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Abstract—In modern optical networks, infrastructure manage-
ment is faced with the challenge of using expensive equipment
and communication resources as efficiently as possible. This now
includes keeping power consumption costs at a minimum and
using the available optical links in a balanced way, in addition to
the traditional goals of providing the best possible performance
to the end customers while meeting their quality requirements.
Accordingly, this paper presents a heuristic single-step lightpath
routing and wavelength assignment algorithm, handling online
dynamic connection requests within a fully distributed network
control plane. By using shortest path routing, the presented
scheme determines the best compromise solution between the
users’ and carrier’s objectives. The former can be mainly ex-
pressed in terms of connection QoS requirements, while the latter
comprises network engineering (distributing the load in order to
achieve near-optimum resource usage) and containing energy con-
sumption. This approach is able to find, in a polynomial computing
time, a multiobjective optimization solution that maximizes the
carriers’ return of investment and supports a high number of
users’ request while drastically reducing the network operational
expenditures, as extensively demonstrated through a simulation.

Index Terms—Algorithms, computer networks, energy effi-
ciency, routing, telecommunications.

I. INTRODUCTION

LARGE-SCALE wide-area transport networks are a strate-
gic component of today’s global communication in-

frastructure. Wavelength division multiplexing (WDM) and
wavelength routing are among the best available technologi-
cal options enabling these networks to offer highly scalable
transmission capacity, protocol transparency, and simplified
management, satisfying at the same time the growing demand
on energy efficiency. In such networks, two adjacent nodes are
connected by one or multiple fibers, each carrying multiple
wavelengths or channels. Each node consists of a dynamically
configurable optical switch that supports fiber switching and
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wavelength switching, i.e., the data on a specified input fiber
and wavelength can be switched to a specified output fiber on
the same wavelength. In order to transfer data between generic
source–destination node pairs, a dedicated optical channel or
lightpath has to be established by allocating an available wave-
length throughout the entire route of the transmitted data. The
problem of finding suitable paths and optical channels for a
set of connections is known as routing and wavelength assign-
ment (RWA) problem, which is known to be NP-complete [1].
Allocation takes place according to a circuit-switched model
where an end-to-end connection is assigned the same wave-
length resource for its entire duration. Benefiting from optical
amplifiers and transparent optical switches, lightpaths can span
more than one fiber link and remain entirely optical from source
to destination, limiting the use of expensive energy-hungry
signal regeneration equipment and other intermediate devices
converting optical signals into the electronic domain and back.

Network providers aim at using their expensive connections
and equipment as efficiently as possible to maximize their
medium and long-term revenues. This encompasses three funda-
mental tasks. The first one, referred to as network engineering,
corresponds to designing the network to achieve a correct di-
mensioning of communication resources and switching equip-
ment, keeping them continuously up-to-date with respect to the
state-of-the-art technologies and the expected growth trends.
Since the network should be overprovisioned—to sustain traffic
peaks—providers also strive to take the most from their invest-
ments by distributing the traffic load on all of the available
resources in order to use them in a more balanced way, max-
imize the average capacity available to customers, and avoid
the creation of bottlenecks.

The second task, commonly known as energy awareness
(EA), entails dynamic power management throughout the net-
work. The objective is to decrease power consumption as well
as to reduce energy costs by exploiting the energy-proportional
features of new-generation network equipment (adapting power
consumption to traffic load), privileging paths through ele-
ments powered by renewable (and possibly cheaper) energy
sources, or taking advantage from time- or location-dependent
fluctuations in electricity costs. Achieving energy efficiency
in network elements, usually through energy-proportional be-
havior, is an objective strongly pursued by the most recent
standardization efforts, and technologies are available off-the-
shelf [2]. The latter task, often referred to as traffic engineering,
involves optimizing the routing control logic responsible for
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dynamically routing traffic flows in the network according to
their performance requirements.

In modern carrier networks, a smart integrated network engi-
neering approach can be developed to combine the aforemen-
tioned three tasks into a common multiobjective optimization
framework, aimed at harmonizing the apparently disjoint (or,
worse, contrasting) energy and traffic-related objectives. In
particular, according to our vision, energy efficiency becomes a
first-class objective in the wavelength routing scenario, together
with the more traditional network-related ones.

Since the optimal selection of paths satisfying multiple in-
dependent requirements, objectives, and constraints is a com-
putationally intractable problem, incompatible with a dynamic
online routing environment, in this paper, we propose a heuris-
tic approach to effectively find feasible paths, leading to sub-
optimal solutions, in a bounded time. For this purpose, we
developed a single-step shortest path routing-based dynamic
RWA scheme, using the Dijkstra algorithm, suitably modified
to properly work into the wavelength switching environment,
with a combined network/traffic engineering and energy-aware
cost functions whose main goal is finding the best compromise
solution among the three aforementioned carriers’ and users’
objectives in an extremely simple and performance-effective
way. It performs dynamic online constrained shortest-path-
first selections by considering multiple weighting factors such
as optical link transmission properties (e.g., wavelengths per
link, distance/delay, total link capacity, etc.) and impairments
(e.g., bit error rate and intermediate amplification steps) as
well as energy-related ones (e.g., power consumption of in-
termediate elements, such as routers, switches, and optical
amplifiers). The proposed framework can accommodate for
particular operating conditions, hardware characteristics, or
carrier necessities. Other parameters related to energy con-
sumption can be added and integrated, and the choice of the
objective weighting function may be modified to tailor specific
needs. The presented RWA scheme relies on the presence of
an underlying fully distributed network control plane, implying
cooperation between the nodes concurring to the RWA problem
solution and providing a link-state advertisement protocol to
synchronize the nodes’ network views by conveying all of the
link status information (including energy-related ones) to every
participant, as well as a signaling mechanism to be used for the
reservation and establishment of paths (e.g., [3]). The presence
of such a common control plane guarantees the convergence of
all of the independent decisions taken by the nodes that behave
according to a fully decentralized scheme but share the same
network topology and status view, resulting in identical routing
plans when running the same shortest-path-first algorithm at the
same time.

