Global Internet Symposium 2014

Development and experimentation towards a
multicast-enabled Internet

D. Careglio*, D. Papadimitriou, F. Agraz*, S. Sahhaf?, J. Perell6*, W. Tavernier?, S. Spadaro*, D. Colle!
*CCABA - Universitat Politécnica de Catalunya, Barcelona, 08034 Spain
t Alcatel-Lucent Bell Labs, Antwerp, Belgium
¥iMinds, Ghent, B-9050 Belgium

Abstract—TIn this paper, we report our development experience
and experimentation studies of two multicast routing schemes
for the Internet, namely, PIM-SSM and GCMR. We detail their
implementation over the Quagga open source routing suite, as
well as their experimentation tests over a large-scale topology
that reproduces the Internet characteristics.

I. INTRODUCTION AND MOTIVATION

Although the current Internet does work and is still capable
of fulfilling its current missions, it suffers from a relative
ossification [1], a condition where any technological innovation
meets natural resistance, as exemplified by the lack of wide-
scale deployment of technologies such as multicast or IPv6.
Recent initiatives, like the Global Environment for Network
Innovations! (GENI), a project sponsored by the National
Science Foundation (NSF), and the Future Internet Research
and Experimentation? (FIRE) in Europe, try to overcome this
ossification problem by bridging the gap between visionary re-
search and technology deployment. The rationale behind them
is to promote the experimental validation of new proposals
in large-scale realistic network environments, as a way to
convince both industry and regulators that a new technology
deserves to be adopted and thus enable a possible migration
path for technological developments.

Multicast becomes an excellent example of the Internet
ossification. Originally defined in the 90s, its potential benefits
have been verified by studies several times since then [2]. How-
ever, only intra-domain multicast has been partially adopted
in the context of IPTV in some Internet Service Provider
(ISP) networks, while inter-domain multicast is still pending to
date. Among other reasons, this failure could be attributed to
the scaling limitations and relative complexity of the standard
multicast protocol architecture, based on overlaying multicast
routing on top of the unicast routing topology [3]. For this very
reason, we recently proposed the Greedy Compact Multicast
Routing (GCMR) scheme [4]. GMCR is characterized by its
independence from any underlying unicast routing topology;
more specifically, the local knowledge of the cost to direct
neighbor nodes is enough for the GCMR scheme to properly
operate.

In this paper, we present a prototype of the GCMR mul-
ticast scheme and evaluate its functionality and performance
on the iLab.t virtual wall® platform, which is a large-scale
experimental Linux machine-based emulation testbed. The

Uhttp://www.geni.net
http://www.ict-fire.eu/
3http://www.iminds.be/en/develop-test/ilab-t/virtual-wall

978-1-4799-3088-3/14/$31.00 ©2014 |[EEE 79

prototype of a GCMR routing engine has been developed
using the libraries of the Quagga open source routing suite*.
The success in our endeavor, which was presented during the
Hands-on-FIRE! event (collocated in the 2013 FIA Week in
Dublin, Ireland), suggests a feasible multicast-enabled Internet.

The rest of the paper is organized as follows. Section II
presents a brief overview of the main issues of the current
Internet routing system and explains the state of the art in
multicast routing. Section III introduces the details of the
routing software implementation while Section IV describes
the testbed platform. In Section V, we provide and discuss the
results. Finally, Section VI concludes the paper.

II. BRIEF OVERVIEW OF ROUTING AND MULTICAST
ROUTING IN INTERNET

The most fundamental issues faced by the Internet archi-
tecture are the scalability, convergence, and stability properties
of its inter-domain routing system [5]. Solving them requires
to address multiple dimensions together: i) the routing table
size growth resulting from a larger number of routing entries,
and ii) the routing system dynamics characterized by the
routing information exchanges resulting from topological or
policy changes. Worst-case projections predict that routing
engines could have to process and maintain in the order of 1
million active routes within the next 5 yearsS. Thus, while the
Internet routing system prevents from any host specific rout-
ing information processing and maintenance (routing state),
storing an increasingly large amount of network states in the
routing system is expensive and places undue cost burdens
on network administrative units. For example, realizing the
vision of the Internet of Things, with its corresponding increase
on the number of routes, would require significantly more
efficient and scalable routing schemes. Furthermore, those
impacts on the routing system dynamics (robustness/stability
and convergence) resulting from inconsistencies (software im-
plementation errors, router misconfigurations, etc.), instabil-
ities (interactions between routing policies), and topological
changes/failures are progressively becoming key concerns for
the Internet operational community.

