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Abstract

Routing and resources assignment represent one of the major challenges for Elastic Optical Networks (EONs). In this paper
we propose a general mathematical framework based on paths algebra that allows the implementation of differentiated services
according to different policies. The framework enables to consider simultaneously different metrics associated to the optical links.
Any number of linear and non-linear metrics can be used. In this way, Quality of Service (QoS); Quality of Transport (QoT),
Quality of Network Economics (QoNE), Quality of Energy (QoEn) etc. can be optimized.
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I. INTRODUCTION

In WDM transparent networks data can be switched exclusively in the optical domain without the need of optical-electronic-
optical conversion. The introduction of a robust control plane provides automatic operation, and gives raise to Wavelength
Switched Optical Networks (WSON). In WSONs the optical signal is switched at the wavelength granularity. A lightpath
is established by the assignment of a physical route and an available wavelength. The Routing and Wavelength Assignment
(RWA) problem plays a crucial role in the dynamic network operation [1].

The RWA problem can be solved either online or offline. In an online RWA scenario, demands arrive in different moments
while the network is already fully operational, and connections are established and tear down dynamically. In an offline scenario
the network not in use, all links have their full capacity available and the demand matrix is known in advance. The task consists
in assigning the available resources and paths to the demands during the planning phase. The RWA problem may be solved
as one problem or as two separate subproblems. For the first option computational complexity becomes extremely high, and,
for this reason, it is usual and useful to separate the RWA problem into two sub-problems: the routing and the wavelength
assignment. Several solutions can be found in the literature [1].

In the traditional ITU-T DWDM frequency grid [2] spectrum bands are spaced by 50 or 100 GHz. Each spectrum band
is able to accommodated one wavelength. A flexi-grid described in [3], divides the available optical spectrum into spectrum
bands of fixed narrower spectral width. The currently proposed spectral widths are 25 GHz, 12.5 GHz and 6.25 GHz. 12.5
GHz or 6.25 GHz are most commonly found in the literature and the potential bandwidth granularity that will be adopted by
the industry. Each of these spectrum bands in the flexi-grid is denominated a Frequency Slot (FS). A certain number of FSs
can be jointly allocated to a connection in order to accommodate a connection requirement.

An Elastic Optical Network – EON – is based on the flexible use of the optical spectrum enabled by the concatenation of
FSs into one optical channel. The flexible allocation of spectrum results in an improvement in relation to the fixed grid used
in WSONs because on the one hand the resulting channels are able to serve a bandwidth requirement that is smaller than a
wavelength capacity without wasting resources. On the other hand, if a demand requires more bandwidth than the wavelength
capacity, more FSs may be allocated forming an optical channel able to accommodate this demand. When a large amount of
spectrum slots are jointly allocated, the resulting channel may achieve high bit rates as 400 Gbps or 1 Tbps [4], [5].

In an – EON – the resources assignment refers to the allocation of spectrum resources, i.e. number of Frequency Slots –
FSs. Therefore, the WSON’s RWA problem becomes in an EON the routing and spectrum assignment (RSA) problem [6]. An
RSA algorithm computes an end-to-end physical route and allocates a set of FSs around a central frequency. In absence of
wavelength converters, RSA is subject to the spectrum continuity constraint meaning that the same FSs (represented by the
FS index) in the optical signal must be assigned along all the links in the path [7]. If the spectrum continuity is not preserved,
nodes must convert the central frequency along the path [4], an action that increases the complexity and cost, and should be
avoided.

The RSA problem may be implemented in a static or in a dynamic scenario. In a static scenario the RSA algorithms are
implemented in the network planning phase when the set of connection requests is known in advance. In the dynamic scenario
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dynamic RSA algorithms are implemented to provision connections at request arrivals. In a dynamic traffic environment, due
to the real-time nature of the problem, RSA algorithms must be fast.