II. RELATED WORK

Several RWA approaches available in literature focused their
attention on the use of shortest path routing mechanisms, to
keep the implementation simple and limit the overall problem
computational complexity. For example, the work in [4] dis-
cusses some structural properties of unsplittable shortest path
routing by developing several ILP models to find lengths that

induce a prescribed set of shortest paths. In addition, in [5],
it has been shown that the problem of finding simple routing
weights that uniquely induce a prescribed set of shortest paths is
computationally hard. In [6], the authors analyzed the signaling
mechanisms supporting fully adaptive shortest path routing
in wavelength-routed networks. The proposal in [7] used the
Bellman–Ford algorithm for shortest path routing on each indi-
vidual wavelength plane, which, however, suffers from several
well-known convergence problems typical of distance vector
routing mechanisms. In the works presented in [8]–[10], the
Dijkstra’s shortest path algorithm has been used to determine
the shortest lightpath or semilightpath in a polynomial time;
such an algorithm employs a uniform search strategy which
implies that, in large networks, it may unnecessarily visit many
nodes and take much time before the shortest path is identified.
Following the seminal work of [11], which first envisioned the
idea of energy conservation in Internet-based infrastructures,
the concept of EA has been introduced in shortest path routing
by [12] and [13]; in order to contain energy consumption,
a Dijkstra scheme modified to reduce the number of links
and share the best paths under light loads has been proposed.
Another approach managing EA at the subwavelength level has
been presented in [14], where a modular physical architecture is
discussed for the optical multiplexers and the advantages of EA
in individual components of such an architecture are evaluated.
On the other hand, some greedy heuristics to contain network
power consumption, based on ranking nodes and links with
respect to the amount of traffic that they would carry in the con-
text of an energy-agnostic configuration, have been proposed
in [15]. A two-stage approach, based on performing energy-
aware selection on the K-shortest paths determined according
to traditional network engineering criteria, has been presented
in [16]. The great advantage of this work on the aforementioned
ones is that it handles an inherently multiobjective optimization
problem into a unique two-stage routing scheme. Nonetheless,
its two-stage selection process (originally developed in [17]),
whose complexity linearly depends on the number of K al-
ternative routes considered, can introduce additional effort in
the computation of the “best” path. In this sense, the routing
scheme here proposed has the advantage of being a single-stage
Dijkstra-based algorithm, whose computational complexity is
polynomial in time and does not depend on any of the pa-
rameters of the algorithm. Finally, a single-stage shortest path
based scheme has also been proposed in [18], mainly targeted,
however, at the seamless introduction of energy-related infor-
mation into the standard GMPLS framework, with minimal
modification efforts in the control plane protocols (e.g., OSPF
with traffic engineering extensions), and providing backward
compatibility with all of the existing implementations.

While the aforementioned contribution achieves good results
in terms of energy demand and greenhouse gases emission con-
tainment, the scheme proposed in this work, being based on a
more sophisticated paradigm for combining and weighting mul-
tiple optimization objectives (QoS/SLA, network management,
and energy-related ones), is able to achieve significantly better
tradeoffs between these objectives and hence more satisfactory
results for all of the involved actors (i.e., end users and network
providers).
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III. RWA FRAMEWORK

An effective RWA solution applies methodological and
technological considerations and principles to the modeling,
characterization, control, and performance optimization of the
network behavior. Optimization in this context refers to a
more complex joint criterion combining the traditional traffic/
network engineering goals with the new energy-related ones in
a common multiobjective optimization framework, searching
from the best compromise between the aforementioned goals.
We structured our solution according to an adaptive shortest
path routing scheme, which dynamically selects the minimum
cost path between each pair of source and destination nodes
based on the up-to-date global network status and specifically
on the individual costs assigned to the underlying communi-
cation links. The motivations beyond this choice arise from the
evidence that shortest path routing is one of the most commonly
used strategies in wavelength-routed optical networks, since,
while being really easy to implement and effective, it is known
to be asymptotically cost-optimal in heavily loaded networks
and asymptotically near-optimal in large sparse networks sup-
porting any-to-any communication [19].