These issues are even more evident if we consider mul-
ticast routing system. By multicast routing, we refer to a
distributed algorithm that, given a group identifier, allows
any node to route multicast traffic to a group of destination
nodes, usually called multicast group. To enable one-to-many

“http://www.nongnu.org/quagga/
Shttp://bgp.potaroo.net/index-bgp.html

Global Internet Symposium 2014

traffic distribution, the multicast routing protocol configures
the involved routers to build a (logical) delivery tree between
the source and the multicast group, commonly referred to
as the Multicast Distribution Tree (MDT). Multicast is (re-
)gaining interest given the increasing popularity of multimedia
streaming/content traffic and the explosion of cloud services,
since it yields bandwidth savings competing with or comple-
menting cached content distribution techniques [2]. Neverthe-
less, the scaling problems faced in the 90’s still remain mostly
unaddressed. Although routing protocol independent routing
schemes such as Protocol Independent Multicast (PIM) and
Core Base Trees (CBT) [7] have been standardized during
last decade, only the Sparse Mode (SM) [6] and the Single
Source Multicast (SSM) [8] variant of PIM (PIM-SM and PIM-
SSM, respectively) has been deployed in the context of IPTV
systems for routing multicast streams between VLANS, subnets
or access networks (intra-domain multicast) [9]. However, the
adoption of inter-domain multicast has failed, as it relies on
an overlay routing executing on top of the unicast routing
topology, which suffers from the same scaling limits as unicast
routing plus the following issues: i) the level of indirection
added by the multicast routing as routers forward multicast
datagrams to multicast group, and hosts have to subscribe to
that multicast group; ii) the limits of shared trees between
domains; iii) its address space structure as firewalls have to
be upgraded to recognize multicast addresses, iv) management
and security complexity, v) the limited number of applications
making use of one-to-many connectivity via Internet multicast
routing, and many others. A complete analysis of the deploy-
ment issues for the IP multicast routing architecture can be
found in [3].

In this paper, we experimentally evaluate and compare
the performance of the PIM-SSM protocol and the GCMR
protocol initially proposed in [4] in the context of inter-
domain multicast routing. In the following subsections, we
describe PIM-SSM and highlight its limitations, which help
us to motivate the proposal of GCMR.

A. The protocol independent multicast (PIM) scheme

PIM [6] is nowadays the most common multicast routing
protocols for IP networks that provide one-to-many and many-
to-many traffic data distribution. Its protocol-independence
comes from the fact that PIM does not perform any network-
wide topology discovery mechanism but instead uses routes
learned from any unicast routing protocol to build the Multicast
Routing Information Base (MRIB), perform the Reverse Path
Forwarding (RPF) check, and forward the multicast packets
that a router receives from a source. In the context of inter-
domain routing, Border Gateway Protocol (BGP) has been
enhanced with the Multiprotocol BGP (MBGP) extensions [10]
to support and distribute IPv6 and multicast addresses.

In PIM-SSM [8], the delivery of traffic data is supported
on (S,G) channels. A (S,G) channel supports data from the IP
unicast source address S to the multicast group address G as the
IP destination address. Receivers must subscribe to the (S,G)
channel to receive traffic from the specific source S. In other
terms, a (S,G) channel is the term used in PIM to indicate
a MDT. However, applications are responsible of channel
discovery. As the PIM scope is limited to routers, the Internet
Group Management Protocol (IGMP) in IPv4 or Multicast

80

Listener Discovery (MLD) in IPv6 needs to be used by hosts
(receivers and source) to convey channel subscriptions to local
routers. Once a router receives a subscription request from a
receiver, it configures the local forwarding table accordingly,
and sends the request upstream towards the source address
based on its knowledge of the unicast topology. At each
hop, routers configure the multicast forwarding table (usually
referred as Tree Information Base, TIB) and become members
of the MDT (i.e., configuring an entry in the MRIB). At the
end of this process, the MDT is built from hosts towards the
source, which is considered a shortest-path tree (SPT) from
the perspective of the unicast routing tables.

