and a heuristic MILP formulation of
the RPD problem. The results have shown that BRKGA is,
among all the methods evaluated, the one providing the best
trade-off between optimality and complexity. Finally, we have
conducted a series of exhaustive simulations in the T-OBS
network and concluded that both the architecture and RPD
models proposed in this paper ensure that, according to a
pre-specified target QoT performance, losses caused by OSNR
signal degradation are kept satisfactorily under control and do
not impact negatively the overall T-OBS network performance.
In our future work, we plan to extend our model to consider the
case of an online/dynamic scenario.

APPENDIX A: SIMULATION SCENARIO

In our simulation scenario, we consider several topologies
(see Fig. 7): a set of pan-European [36] networks known as
Large (a), Basic (b) and Core (c) with 37, 28 and 16 nodes
and 57, 41 and 23 links, respectively; the JANOS-US-CA [37]
(d), a reference network that interconnects cities in the USA
and Canada with 39 nodes and 61 links and a German
backbone topology known as GERMAN50 [37] (e), with 50
nodes and 88 links. In addition, Table X summarizes, for all
the networks, some interesting parameters regarding both the
number of nodes (e.g., network diameter) and the distance of
their respective optical end-to-end paths.

Network links are bidirectional and dimensioned with the
same number of wavelengths M = 32. The transmission bitrate
is set to 10 Gbps.

We assume that each node is both an edge and a core
bufferless node capable of generating bursts destined for
any other nodes. We consider the offset time emulated
OBS network architecture (E-OBS) [38] and the just-in-time
(JIT) [39] resources reservation protocol. For the sake of
simplicity, the switching and processing times are neglected.

The traffic is uniformly distributed between nodes. We
assume that each edge node offers the same amount of
traffic to the network; this offered traffic is normalized to the
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Fig. 7. The topologies considered: (a) Large (37 nodes), (b) Basic (28
nodes), (c) Core (16 nodes), (d) USA–Can (39 nodes), (e) German (50
nodes).

TABLE X
PATH CHARACTERISTICS: NUMBER OF NODES TRAVERSED

AND DISTANCE (km)

Network Max. nodes Avg. nodes Max. length Avg. length

USA–Can 12 5.36 3297 1360.55
German 13 5.5 1037.6 421.1
Core 7 3.7 2912 1238.4
Basic 10 4.75 6505 2094.4
Large 12 5.1 7824 2410.1

transmission bitrate and expressed in erlangs. In our context,
an erlang corresponds to the amount of traffic that occupies an
entire wavelength (e.g., 20 erlangs mean that each edge node
generates 200 Gbps).

Bursts are generated according to a Poisson arrival
process and have exponentially distributed lengths. The mean
duration of a burst (1/µ) is 100 µs (1 Mb). Note that due to
both the Poisson assumption and the fact that we neglect
both the switching and processing times of bursts, the burst
size does not have any impact on the results obtained [40].
In obtaining the simulation results, we have estimated 99%
confidence intervals. However, since the confidence intervals
found are very narrow, we do not plot them in order to improve
readability.

All simulations have been conducted on the JAVOBS [41]
network simulator on an Intel Core 2 Quad 2.67 GHz with 4
GB RAM. We use CPLEX (version 12.1) [35] as the underlying
MILP-solver for the Eqs. (RMILP1), (RMILP2), MP1 and
MP2/3 problems.
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