A. Network Model

In the proposed scheme, the network topology can be mod-
eled as a graph G(N,E), where N denotes the set of vertices
(the wavelength switching devices) and E denotes the set of
edges (the optical fiber links). A weighting function wt(u, v),
whose value is dynamically determined at each time t, is
associated to each link (u, v) ∈ E, representing the cost of
using the link at the time t. Every edge (u, v) represents an
optical connection between two sites u, v ∈ N , composed by
f(u,v) independent fibers, each one with the same length l(u,v),
delay d(u,v), bit error rate e(u,v), number of intermediate op-
tical amplification stages a(u,v), and/or number of regeneration
stages r(u,v). All of the f(u,v) fibers associated to an edge (u, v)
support the same number λc

(u,v) of wavelength channels, with

maximum nominal bandwidth b(u,v), where λ
a(t)
(u,v) of them are

available at the time t. We also model a set of service requests
R ⊆ N2, where each request r = (s, d) ∈ R is characterized
by its time of arrival t and by a set Qr of QoS constraints com-
prising the minimum requested bandwidth br, the maximum
acceptable BER er or delay dr so that Qr = {br, er, dr, . . .}.
When a new service request r = (s, d) arrives, a dedicated
lightpath pλ = {(s, x1), . . . , (xn, d)} defined as a unique wave-
length channel λ, carved onto a set of optical links physically
connecting the source and destination nodes s, d through the in-
termediate switching devices {x1, . . . , xn}, should be created.
For each optical link (u, v) ∈ pλ, it must hold that b(u,v) ≥ br ∧
e(u,v) ≤ er ∧ d(u,v) ≤ dr. Given the set R of service requests,
our main goal is to allocate the optical wavelength channels so
that the maximum number of requests can be simultaneously
satisfied, exhausting the capacity of the minimum number of
fibers and reducing as much as possible both the energy and
network-related costs. At first, in the so-called routing phase,
the optical path for a generic request r is determined by using
a traditional constrained shortest path routing algorithm such

as Dijkstra’s, working at each time t of invocation on the
graph G in which the edges in E are dynamically assigned
a cost value given by the link weighting function wt(u, v).
The resulting path is the minimum cost path satisfying the Qr

requirements, according to the aforementioned costs calculated
at the time of invocation t, considering that the cumulative
cost associated with a lightpath pλ on the wavelength λ is
defined as the sum of its constituent link {(s, x1), . . . , (xn, d)}
costs. In other words, the shortest path routing algorithm is
constrained by operating on a graph whose links or nodes are
restricted to those ones in the original topology that satisfy the
Qr requirements. Successively, in the wavelength assignment
phase, a wavelength reservation request is propagated to all of
the intermediate devices along the path, to provisionally reserve
and then allocate a dedicated wavelength on each involved
fiber link. In a pure wavelength routing environment where
conversion capability either in the optical or in the electric
domain is not provided, the same wavelength must be used on
all links, by enforcing the continuity constraint. Such a unique
wavelength is selected by using a traditional best-fit scheme be-
tween the available ones. Clearly, the choice of avoiding wave-
length conversion on intermediate nodes can adversely affect
the blocking probability experienced by connection requests.
However, it avoids long delays and ensures end-to-end optical
transparency to the signal, which is a very desirable property in
modern protocol-independent transport networks. To improve
the overall efficiency of the whole process, the aforementioned
logical phases can be combined into a dynamic single-step
implementation, resulting in an integrated RWA framework,
where the use of a unique wavelength must be introduced as
an additional constraint to the routing algorithm. The aforemen-
tioned single-step integrated RWA framework based on shortest
path routing offers many practical advantages, starting from
the fully decentralized and distributed routing architecture,
providing excellent scaling properties with growing network
dimensions (bounded by the polynomial Dijkstra algorithm’s
complexity—O(N2) or O(E +N logN) if a Fibonacci heap
is used [20]) at the expense of a very limited administrative
overhead.

However, some less obvious side effects, emerging behind
the aforementioned advantages, require great attention in the
design of a really effective RWA paradigm based on shortest
path routing. In order to prevent unwanted reordering and
other undesirable effects of multipath, particularly critical in
the optical domain, a discrete unsplittable routing model has to
be adopted so that the traffic demand from a source/destination
pair must be satisfied by choosing and using only a single
path between them. While preventing a large number of prob-
lems, the unsplittable nature of the routing model introduces
additional difficulties, especially from the network engineer-
ing perspective. As links with lower costs are preferred by
all communication demands, unsplittable shortest path routing
protocols potentially lead to localized congestion phenomena
(traffic concentrates on the lowest cost links) and unbalanced
load distribution in the network. This may have severe effects
on the number of service requests that can be satisfied at
any time (for, as congestion increases, the number of rejected
connections grows) and hence on the overall network providers’
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revenue. Furthermore, the shortest path routing model implies
the existence of some complex and subtle interdependences
among the paths determined as the service demand evolves.
More precisely, the choice of the end-to-end routing paths that
constitute a valid solution can be only controlled in an indirect
way by changing the costs assigned to the individual links. In
addition, the associated weighting functions jointly influence all
of the paths together, without any granular control on specific
paths and their demands or service classes. Thus, designing
weighting functions that cause the selection of globally efficient
(both in terms of energy and traffic-related goals) end-to-end
paths is the major challenge in modeling such a routing scheme.