B. The Greedy Compact Multicast Routing (GCMR) scheme

As part of the work conducted in the EULER FP7-project®,
we designed the GCMR scheme [4]. Its main objective is
to minimize (i.e., to compact) the routing table size at each
router by taking local (i.e., greedy) decisions at expenses
of i) routing packets on paths with relative small deviation
compared to the optimal tree; ii) increasing the number of
messages required to create the MDT. In this way, GCMR
can reduce the local storage of routing information by keeping
only (direct) neighbor-related entries, rather than tree structures
or network graph entries. In other terms, the novelty of this
algorithm is on maintaining local topology information instead
of global one, thus only providing the least cost to next hop
during the MDT construction.

Instead of using unicast topology storage information to
derive the multicast routing entries (as in the case of all multi-
cast routing protocols such as PIM), in GCMR, the information
needed to reach a given multicast source S is acquired by
means of a two-stage search process. The algorithm search
process is triggered whenever a node decides to join a given
multicast source address S as part of a multicast group G or
a failure occurs and part of the MDT needs to be restored.
This two-stage search process consists of an initial local search
covering the receiver neighborhood (defined by a path budget),
and, if unsuccessful, a subsequent global search over the
remaining topology. The rationale behind this approach is to
put tighter limits and search locally first. Indeed, the likelihood
of finding any router that belongs to the targeted MDT within
a few hops distance from the joining receiver is high in large
topologies (whose diameter is logarithmically proportional to
its number of nodes) while also increasing with the size of the
MDT. Such a search mechanism is triggered whenever a node
decides to join a given multicast source address S as part of a
multicast group G. Once a node becomes member of an MDT,
a multicast routing entry is dynamically created and stored in
the local MRIB. From these routing table entries, multicast
forwarding entries are also derived and stored in the local TIB.
A total of six different types of messages are defined:

e two messages are needed to execute the search pro-
cess, namely, request (R) and answer (A);

e two messages deal with the logical join (J) and detach
(D) of the nodes to/from the MDT,;

e a keepalive (K) message is used to check that the link
between two elements is operating;

Shttp://www.euler-fire-project.eu

Global Internet Symposium 2014

= __{,‘-x./" b

Vd
Source {Local network

N
Client
\

__| Internet o | N,
-, el
IGMP ¥&~\/_> MBGP —

PIM

a)

Source

le B !/J

"‘-_<\|_DCDL\I‘|ETWDF =

__|_ : Internet — EFS

b)

Fig. 1. Protocols architecture a) using PIM-SSM, b) using GCMR

e asignalling (S) message is finally sent from source to
all clients to detect a failure.

A detailed description of the GCMR algorithm can be
found in [11], theoretical performance analysis and simulation
comparison with other major multicast routing paradigms are
documented in [12].

As GCMR does not rely on any unicast routing protocol,
it can work together with any addressing scheme like IPv4,
IPv6 or even geometric coordinates. In addition, GCMR can
be implemented directly in any host, as its scope is not limited
to routers, not requiring any host-router protocol like IGMP.
Therefore, to the authors knowledge, it is the first name-
independent, receiver-initiated, dynamic, distributed, end-to-
end multicast routing algorithm. Finally, although GCMR has
been designed to improve scalability of multicast routing in
inter-domain environments, it can perform in other environ-
ments where routing scalability is also a main issue and only
limited topology/routing information is available.

Figure la shows the different protocols involved in a
typical PIM-SSM scenario and their scope, that is, MBGP
for addresses discovery and IGMP for multicast membership
subscription between hosts and local routers. In contrast,
Figure 1b highlights GCMR as a real end-to-end multicast
protocol over the Internet.

III. ROUTING PLATFORM

As the aim of this work is to experimentally validate
GCMR against PIM-SSM, both protocols have been imple-
mented and executed in a prototype. This prototype runs on
top of an existing Quagga routing platform (described in this
section) in the iLab.t virtual wall emulation testbed platform
(Section IV).

A. Quagga routing suite

Few open source routing platforms exist that allow rapid
introduction of new protocols, features, and functionality. Most
popular ones are Quagga, XORP? and Bird®, which can run
on standard PC hardware. Among them, we have used Quagga
given its widespread adoption and maturity. Quagga benefits
from a large developer community including independent
code committers, service provides, and academic institutions,

7http://WWW.X0rp.org
8http://bird.network.cz

81

while Bird still presents limitations regarding the inter-domain
routing support and XORP is neither mature enough nor widely
used for research purposes. Moreover, Quagga starts becoming
the common reference platform for software-defined routers
running in production environments.