As mentioned for the RWA problem, online RSA algorithms can deal with the routing and spectrum assignment jointly
(i.e., in one step) or separately (i.e., in two steps) [8]. In one step algorithms, routing and spectrum assignment are solved
simultaneously. The drawback of one step RSA algorithms is that the problem becomes highly computational complex and
time consuming. In two step algorithms, the RSA problem is decomposed into two subproblems: the routing and the spectrum
assignment subproblems. The routing and the spectrum assignment are then solved separately and sequentially. The two step
RSA algorithm will first compute a number of physical routes for each source-destination node pair and order them following
a specific policy. Different spectrum allocation policies have been proposed in the literature. The first-fit (FF) policy [9], [10]
selects the lowest index set of available contiguous FSs. In random policy one of the available sets of contiguous FSs is selected
randomly [11], [12].

In a dynamic network scenario, the constant setup and release of connections can create gaps of contiguous available FSs.
Authors in [8] classify the fragmentation issue according to the constraint they jeopardize. The vertical fragmentation affects
the spectral contiguity constraint. It occurs when the spectral resources in a link are fragmented into various small size gaps
of available contiguous FSs. The smaller the number of contiguous available FSs, the less likely these groups of available FSs
would be able to serve a connection request. Figure 1-a illustrates a link before and after a connection release, and it can be
seen how the link spectrum becomes fragmented. The spectrum fragmentation problem may lead to inefficient use of resources
use increasing the blocking probability. The horizontal fragmentation impairs the continuity constraint and occurs when a gap
of available FSs in one link does not have the same correspondent FS availability along the successive links in the path. In this
case available FSs in a link may not be assigned to a connection request even though each individual link may have enough
contiguous FSs to attend the demand’s spectrum requirement. This fragmentation problem is also known as the misalignment
of available FSs in a path’s links [13]. In this fragmentation problem the smaller the number of links in a selected path the
less likely the misalignment of FS availability will occur between selected links and neighboring links. An example of vertical
and horizontal fragmentation may be observed in Figure 1-b.

(a) (b)

Fig. 1. EON frequency slot fragmentation: a) release of a connection destroys the FSs contiguity; b) horizontal and vertical fragmentation.

It is out of the scope of this work to propose any new FS-aware RSA algorithm. Instead, the objective is to show how the
paths algebra mathematical framework [14] can be used to map the FS-aware RSA problem in a way that different policies
can be exercised and evaluated [15]. To achieve this objective this paper is organized as follows: after this brief Introduction,
in Section II the FS-aware RSA problem and associated metrics is described; in Section III the paths algebra framework
is presented; in Section IV the FS-aware RSA problem is mapped into the paths algebra framework; Section V provides
conclusions remarks and future work proposals.

II. FS-AWARE RSA PROBLEM AND ASSOCIATED METRICS

In this section we present the FS-aware RSA problem as it has been described in [13].
Figure 2 shows 6-node, 8-link mesh network, designated as FISH network and the spectral resources are distributed as shown

in Table I. In this example we assume only 12 spectrum slots on each fiber link. When a new request A – E arrives with a
bandwidth requirement of 1 slot, the routing algorithm first calculates all possible routes, resulting in the five shortest paths:
(i) ADE; (ii) ABDE; (iii) ABCE; (iv) ABCFE; (v) ADBCE. There are six paths from A to E in total, but path ADBCFE is
omitted since we consider only k(k = 5) shortest paths for each source - destination pair.
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(A)

(B) (C)

(D) (E)

(F)

Neighboring links 
of AD

Neighboring links 
of DE

Path ADE

Fig. 2. Example FISH network. Adapted from [13].

TABLE I: Slots occupancy of the FISH network’s links

Link Slots
1 2 3 4 5 6 7 8 9 10 11 12

AB 1 0 1 1 0 0 1 1 1 0 0 0
BA 1 1 0 0 1 1 0 0 1 1 0 0
AD 1 0 0 0 1 1 1 0 0 0 0 0
DA 1 0 0 0 1 1 1 0 0 0 0 0
BC 0 0 0 1 0 0 1 1 0 0 0 0
CB 0 0 0 1 0 0 1 1 0 0 0 0
BD 0 0 0 1 1 0 0 0 1 1 0 0
DB 0 0 0 1 0 0 1 1 0 0 0 0
CE 1 0 0 0 0 0 0 0 0 0 0 0
EC 1 0 0 0 0 0 0 0 0 0 0 0
CF 1 0 1 0 0 0 0 0 0 0 0 0
FC 1 0 1 0 0 0 0 0 0 0 0 0
DE 1 0 0 0 1 0 0 0 0 0 0 0
ED 1 0 0 0 1 0 0 0 0 0 0 0
FE 1 1 0 0 0 1 1 1 0 0 0 0
EF 1 1 0 0 0 1 0 1 0 0 0 0