IV. MULTIOBJECTIVE WEIGHTING FUNCTION

The partially conflicting goals of serving the maximum pos-
sible number of users’ requests, characterized by specific QoS
constraints (concerning requested bandwidth, minimum accept-
able link quality, etc.), while keeping the network resource
usage fairly balanced, and optimizing the overall power con-
sumption by reusing, as possible, energy-efficient paths across
the network, give origin to a multivariate and multiobjective
optimization problem, which is known to be NP-hard [21]. In
the proposed approach, such a problem can be heuristically
coped with by designing a composite scalar weighting function
simultaneously combining the impact on the final solution of
the different network, traffic engineering and energy-related
objectives. This technique, commonly referred to as weighted-
sum or scalarization, aggregates together n objectives by as-
signing a specific weight ωi to each of them, according to the
relative importance of the individual objective function oi(x)
in the cumulative goal, resulting into a linear combination
representing the whole optimization problem as

max

n∑
i=1

ωi · oi(x) (1)

subject to

ωi > 0, ∀ i ∈ {1, . . . , n}
n∑

i=1

ωi = 1. (2)

It can be shown that the optimization of such single-objective
convex sum is an efficient solution for the original multiob-
jective problem [22], i.e., its image belongs to the associated
Pareto curve. The Pareto curve is the set of all efficient feasible
solutions, i.e., the solutions whose objective vector is not dom-
inated by any other solutions.1 The shape of the Pareto curve
sketches the tradeoff between the different objective functions
oi(x). Clearly, modifying the weights ωi may lead to different
points of the curve, even if a uniform spread of the assigned
weights does not lead to a uniform spread of points on the
Pareto front, i.e., all solutions are clustered only in certain areas
of the front. By slightly relaxing the convexity constraint, some

1Anobjectivevectordominatesanother objective vector if it is at least as good
in all of the objectives; domination is strict if at least one inequality is strict.

objectives may be privileged over the others so that suboptimal
solutions to the aggregate problem can be found.

A. Shortest Path Wavelength Routing in a
Multiobjective Scenario

When formally defining the shortest path routing problem
within a multiobjective optimization scenario, it must be con-
sidered that the meaning of the term “shortest” should be
simultaneously associated to the different objectives involved.
Therefore, the cost corresponding to each edge, which is the
real decision maker in all of the available formulations, must
result from the composition of multiple edge features, such
as channel capacity, available resources, and power consump-
tion. In order to model such behavior, a vector �wt(u, v) =
(w1(u, v), . . . , wn(u, v)) of n different weights/costs must be
associated at the time t to any edge (u, v) in the network graph
G. Accordingly, each lightpath pλ on G can be weighted by
means of a vector �Πpλ

= (π
(1)
pλ , . . . , π

(n)
pλ ) where

π(i)
pλ

=
∑

(u,v)∈pλ

wi(u, v) ∀ i ∈ {1, . . . , n}. (3)

We define a set of binary variables xu,v so that

xu,v =

{
1 if (u, v) ∈ pλ, ∀λ
0 otherwise.

(4)

Hence, the problem of determining the multiobjective shortest
path from an origin s to a destination d, in the presence of n
different objectives [22], can be formalized as

min
k∈{1,...,n}

∑
(u,v)∈E

wk(u, v) · xu,v (5)

subject to

∑
u:(u,v)∈E

xu,v −
∑

v:(v,u)∈E
xv,u =

⎧⎪⎨
⎪⎩
1 if u = s

0 ∀u ∈ N \ {s, d}
−1 if u = d

xu,v ≥ 0 ∀ (u, v) ∈ E. (6)

The lightpath pλ joining the endpoints (s, d) is an efficient
solution to the aforementioned problem if it does not exist
another lightpath qμ between s and d such that

π(i)
qμ

< π(i)
pλ

∀ i ∈ {1, . . . , n}. (7)

B. Weighting the Individual Objectives

An effective heuristic-based RWA scheme relying on the
aforementioned multiobjective shortest path routing optimiza-
tion model can be implemented by using the traditional Dijkstra
algorithm, almost totally driven by an edge weighting function
that dynamically associates a specific cost value to each edge in
the network graph, with the effect of combining the �wt(u, v)
vectors into a single scalar value wt(u, v). Hence, a correct
choice of the weighting function is of fundamental importance
for the overall success of the RWA framework. It should
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condition the edge selection according to the best compromise
between the following classes of objectives.

i) First, traffic engineering objectives essentially concern
the ability to place the traffic associated to new incoming
end-to-end connection requests characterized by specific
QoS requirements (bandwidth, latency, BER, etc.) when
sufficient capacity exists to accommodate the connection
and to discard the associated request when such a capac-
ity is not available (no end-to-end lightpath solution on
the network is able to fully support the aforementioned
requirements).

ii) On the other hand, network engineering objectives are
associated to the ability of using at best the available
capacity in order to accommodate as much connection
requests as possible.

iii) Finally, EA objectives are related with the purpose of
placing the traffic on the network so that the commu-
nication resources (circuits and nodes) that minimize the
overall energy consumption are privileged, thus contain-
ing the energy-related expenses.