More specifically, Quagga is an open-source routing proto-
col suite providing implementations of different IP protocols
such as OSPF and BGP. The software is developed in standard
C programming language and is available for UNIX platforms
like Linux, Solaris and BSD.

The Quagga architecture consists of a core module (i.e.,
the Zebra daemon), which acts as an abstraction layer to
the UNIX kernel packet forwarding functionality. The Zebra
daemon provides a set of client modules, called Zserv, imple-
menting each a specific routing protocol. Furthermore, Zebra
provides an Application Programming Interface (API), called
ZAPI, through which routing protocol modules can access
and communicate routing updates to the kernel routing table
and network interfaces. During bootstrap, the Zebra daemon
must be started first, followed by the routing protocol daemons
that should operate in the network. In this way, Zebra is able
to interface the communication between the routing daemons
and the kernel. For configuration, all daemons in Quagga are
equipped with a command-line interface (called VTY), which
follows a CISCO OS-like syntax. Alternatively, a pre-defined
configuration file can also be used.

It is worth mentioning that neither Quagga nor Bird or
even XORP completely emulate a router. They only provide
the route engine (algorithms and protocols), thus still requiring
a forwarding engine to transmit datagrams. In the following
sections, we describe the implementation of GCMR and PIM-
SSM as well as the forwarding engines used in our prototype.

B. GCMR implementation

The different modules composing the architecture of a
GCMR-capable node are depicted in Figure II-B. The system
architecture can be logically divided into two main parts: the
Routing Core (RC) and the Routing communication Protocol
(RP) module. The former aggregates the set of procedures that
a GCMR-capable node must implement in order to carry out
its functionalities. The latter module is composed of a set of
objects and messages that enables the communication between
GCMR nodes and, thus, their collaborative operation.

The RC module contains the main objects that are involved
in the GCMR operation. The database contains the information
related to the TIB and the MRIB. This module has also two
interfaces: one to the RP module and the other enables the
communication between the node and an external client (e.g.,
the application) to trigger the GCMR functionalities, namely
create a new multicast group, join the node to a new multicast
group and detach the node from an existing multicast group.

The RP module implements the GCMR protocol primitives
enabling communication with neighboring nodes and rout-
ing operation. Specifically, the protocol relies on two search
message types (request R and answer A), which enable the
collaborative MDT computation. It also implements two other
messages (J and D) aimed at the physical join/detach of the
nodes to/from the MDT as well messages to failure detection

Global Internet Symposium 2014

GCMR Router

RC module ‘ GCMR daemon

Multicast
Groups

Thread Main
Mngmnt | Module

ZAPI Read / Write / Timers

Neighbors

Server)’: " Client

:

z

t
1L Rrentries I

oy

Forwarding
SMC_Client Module

RP module

ot vTY
" | Module

—— — == — =
‘ Zclient Thread | VY ‘ emdpkt mroute-api ‘
Libraries B e 7
Zebra SMCRoute
FAN N
L |
A 94 b V.2
ioctl sysctl ‘ proc FS netlink ‘

Kernel

Fig. 2. GCMR node architecture

gPIM Router

= Objects
— qPIM
Upslream‘ Neighbor | | RPF M;:;;“ Pt
BGP daemon
— Main vTY .
AN Protocols =
/ protocols \ || === T Thread conf ‘ BGP
Qertaee. 72| (S 1l [om | | wroure H iome | @ =2 _we
\Jmiertce, /| || EMAES BTl
T T
ZAPL Read / Write / Timers l 201 '
| Zclient ‘ Thread | ‘ iy ‘ Zdlient ‘
Libraries)
Zebra
it
ioctl sysetl | | proces | | nettink |
Kernel
Fig. 3. PIM-SSM node architecture

(S) and localization (K). Through the ZAPI interface, RP
communicates with the Zebra daemon in order to configure
the interfaces when the node is added or removed to/from a
multicast group.

As previously documented, Quagga does not provide any
native forwarding engine. For this reason, we have developed
an SMCRouteClient that automatically generates multicast
route add/remove commands to the SMCRoute daemon’. SM-
CRoute is a command line tool that manipulates dynamic
multicast routes directly in the Linux kernel.