Figure 3-a illustrates some RSA candidate solutions for paths ABDE and ABCE. It can be seen that some of the solutions
will break the contiguousness of a spectral block on one or more of the links on the current path. The cuts are considered to be
the costs of the candidate solutions, since more cuts create more fragments on the candidate links of the routes. For example,
the provisioning of the request on path ABCE with slot 10 will cut two spectrum blocks on links BC and CE, namely, the
contiguous spectral slots 9 – 12 on link BC and spectral slots 2 – 12 on link CE. In the example in Figure 3, the assignment
of slot 6 on ABDE give zero cuts; therefore, it should be the most preferred solutions in terms of spectral fragmentation
awareness.

(a)
(b)

On the other hand, the provisioning of a request can also increase the misalignment of the available spectral blocks between
the candidate links and their neighboring links. The optimized spectrum assignments are keeping the unused spectrum on
neighboring links aligned for future requests. For example, the candidate path ABDE will change the alignment of the
neighboring links as shown in Figure 3-b. If slot 6 is assigned the misalignment for the link pair DE and EF will decrease by
one, since the provisioning on link DE on slot 8 reduces the misalignment by provisioning fills up the originally misaligned
spectrum. Likewise if slot 11 is assigned the the misalignment for the link pair DE and EF will increase by one as the commonly
available spectrum is decreased by one slot. The increased misalignment in a network is considered as an additional cost for
future lightpath provisioning and spectrum defragmentation. Therefore, among all candidate solutions, the algorithm should
minimize the misalignment cost as well.

Overall, the cuts and misalignment increase costs are the two proposed metrics in the lightpath provisioning process. However,
the minimal-cut solutions may conflict with the minimal misalignment increase solutions. Therefore, the fragmentation-aware
RSA algorithms should take into account both costs jointly.
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In [13] is defined a new parameter Fcmt, the fragmentation ratio which considers cuts, misalignments, and traffic as follows:

Fcmt = Fc +
Fm

S ×N
+H × S

C
, (1)

in which:
• Fc = number of cuts;
• Fm = number of misalignment increases;
• S = number of slots requested by one connection;
• N = number of neighbor links for the candidate path;
• C = residual capacity of the candidate path;
• H = number of hops of the candidate path.
Among all solutions the minimum Fcmt indicates the least fragmentation solution when the traffic load is low and indicates

the least congested solution when the traffic load is high.

III. PATHS ALGEBRA FRAMEWORK

The algorithm proposed by [13] clearly separates the routing and slot assignment problems. Furthermore, the routing strategy
is exclusively based number of hops and no Quality of Service (QoS) is taken into account. In fact, considering QoS is also
insufficient as other optimization criteria are of interest: Quality of Transport (QoT), Quality of Network Economics (QoNE),
Quality of Energy (QoEN).

It is necessary to conceive an heuristic or an algorithm to ensure the routing convergence for different types of QoX (X =
S, T, NE, EN) metrics or QoX metrics composition, in which this problem could be addressed from an integrated and generic
manner by means of a mathematical framework which allows validating the proposed solutions independently from network
topology or implementation details.

Therefore, besides establishing a homogeneous mathematical basis, the concepts of paths algebra used in this work developed
[14] and extended to solve the Virtual Network Embedding (VNE) problem [15] provide a guideline for developing a traffic
engineering adaptive tool in which users can define their own path searching policy that can be closer to the existing traffic
profile of their networks.

A. Paths Characterization

A network is represented by a directed graph G = (V,A), where V is the set of vertices and A the set of arcs. Consider the
simple path represented in Fig. 4.a. The set of vertices is given by V = {1, 2, 3, 4} and the set of arcs is given by A = {a, b, c}.
The source and destination nodes are (s, d) = (1, 4). This path can be represented either as a succession of vertices p1,4 or as
a succession of arcs pa,c.