The traffic engineering objectives have an acceptance threshold:
either a path can accommodate a connection request satisfying
its QoS requirements, or it cannot. The weighting function must
then adapt its behavior to each specific end-to-end connection
request enabling the selective discard of all of the edges (i.e.,
the communication links) that do not satisfy the involved QoS
requirements (admission policy). Accordingly, the cost of all
of the edges corresponding to optical links that are not fully
compliant to the aforementioned requirements is set to infinity,
so that such edges are logically removed from the graph and
cannot be selected in any search for feasible paths. Analo-
gously, the edges on which all of the available wavelengths are
currently utilized are also marked as unavailable by setting their
cost to infinity until the next routing update. Furthermore, also
in case of QoS compliance, the link parameters associated to
potential QoS requirements are used to proportionally increase
the edge cost in order to influence the path selection according
to a rigid best-fit model, so that the selected paths will be
preferentially composed by the edges that present the minimum
gap between the requested amount of resource quality (e.g.,
the free bandwidth or the minimum latency or BER) and the
available ones. In such a way, the risk of “over-provisioning”
(routing a connection onto a path that is “too good” for it)
is avoided, and the number of future requests that can po-
tentially be accommodated is maximized. To this end, the
aforementioned QoS parameters should be properly weighted
to result in the desired impact on the edge cost, as described in
Section IV-C.

In heavily loaded network scenarios, end-to-end connection
requests cannot be satisfied because there are no wavelengths
available on any of the links along all of the feasible paths.
This phenomenon is commonly known as connection blocking
(or rejection). Network engineering objectives essentially aim
at reducing the blocking probability, ensuring that a maximal
number of requests are accepted, thereby minimizing conges-
tion and ensuring that the network resources are not over- or

underutilized (unbalanced traffic loads). This can be intuitively
achieved by privileging the selection of edges which guarantee
that the maximum aggregated available flow between all of the
source and destination node pairs is kept at the highest possible
value. The larger the available maximum aggregated flow be-
tween a specific (source and destination) pair is, the smaller
the blocking probability of connection requests between the
involved pair will be, considering that the flow between all
node pairs is a rough measure of how many routing options
will be open when the (unknown) upcoming requests will be
served. Aggregated flow information in the considered atomic
unsplittable problem can be approximated by considering the
hit ratio σ(u,v) of each edge (u, v), defined as the ratio between
the number of times such edge has been selected and the total
number of requests. The higher the hit ratio is, the greater the
likelihood of an edge to be selected again in the future is;
hence, edges with high hit ratio values have greater probability
to become bottlenecks in the maximum end-to-end flow per-
spective. Therefore, the hit ratio provides an indication about
the “criticality” of each edge for the overall network economy.
Thus, in order to avoid as much as possible a reduction of
the maximum source–destination flow, the weighting function
has to assign to all of the most critical edges (the ones whose
hit ratio exceeds a specific threshold) a cost value that is
inversely proportional to the criticality measure, whose value
is further amplified by using the residual capacity as an inverse
multiplicative factor.

Finally, to handle EA objectives, the weighting function
should provide the ability to consider as candidate paths for
connections, in addition to the shortest and/or less congested
paths, also the paths which minimize the energy consumption
or the overall energy costs/bills. Accordingly, the weighting
function wt should properly condition the cost of each edge
(u, v) by considering the fixed and variable energy consump-
tion associated to the involved end-to-end interfaces and to the
intermediate optical amplification (a(u,v)) or 3R regeneration
stages (r(u,v)).

Clearly, all of the aforementioned strategies for dynamically
determining the edge costs can be implemented by properly
combining several per-link parameters to be weighted accord-
ing to their relative importance with respect to both the indi-
vidual (traffic, network, or energy related) objectives and the
aggregated one. Therefore, we map the parameters into the fol-
lowing classes, in correspondence to the three aforementioned
objectives.

i) QoS-related parameters, directly affecting the suitability
of an optical link to carry a connection: b(u,v), d(u,v),
and e(u,v);

ii) network-related parameters, directly affecting the
blocking rate: λa(t)

(u,v), λ
c
(u,v), f(u,v), and σ(u,v);

iii) energy-consumption-related parameters, directly af-
fecting the power draw: a(u,v), r(u,v), and l(u,v).

The parameters in the first group are the threshold parameters,
which means that they indicate the requirement thresholds that
must be met by an optical connection in order to support a
connection request. Note that the value of a QoS parameter
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TABLE I
SENSITIVITY OF THE PARAMETER CLASSES FOR THE