C. PIM-SSM implementation

An implementation of the PIM-SSM routing protocol,
called gPIM'?, is available as an external daemon for Quagga
routing suite. The architectural view of this PIM-capable node
is depicted in Fig. 3. The qPIM daemon consists of two mod-
ules, namely the Objects module that constructs and maintains
the set of data structures and the objects and the Protocols
module that implements the communication protocols.

As described in Section II-A, PIM-SSM requires two addi-
tional protocols to operate. BGP daemon (with multiprotocol
extensions) of Quagga is used as unicast routing protocol
to populate the routing table, from which PIM-SSM derives

9http://www.cschill.de/smcroute/
10http://www.nongnu.org/qpimd/

82

the MRIB entries during the MDT construction. The IGMP
protocol is used to interact hosts with routers. As a forwarding
engine, qPIM uses the conventional ipmroute daemon of the
Linux kernel to derive the TIB entries from the MRIB and
generate the add/remove commands to configure the network
interfaces accordingly.

IV. ILAB.T VIRTUAL WALL PLATFORM

The iLab.t virtual wall (VW)is a generic test environment,
which provides computing hardware and different software
and hardware tools to researchers to validate and evaluate the
performance of innovative network software prototypes. Each
of the 3 VW facilities of iLab.t consists of 100 server blades
interconnected by a non-blocking 1.5 Tb/s VLAN Ethernet
switch (Force 10 E1200). The specification of each node is
as follows: dual processor, dual core server with 4GB RAM
and 4x80GB hard disk with 6x1 Gb/s or 4x1 Gb/s interfaces.
Moreover, a control interface is provided in each node, which
enables researchers to login.

Traditional mapping between Linux machines and nodes is
one-to-one thus the emulation of network topologies is limited
to the number of physical machines. On the ilLab.t virtual
wall, virtualization technique using OpenVZ'' Linux contain-
ers allows for multiple virtual nodes to run on one machine
enabling large-scale experiments (10-20 times the number of
physical machines in the iLab.t). In addition, arbitrary number
of virtual network links is provided by using virtual network
interfaces. These links may be individually shaped and may
be multiplexed over physical links or can be used to connect
to virtual nodes within one physical node.

To experimentally validate and compare PIM-SSM and
GCMR, we used around 45 server blades of one of the iLab.t
virtual wall facility. Each blade has been virtualized into
approximately 5 virtual machines in order to reach a topology
of more than 200 nodes. In each node, we installed a Debian
6 Linux distribution (kernel 2.6.32) and Quagga 0.99.17. Both
PIM-SSM and GCMR were then automatically deployed in the
nodes and properly configured using Phyton and bash scripts.
Information of the nodes status was continuously stored in log
files and processed afterward to obtain the performance results.

V. EXPERIMENTATION AND DISCUSSION OF THE RESULTS
A. Experimentation setup and objectives

The main objective of these tests is to demonstrate the
successful operation of GCMR in the context of inter-domain
routing over a large-scale network topology compared to
the standard PIM-SSM protocol. In particular, the following
performance metrics are evaluated:

e stretch, defined as the sum of the weights of edges
used in multicasting from the source to all receivers
divided by the optimal such tree. Intuitively, the stretch
of a routing scheme provides a quality measure of the
path cost increase it produces compared to the optimal
tree (which has clearly a stretch of 1). The bench-
marking reference optimal MDT (so-called Steiner
Tree [4]) is computed offline knowing the server and
all receivers beforehand.

http://openvz.org

Global Internet Symposium 2014

Multicast
server

10-n

n receivers T :
oy receivers

Fig. 4. Topology for the experiments

e routing table (RT) size, defined as the maximum
number of memory-bits required to locally store the
RT entries. Thus, the RT size is computed using the
bit-size of a single entry and the number of entries it
comprises. The storage required by the algorithm is
directly related to routing system scalability.

e recovery time, defined, in this case, as the maximum
time needed to receive back a multicast transmission
at the receivers once a failure occurs in a link of the
MDT.

e communication cost, is defined as the number of
routing updated messages that needs to be exchanged
between routers to converge after a change (e.g., a new
receiver joins the MDT).

The experimentation tests of PIM-SSM and GCMR were
performed in a network consisting of 207 Autonomous Sys-
tems (ASes). As we were interested in the inter-domain
aspects, we represented the behavior of each AS with a
single router with multiple interfaces (Fig. 4). This 207 ASes
emulates a portion of the Internet where one AS provides a
multicast service to the rest of 206 ASes. In particular, we
executed ten runs of the same experiment: one multicast server
located in one AS is firstly selected and then ten receivers,
located in ten different ASes, joined the MDT sequentially.
Both the server and the receivers were randomly chosen.