1 2 3 4
a b c

m1(a), m2(a),

f(m1(a),m2(a))

m1(b), m2(b),

f(m1(b),m2(b))

m1(c), m2(c),

f(m1(c),m2(c))

(a)

1 2 3 4
a b c

5
d e

(4, 4, 16) (3, 4, 12) (2, 5, 10)

(5, 3, 15) (2, 5, 10)

(b)

Fig. 4. (a) Example of a simple path (b) Example of two paths to be ordered

Each arc in this example is characterized by a triple (m1(x),m2(x), f [m1(x),m2(x)]), where: m1(x) and m2(x) are the
values of metrics m1 and m2 on the arc x ∈ A; f [m1(x),m2(x)] is a function of combination of metrics applied to m1(x)
and m2(x).

In general, the paths algebra uses M as the set of m adopted routing metrics and F as the set of k metrics combination
functions.
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The set of combined-metrics of all edges is given by:

C(pa,c) =

 Ca

Cb

Cc

 =

 m1(a) m2(a) f [m1(a),m2(a)]
m1(b) m2(b) f [m1(b),m2(b)]
m1(c) m2(c) f [m1(c),m2(c)]


A synthesis S[.] is a set of binary operations applied on the values of the links combined-metrics along a path to obtain a

resulting value that characterizes this path as far as the constraint imposed by the combined-metric is concerned. So far, the
syntheses are restricted to the following set: {add(),mult(),max(),min()}.

If the routing algorithm is mono-constraint, only one value is obtained as the synthesis result and it is called weight-word. If
the routing algorithm is multi-constraint, with k constraints, then k values are obtained. In this example, S[.] = [S1S2S3]

t. The
weight-word has as many letters as the path’s number of arcs. The first letter corresponds to resulting value of the synthesis
applied to the whole path; the second letter corresponds to resulting value of the synthesis applied to the subpath obtained
by dropping out the last arc; the last letter corresponds to the resulting value of the synthesis applied to the subpath made of
only the first arc. Any number of letters can be retained as the synthesis result and this is called an abbreviation: bj

(
S[.]

)
represents a j-letters abbreviation; b∞

(
S[.]

)
represents no abbreviation, i. e., all letters are taken into account.

B. Paths Ordering

Consider the network represented in Fig. 4.b where two paths connect the source node 1 to the destination node 4.
These paths are α = (1, 2, 3, 4) = (a, b, c) and β = (1, 5, 4) = (d, e). Each paths’ arc is characterized by a triple
(m1(x),m2(x), f [m1(x),m2(x)]), where f [m1(x),m2(x)] = m1(x) × m2(x). The syntheses to be used in this example
are given by S[.] = [min()max()add()]t.

TABLE II
SYNTHESIS RESULT OF THE NETWORK GIVEN IN FIG. 4.B

Path S1 S2 S3

min max add

α 2; 3; 4 5; 4; 4 38; 28; 16
β 2; 5 5; 3 25; 15

The result of the synthesis is shown in Table II. A path α is worse or less optimized than a path β, if S[α] �ML S[β],
where �ML stands for multidimensional lexical ordering. In the example �ML= {≥,≤,≥}, that is translated by the following
ordering relations:
• S1[α] � S1[β]⇒ S1[α] ≥ S1[β];
• S2[α] � S2[β]⇒ S2[α] ≤ S2[β];
• S3[α] � S3[β]⇒ S3[α] ≥ S3[β];

Different syntheses also have different priorities. In the example, S1, S2 and S3 priorities go from the highest to the lowest.
Table III summarizes the results obtained for three different ordering criteria. It is important to realize that the syntheses

letters are examined from the highest priority to the lowest priority synthesis. When the paths are considered equivalent, then
we will examine either the next letter of the same synthesis or will move to the next synthesis. This is determined by the
adopted abbreviation.

IV. FS-AWARE RSA PROBLEM MAPPING

As shown in Section III, the paths algebra enables to explore different optimization strategies by just changing the metrics
M and the function of combined metrics F.

Table IV shows how some different strategies can be modeled using the paths algebra. In this table, the optimization metrics
are primarily used to order the enumerated paths. The physical constraints indicate if the achieved mapping is feasible or not.
A feasible mapping requires positive physical constraints. A QoS threshold is a lower priority metrics and represents a bound
on the value of the corresponding metrics.

Different strategies may be exploited to optimize business objectives and achieve different levels of QoS. The listed strategies
also mix linear and non-linear metrics that treated simultaneously by the paths algebra.