DIFFERENT TRAFFIC OBJECTIVES

for a path pλ is the minimum value of the parameter across
all of the links comprising the path. Nevertheless, when many
paths meet the threshold requirements for a connection request,
one of these paths must be chosen somehow. In this case, it is
reasonable to select the path that has the lowest QoS values,
so that the costly high-performance links will be spared for
use with more demanding connection requests (in accordance
with a best-fit allocation strategy). Energy consumption-related
parameters are clearly conditioned by specific interface and
equipment-level power consumption characteristic, as will be
described in detail in Section IV-E. Parameters take a wide
range of different values. In order to be able to combine them
in a significant way and avoid dominant effect, the possible
values of the different parameters should be rescaled to a
common interval. Thus, in order to be comparable, parameters
are normalized into the interval [0, 1]. The relative importance
of the parameter classes and their different sensitivity within the
aforementioned three classes of objectives can be expressed by
differentiating the growth rate of the weighting function with
respect to the parameters. This has the effect of biasing the
overall multiobjective optimization problem toward suboptimal
solutions that privilege an objective class over the others but
still keeping the other optimization tasks into an acceptable
success range. The mapping between parameter and objective
classes can be specified as in Table I. According to the classic
sensitivity analysis theory, we can obtain a simple and effective
measure of the sensitivity of the cost function C with respect
to a specific parameter by estimating the value of the second-
order partial derivative of the function C with regard to that
parameter. With this approach, any change observed in the cost
function will unambiguously be due to the specific parameter
changed. For a high-sensitivity parameter x, (∂2C/∂x2) should
be negative in the interval [0, 1], whereas for a low-sensitivity
parameter y, (∂2C/∂y2) should be positive. In the former
case, small increments in the parameter will quickly lead to
saturation, whereas only values close to the maximum will have
an effect in the latter case.

Let χ be a parameter class (QoS, network or energy related),
and let Sχ denote the set of parameters in the class. Then

C =
∑
χ

∑
x∈Sχ

xαχ (8)

where αχ is an assigned (tunable) constant for the class χ. We
can assume, without loss of generality, that αχ > 0. Clearly, the
sign of (∂2C/∂x2) will be determined by αχ(αχ − 1). Then, a
reasonable starting point can be

αχ =

⎧⎪⎨
⎪⎩

1
2 for high-sensitivity parameters

1 for medium-sensitivity parameters

2 for low-sensitivity parameters.

(9)

Since we can directly associate the three aforementioned pa-
rameter classes with the individual objective functions oi(x) in
(1), this implies that the convexity constraint in the scalarization
weighted sum is slightly relaxed only for the weight associated
to high-sensitivity parameters, in order to give more importance
to the corresponding objective in the global multiobjective
optimization problem. The effect of such choice is creating a
perturbation effect in the problem optimality that results in the
creation of three service classes whose expected treatment in
terms of balancing of the individual objectives corresponds to
the schema reported in Table I. The association of the individual
service request to these classes is up to the carrier, according to
specific agreements, economic conditions, policies, or internal
strategic considerations.

C. QoS-Related Parameters

The QoS service level agreements (SLAs) of the connection
requests r = (s, d) have to be enforced on the lightpaths that
are being established; therefore, the QoS-related parameters
represent thresholds that admit or not paths in the network to
be eligible routes for accommodating the incoming connection
requests. When no routes satisfying the QoS SLAs are available
from the source node s to the destination node d, the connection
request has to be blocked. On the other hand, when more than
one route connecting the involved source and destination nodes
satisfies the SLAs, a selection criterion has to be employed
in order to minimize the use of expensive network resources.
In such a scenario, a best-fit policy is chosen, which reserves
the least performing resources that are still able to satisfy
the requested SLAs while leaving more expensive resources
available for future highly demanding connection requests. We
model such a best-fit criterion in (10), which assigns lower cost
to links that best satisfy the SLA requirements (on bandwidth
br, BER er, and delay dr) and infinite cost to those links which
do not comply with the specified requisites

CQoS
(u,v)(br, er, dr) =

1

3

(
T

(
b(u,v) − br

b(u,v)

)

+T

(
er − e(u,v)

er

)
+ T

(
dr − d(u,v)

dr

))
(10)

where T is the threshold function discriminating between eligi-
ble and not eligible links

T (x) =

{
x if x ≥ 0

∞ otherwise.
(11)

D. Network-Related Parameters

The aim of the network parameters is to lower the connection
blocking probability. The idea is to take traffic away from the
most congested paths by using the hit ratio σ(u,v) of each edge
(u, v) as a measure of its criticality and routing connections
over the set of links that are currently underutilized, in a
more traditional load-balancing (LB) fashion. The higher the
number of available wavelengths, the lower will be the link
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cost. However, also the global link capacity and the number
of physical fibers available on the link positively drive the link
selection but in a more attenuated way, properly conditioned by
a logarithmic trend. The resulting cost function involving the
network-related parameters is reported in (12), in which edges
are assigned a cost that is proportional to its actual congestion
and hit ratio

CN
(u,v)=

1

2

⎛
⎝σ(u,v)+

1

λ
a(t)
(u,v) ·logβ

(
β ·λc

(u,v) ·f(u,v)
)
⎞
⎠ (12)

with β being the base of the logarithm, a tunable parameter
that characterizes the dampening effect of fiber and wavelength
capacities on the link cost. In the presence of no available
wavelength (λ

a(t)
(u,v) = 0), the link cost in (12) goes to infinity,

and hence, the link is kept off from the graph in all of the short-
est path calculations. Furthermore, the cost function explicitly
considers the very special case in which we have only a single
channel on a single fiber link (λc

(u,v) · f(u,v) = 1) that can be
used for modeling non-WDM links that have to be selected
only as a worst case alternative. In this case, the highest cost
value (1) is assigned. Noting that logβ(β · λc

(u,v) · f(u,v)) =
1 + logβ(λ

c
(u,v) · f(u,v)), it can be seen that a slightly better

cost is assigned when a very limited number of fibers and
wavelengths are available on the edge (u, v), with β being
the threshold discriminating such bottleneck links. Finally, the
logarithmic function assigns a low cost to the edge (u, v) when
a high number of fibers and wavelengths are available on it.

