



# Information Theory for Molecular Communication in Nanonetworks

Massimiliano Pierobon Georgia Institute of Technology maxp@gatech.edu



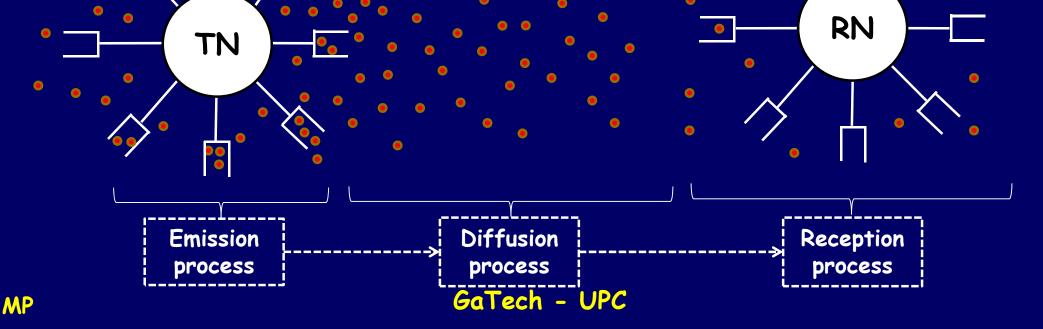
# Towards an Information Theory for Molecular Communication

## Physical Channel Model

How information is transmitted, propagated and received when a molecular carrier is used

#### Noise Representation

How can be physically and mathematically expressed the noise affecting information transmitted through molecular communication


#### Information Encoding/Decoding

How can information be encoded for a proper transmission using molecular communication Molecular Channel Capacity



#### Physical Channel Model: Molecule Diffusion M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model for Molecular Communication in Nanonetworks," submitted for journal publication, March 2009.

Molecule Diffusion Communication: Exchange of information encoded in the concentration variations of molecules.





## **Objective of the Physical Channel Model**

M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model for Molecular Communication in Nanonetworks," *submitted for journal publication*, March 2009.

#### **Derivation of DELAY and ATTENUATION**

as functions of the frequency and the transmission range

Non-linear attenuation with respect to the frequency
Distortion due to delay dispersion



#### Modeling Challenges for the Physical Channel M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model for Molecular Communication in Nanonetworks," submitted for journal publication, March 2009.

#### Transmitter

How chemical reactions allow the modulation of molecule concentrations as transmission signals?

#### Propagation

 How the "particle diffusion" controls the propagation of modulated concentrations

#### Receiver

How chemical reactions allow to sense the modulated molecule concentrations from the environment and translate them into received signals



## Molecule Diffusion Channel Model

M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model for Molecular Communication in Nanonetworks," *submitted for journal publication*, March 2009.

# **Transmitter Model**

Design of a chemical actuator scheme (chemical transmitting antenna)

Analytical modeling of the chemical reactions involved in an actuator

Signal to be transmitted  $\rightarrow$  Modulated concentration

GaTech - UPC



#### Molecule Diffusion Channel Model

M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model for Molecular Communication in Nanonetworks," *submitted for journal publication*, March 2009.

# **Propagation Model**

Solution of the diffusion physical laws (FICK's First and Second Laws (1855), Relativistic Diffusion Process) in the presence of an external concentration modulation

• Modulated concentration  $\rightarrow$  Space-time concentration evolution



## Molecule Diffusion Channel Model

M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model for Molecular Communication in Nanonetworks," *submitted for journal publication*, March 2009.

# **Receiver Model**

Design of a chemical receptor scheme (chemical receiving antenna)