The set of metrics shown in Table IV can be augmented to take into account the FS-aware RSA problem associated metrics.
Equation (1) is a combined-metrics that can be evaluated and ordered according to the syntheses and ordering relations

indicated in Table V
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TABLE III
PATHS ORDERING OF THE NETWORK GIVEN IN FIG. 4.B

Abbreviation bj
(
S[.]
)

Result

b1[S1] b1[S2] b1[S3] S1 ⇒ α ≡ β
S2 ⇒ α ≡ β
S3 ⇒ α ≺ β

b∞[S1] b∞[S2] b∞[S3] S1 ⇒ 1st letters are equal
⇒ α ≡ β
S1 ⇒ 2nd letters ⇒
3 < 5⇒ β ≺ α

b1[S1] b∞[S2] b1[S3] S1 ⇒ α ≡ β
S2 ⇒ 1st letters are equal
⇒ α ≡ β
S2 ⇒ 2nd letters ⇒
4 > 3⇒ β ≺ α

TABLE IV
MODELING OF OPTIMIZATION STRATEGIES

Optimization Optimization Physical QoS M
criterion metrics constraints thresholds F

Minimize cost Hops CPU, BW - M = {Hops,BW,CPU}
F = M

Minimize cost under a maxi-
mum allowable delay

Hops CPU, BW Delay M = {Hops,Delay,BW,CPU}

F = M

Maximize the spare CPU CPU CPU, BW - M = {CPU,BW}
F = M

Maximize the spare BW BW CPU, BW - M = {BW,CPU}
F = M

Maximize the spare physical re-
sources

CPU, BW CPU, BW - M = {BW,CPU}

F = {CPU + BW}

Minimize cost and maximize
throughput, under a maximum
allowable delay

Hops, PLR CPU, BW Delay

M = {Hops, PLR,Delay,

BW,CPU}
pTHRU = 1 - PLR

F = {Hops, pTHRU,

Delay,BW,CPU}
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TABLE V: FS-aware RSA problem associated metrics, syntheses and ordering relations

Metrics Synthesis Ordering relation (�ML)
Fc = number of cuts add ≥
Fm = number of misalignment in-
creases

add ≥

C = residual capacity of the candidate
path

min ≤

H = number of hops of the candidate
path

add ≥

Combined metrics Fcmt = the fragmen-
tation ratio

add ≥

In the evaluation of Equation (1), S = (number of slots requested by one connection) and N = (number of neighbor links
for the candidate path) are constants for the specific demand and chosen path.

The FS-aware RSA problem for the the network represented in Figure 2 for the FSs occupancy given in Table I has been
mapped into the paths algebra framework. For the sake of simplicity, it has been considered for routing purposes the number
of hops as the highest priority metrics. Accordingly, the path ADE is selected. The example has been done for a 1 FS demand.
In this case, N = 5, H = 2, C = 7, and S = 1. Table VI shows the obtained result.

TABLE VI: FS-aware RSA problem mapped into the paths algebra
framework

Slot Fc = Fm = Fcmt =
2 0 1 0.486
3 2 5 3.286
4 0 1 0.486
8 1 1 1.486
9 2 1 2.486
10 2 1 2.486
11 2 5 3.286
12 0 5 1.286

Applying the ordering relation (�ML=≥) results that the best slots are slots 2 and 4.
It is important to notice that the routing objective criteria can be easily changed to take into account QoX parameters. The

fragmentation ratio Fcmt = can be chosen to be the highest priority metrics and the QoX criteria can be used as thresholds
to define candidate routes. The shortest path does not have to necessarily the best choice. In summary, the paths algebra
framework provides flexibility to exploit different FS-aware RSA strategies.

V. CONCLUSIONS AND FUTURE WORKS

In this work we proposed the use of the paths algebra framework to solve the FS-aware RSA problem. The framework
allows to exploit different optimization strategies taking into account QoX parameters. There is no restriction neither for the
number nor for the type (linear / non-linear) of metrics. The proposal has been described by means of the example described
in [13]. Other FS-aware RSA formulations can be easily mapped into the framework.

As future work we intend to apply the paths algebra framework to propose strategies for the SLA-aware RSA problem in
EONs.
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