E. Energy-Related Parameters

According to [23] and [24], we assume that the energy
demand of a communication link is characterized by two fun-
damental components respectively associated to “fixed” and
“variable” power absorptions. The fixed component is needed
to keep the communication link “on,” while the variable one
depends on the traffic load that is currently carried by the
link. Starting from these considerations, a sufficiently general
per-link energy consumption model can be built, expressing
the power consumption of any kind of communication circuit
as a linear combination (according to [25]) of its static and
traffic-dependent characteristics, such as the presence of in-
termediate amplification or regeneration stages, the involved
endpoint interfaces, and their aggregated bandwidth in gigabit
per second. More specifically, we define a power consumption
function P(u,v)(x) expressing the power requirements of the
link (u, v), characterized by an aggregated per-endpoint inter-
face consumption Pi(x) and by the number of amplification
(a(u,v)) and regeneration (r(u,v)) devices, variably conditioned
by a traversing traffic load x

P(u,v)(x) = Pu(x) + Pv(x)︸ ︷︷ ︸
link (u,v) interfaces

+ ξ(u,v) · ϕ(u,v) · a(u,v)︸ ︷︷ ︸
Optical Amplification

+ ρ(u,v) · x · r(u,v)︸ ︷︷ ︸
3R Regeneration

(13)

where ϕ(u,v) is the power consumption value (measured in
watts) for an individual optical amplifier used on the link (u, v),
whereas ρ(u,v) (expressed in watts per gigabit per second) is
the power required for regenerating a 1-Gb/s flow according
to the regeneration technology used on (u, v). We assume, for
simplicity sake, that all of the amplifiers and regenerators used
on a single link (u, v) are of the same type. Furthermore, since
optical amplifiers work simultaneously on the entire C-band,
the contribution of ϕ(u,v) must be considered once for each
link when determining the incremental per-link power-related
cost at the time t, i.e., when the first wavelength of the link
(u, v) is allocated to a lightpath, then the power consumption
ϕ(u,v) of each amplifier activated on the link has to be added to
P(u,v)(x). Otherwise, if at least a lightpath traverses (u, v), then
the entire term can be zeroed to calculate the power increment
of the new connection as amplifiers are already active. This is
accomplished by using the binary variable ξ(u,v), defined as

ξu,v =

{
0 if ∃ pλ ∈ Λ|(u, v) ∈ pλ

1 otherwise
(14)

where Λ is the set of all of the active lightpaths on the network
graph G. The aggregated per-endpoint interface consumption
Pi(x) can be modeled a linear function of its current load x

Pi(x) = θi + x · ϑi with θi ≤ Pi(x) ≤ 2 · θi (15)

so that, when an interface on the endpoint i is totally unloaded
(x = 0), it is characterized by a fixed power consumption θi
that is half of its maximum power demand [23] and, as the load
increases, its power consumption linearly increases, up to its
maximum value which is reached when the interface is fully
loaded. Accordingly, also totally idle nodes are characterized
by a (minimum) fixed power consumption since we assume that
no sleep mode is available at the node level, to avoid wasting
previous infrastructural investments, as reported also in [25].
The slope according to which the power consumption grows
together with the load depends on a specific scaling factor
ϑi, measured in watts per gigabit per second, representing the
number of watts needed to route 1 Gb/s of traffic. The values
for ϑi may usually range from 1 to 10 W/Gb/s [26] depending
on the endpoint node features, where small-sized nodes require
more energy per bit than bigger ones, which are characterized
by the use of more energy-efficient technologies and usually
are designed to aggregate large volumes of traffic [27]. Fi-
nally, we can define an energy cost function CE

(u,v)(x) for the
link (u, v) as

CE
(u,v)(x) =

P(u,v)(x)

Pmax
(16)

where

Pmax = max
(u,v)∈E,x=b(u,v)

P(u,v)(x) (17)

is the maximum power consumption that can be experienced on
any feasible end-to-end connection at its maximum load.
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Fig. 1. GÉANT2 network topology [28] used in the simulations.

V. PERFORMANCE ANALYSIS

In order to evaluate the effectiveness of the proposed RWA
framework according to the traditional carriers’ goals, as well
as its impact on the infrastructure-level energy consumption,
we conducted extensive simulation studies on the well-known
GÉANT2 Pan-European research and education network [28],
modeled as an undirected graph in which each link has multiple
fibers with a nonnegative capacity and a specific power demand
depending from both its physical and technological features.
The specific 34-node GÉANT2 topology used in our experi-
ments is reported in Fig. 1, where only optical nodes are repre-
sented: each optical node (indicated as n-idO) is connected to
an electrical router (idE = idO + 34) with one fiber link 1 km
long with 32 λ, each with a capacity of 48 OC-units. We used
in our analysis an ad hoc optical network simulation environ-
ment [29], allowing flexible and effective modeling of network
topologies as well as traffic load generation, data recording,
and postprocessing, running on an Intel Core i7-950 CPU at