The considered topology presents a particular structure
consisting of AS1-AS6 that interconnects two blocks of ASes.
The reason of this AS1-AS6 connectivity is to enforce the
so-called path exploration problem of BGP [13]. In fact,
path exploration suggests that, in response to path failures
or routing policy changes, some BGP routers may try a
number of transient paths before selecting a new best path
or declaring unreachability to a destination. Consequently,
a long time period may elapse before the whole network
eventually converges to the final decision, resulting in slow
routing convergence. We will analyze this phenomenon when
discussing the results.

B. Results and discussions

Figure 5 shows the stretch of GCMR and PIM-SSM in ten
different executions. GCMR presents in all runs lower stretch
than PIM-SSM (0.14 better on average) and some deterioration
(0.095 on average) against the optimal MDT (remind that
stretch-1 is the reference). Using the information obtained from
BGP, PIM-SSM establishes a shortest path tree (SPT) between

83

1.5
14 1
5 13 7T
1]
5
12 1
11 I
: | .

GCMR PIM-SSM
Fig. 5. Comparison of stretch
50
& GCMR

= 45 + i PIM-S55M
)
E Optimal MDT
S a0
£
w
-
2
I 35
o
]
£
£ 30
2

25

Fig. 6. Number of ASes in the MDT

the receivers and the source. This result is consistent with the
simulation results provided in [4], where, in much more larger
simulation scenarios (32k nodes) and high number of receivers
(500-4000), GCMR obtains approximately 0.1 better stretch
than SPT.

In Fig. 6, we show the number of ASes involved in the
MDT. As expected from the previous results, GCMR is much
more closer to the optimal MDT than PIM-SSM. This is an
important outcome of GCMR from the cost point of view as
providers charge customers based on the proportion of their
resources that are used in multicast. Thus, as GCMR uses less
transit ASes, the cost for the customers should be less using
GCMR than PIM-SSM.

The comparison in terms of Routing Table (RT) size is
presented in Fig. 7. To determine the size of the RT (in bits),
we only consider the nodes involved in the MDT and use the
RT formats defined in [11]: while GCMR only needs MRIB
and TIB information, PIM-SSM, besides MRIB and TIB, also
needs some unicast information from BGP to determine the
shortest path towards the multicast source. Obtained results
show that GCMR requires around 44% less bits than PIM-
SSM.

Regarding the recovery time, we emulated a failure in
the link connecting AS1 and AS6 and counted the maximum

Global Internet Symposium 2014

0.55
=#=GCMR/PIM-S5M
0.5
&
v
7]
S04
)
=
o
£
E 0.4
o
=
0.35
03
1 2 3 4 5 6 7 8 9 10
Runs
Fig. 7. Comparison of the Routing Table size (in bits)

time elapsed to receive back the multicast transmission at
the affected receivers. In the case of PIM-SSM, it equals the
number of Minimum Route Advertisement Interval (MRAI)
-in seconds- elapsing between the withdraw of the routing
state corresponding to the initial route towards the multicast
source and the next stable state where BGP routing state
convergence can be declared [10] plus the time required for
PIM Hello adjacency and Join message exchange with the new
next hop router along the route to the multicast source node [8].
Due to the particular structure of AS-AS6 interconnection,
BGP tends to explore all alternatives (problem known as
path exploration [13]) before reaching a stable state and, as
a consequence, the obtained traffic interruption result quite
high in the experiments, 2 minutes and half approximately. In
the case of GCMR, recovery time comprises the time for the
failure-detecting node to initiate a search and receive answers
from its neighbors that point to the least cost branching path
plus the time to initiate a Join message. In the experiments,
the recovery time is of the order of one second.

Finally, we estimate the communication cost of PIM-SSM
and GCMR to evaluate the control overhead of the protocols.
In the considered scenario, GCMR requires around 20% more
messages than PIM-SSM to setup the MDT.

It is worth mentioning that we compared GCMR and PIM-
SSM also in larger scenario with an ad-hoc simulator. In
particular, we tested them in a network with around 46,000
ASes. Simulation results showed similar trends than emulation
results. For instance, to setup an MDT of 4000 receivers,
GCMR obtains better stretch, very quick recovery time and
two order of magnitude smaller routing tables than PIM at
the expense of higher communication cost (around 50 times
more).