Analytical modeling of the chemical reactions involved in a receptor

• Propagated modulated concentration  $\rightarrow$  Received signal



#### Conclusions

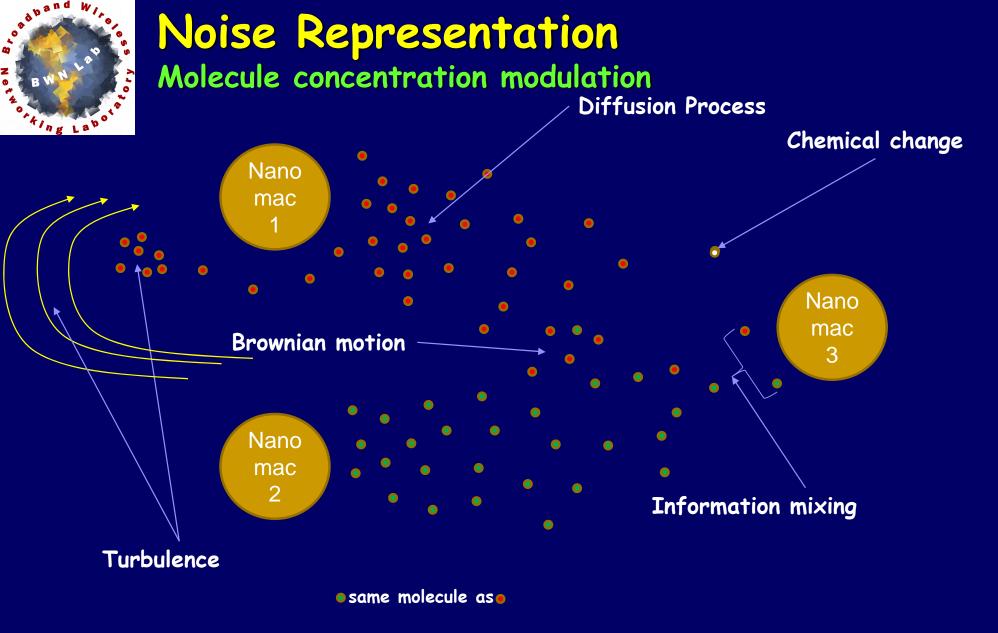
M. Pierobon, and I. F. Akyildiz, ``A Physical Channel Model for Molecular Communication in Nanonetworks," *submitted for journal publication*, March 2009.

# A mathematical model for the physical molecular diffusion channel

Non-linear channel attenuation both in frequency and Tx-Rx range

• Channel Tx-Rx delay varies in frequency  $\rightarrow$  dispersion phenomena when the signal propagates

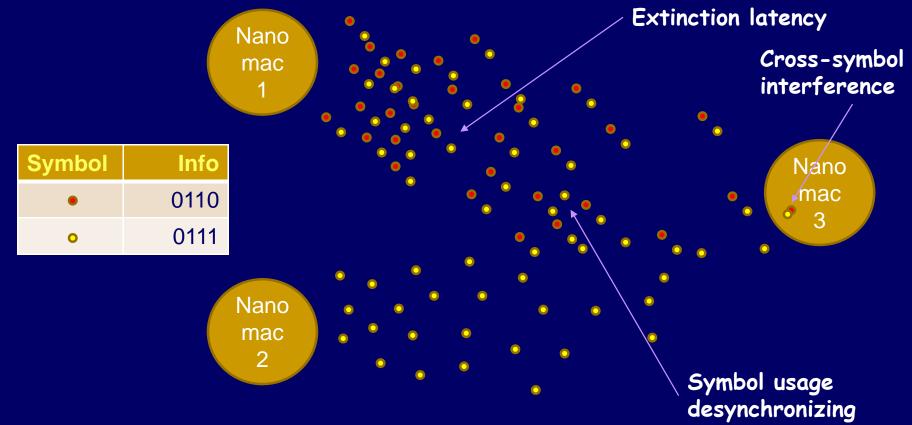



Current Research

### $\blacksquare$ Noise $\rightarrow$ incorporated into the channel model

#### Study of possible noise sources:

When information modulates the molecule concentration


When information is encoded into molecule chemical features (e.g., type, structure, polarization, etc.)



GaTech - UPC



#### Noise Representation Molecule chemical feature <u>encoding</u>





# Information Encoding/Decoding

Concentration Modulation (e.g. Ca<sup>2+</sup> ion signaling)

 Information Encoding Based on Chemical Features (e.g. pheromone communication)

Encapsulation of Information Carriers (e.g. DNA vesicle encapsulation, pollen/spores communication)



# **Future Research and Challenges**

Properly model all the noise sources

- Information encoding/decoding and modulation pattern
- Channel Capacity computation
- Channel multiple access problem
- Addressing issue (routing problem)
- Higher layers development



# Thanks for your attention

"Information Theory for Molecular Communication in Nanonetworks"

**Massimiliano** Pierobon