VI. CONCLUSIONS

This paper experimentally validates and compares the
performance of standardized PIM-SSM multicast routing al-
gorithm, which uses BGP for path discovery, and the novel
GCMR compact multicast routing scheme recently proposed.
In a large-scale experimental facility, the GCMR scheme
provides a better performance compared to PIM-SSM in terms
of the memory space it requires to locally store the routing
information and the stretch factor increase multicast routing

84

paths it produces. Moreover, the adaptive property of GCMR
induces a limited number of re-routing events in case of failure
compared to the recovery strategy applied by the combination
of BGP and PIM-SSM.

Regarding future work, we will focus on reducing the (cur-
rent high) communication cost of GCMR implementing better
search engine and/or adapting GCMR to the any-source mul-
ticast method [6]. Future experimental demonstration aims at
validating GCMR in even larger topology (e.g., O(10k) ASes)
with multiple concurrent multicast sessions [14]. Finally, the
good results obtained with GCMR motivate a future analysis
of its possible deployability in real environments; as Internet
cannot be considered an option at this stage of development,
another particular environments where routing scalability is
also a main issue and only limited topology/routing informa-
tion is available will be considered first.

ACKNOWLEDGMENT

This work has been partially funded by the EULER (FP7-
258307) and DOMINO (TEC2010-18522) projects.

REFERENCES

[1] J.S.Turner, D.E.Taylor, “Diversifying the Internet”, in Proc. IEEE Globe-
com 2005, St. Louis, MO, USA, Dec. 2005.

[2] S. Ratnasamy, A. Ermolinskiy, S. Shenker, “Revisiting IP multicast”, in
Proc. Sigcomm ’06, Pisa, Italy, pp. 15.26, Sep. 11-15, 2006.

[3] C. Diot, et al., “Deployment Issues for the IP Multicast Service and
Architecture”, IEEE Network, vol. 4, no. 1, pp. 78-88, Jan. 2000.

[4] P. Pedroso, D. Papadimitriou, D. Careglio “Dynamic compact multicast
routing on power-law graphs”, in Proc. IEEE Globecom 2011, Houston,
TX, USA, Dec. 2011.

[S] TLi (ed.), “Design Goals for Scalable Internet Routing”, IETF RFC
6227, May 2011.

[6] B. Fenner et.al., “Protocol Independent Multicast - Sparse Mode (PIM-
SM)”, IETF RFC 4601, Aug. 2006.

[7] T. Ballardie, P. Francis, J. Crowcroft, “Core Based Trees (CBT): An
Architecture for Scalable Multicast Routing”, in Proc. ACM Sigcomm
1995, Cambridge, MA, USA, Aug. 1995.

[8] H. Holbrook, B. Cain, “Source-Specific Multicast for IP”, IETF RFC
4607, Aug. 2006

[9]1 L. Zheng, J. Zhang, R. Parekh, “Survey Report on Protocol Independent
Multicast - Sparse Mode (PIM-SM) Implementations and Deployments”,
IETF RFC 7063, Dec. 2013.

[10] T. Bates, et al., “Multiprotocol Extensions for BGP-4”, IETF RFC 4760,
Jan. 2007.

[11] P. Pedroso, D. Papadimitriou, D. Careglio, “A name-independent com-
pact multicast routing algorithm”, Technical Report, UPC-DAC-RR-
CBA-2011-15, Mar. 2011

[12] D. Papadimitriou, D. Careglio, P. Demeester, ‘“Performance analysis of
multicast routing algorithms”, in Proc. ICNC ’14, Honolulu, HA, USA,
Feb. 3014.

[13] R. Oliveira, B. Zhang, Dan Pei, Lixia Zhang, “Quantifying Path
Exploration in the Internet”, IEEE/ACM Trans. Net., vol. 17, no. 2, Apr.
2009.

[14] D. Careglio, D. Papadimitriou, F. Agraz, S. Sahhaf, J. Perell, W.
Tavernier, “On the experimentation of the novel GCMR multicast routing
in a large-scale testbed”, in Proc. 33rd Annual IEEE Infocom 2014 - demo
session, Toronto, Canada, Apr. 27, 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