3.07 GHz with 16-GB RAM and 64-b operating system server.
In order to improve the significance of the obtained results and
make them more easily comparable with the other experiences
available in literature, we spent a significant effort on the use of
realistic data in all of our experiments (network topology, traffic
demands, cost, and power consumption models). The connec-
tion requests, bidirectional and satisfied by using the same
wavelength in both directions, have been modeled by using
different randomly generated or static [6], [30] traffic matrices.
In the former case, the connections, generated according to a
dynamic traffic scenario characterized by Poissonian arrivals,
have been distributed uniformly among all of the network
nodes, whereas in the latter one, the traffic volumes have been
scaled proportionally to the reported traffic distributions. Each
connection was characterized by a random bandwidth demand
ranging from OC-3 to OC-48 units (i.e., from 155 Mb/s up to
2.5 Gb/s), a random delay ranging from 2 to 100 ms, and a BER
ranging from 0% to 10%. The energy consumption data for
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Fig. 2. Blocking probability (lines) and the load (bars) of the NeatSPF RWA
scheme with different values of the αχ parameters versus the connection
requests.

each link have been populated with the real power consumption
values taken from [25], [26], and [31]. Results have been
determined with a 95% confidence interval not exceeding 6%
of the indicated values, estimated by using the batch means
method with at least 40 batches. As the network load grows, i.e.,
the number of busy connection resources increases more and
more with respect to the free/released ones, we continuously
monitored the overall network power demand and the network
efficiency expressed by the blocking probability. Recall from
Section IV-B that QoS-related parameters, modeling the traffic
engineering objective, are threshold-based, which means that,
given a connection request r = (s, d), all lightpaths connecting
s and d that do not satisfy the QoS requirements of r are
not eligible to accommodate the connection request. Such a
restriction is guaranteed by the dynamic online constrained
shortest-path-first selection employed by the proposed RWA
scheme. Among the feasible paths satisfying the specified
QoS requirements, the RWA scheme evaluates network-related
parameters (αLB), modeling the network engineering objective
(LB), and the energy-related parameters (αEA), modeling the
EA objective, eventually choosing the lightpath minimizing the
cost function of (8). Note that, in (8), since αχ appears as an
exponent of x, with x being a parameter normalized in the
interval [0, 1], αχ > 1 values will lower the relative weight
of the x parameter, while 0 < αχ < 1 will increase its relative
weight, and αχ = 1 will leave the x value unchanged (useful
when we want to compare two different parameters, assigning
them the same relative weight).

In order to assess the effectiveness of the proposed RWA
scheme, in a first set of simulations, we present the perfor-
mance of our approach (referred to as “NeatSPF,” standing for
“Network, Energy Aware and Traffic engineered Shortest Path
First”) varying αLB (LB) and αEA (EA) parameters. Then, in
a second set of simulations, we compare these results with
well-known state-of-the-art RWA algorithms. In Figs. 2 and
3, the results of NeatSPF are reported in terms of blocking

Fig. 3. Power consumption of the NeatSPF RWA scheme with different values
of the αχ parameters versus the load (routed connections).

and power consumption, respectively. Several assignments of
the αLB and αEA parameters determine different behaviors of
the NeatSPF algorithm. In detail, we set αLB = 1 and αEA =
bigM , with bigM 
 1 being a large constant, in order to
obtain the extreme case in which NeatSPF only considers the
network-related parameters to achieve the network engineering
objective of maximizing the overall LB, thus minimizing the
blocking probability. On the other hand, the opposite assign-
ment of αLB = bigM and αEA = 1 makes NeatSPF pursue
only the EA objective, discarding any network engineering
constraint, thus minimizing the energy consumption. These
two extreme cases are useful to study the lower and upper
bounds of the NeatSPF performance. Then, in order to study
the tradeoffs between the different objectives, two intermedi-
ate cases biasing the LB and the EA goals are considered.
The NeatSPF more LB is obtained by assigning a higher
weight (αLB = 0, 5) to the network-related parameter and a
lower one to the energy-related parameter (αEA = 2), slightly
privileging the network engineering objective over the energy
consumption. Speculatively, the NeatSPF more EA is obtained
with the reverse assignment of weights to the network and
energy-related parameters (αLB = 2 and αEA = 0, 5), slightly
privileging the EA objective over the LB. Finally, the NeatSPF
LB and EA equally weighted is obtained by assigning the
same weights to both parameters (αLB = 1 and αEA = 1),
making the two objective directly comparable, in an effort to
achieve a balance between the network and energy engineering
objectives.

In Fig. 2, NeatSPF only LB achieves the lowest blocking
probability, by routing the highest number of connection re-
quests, followed by NeatSPF more LB. On the other hand,
NeatSPF only EA rejects the highest number of connections,
since it will select longer routes in order to pass through the
least energy-consuming network elements (nodes, links, optical
amplifiers, etc.). A slightly better performance is observed
in NeatSPF more EA which considers some network-related
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Fig. 4. Blocking probability (lines) and the load (bars) of the well-known
state-of-the-art RWA schemes compared with the NeatSPF algorithm versus
the connection requests.

parameter in its decision process, even if with quite low relative
weight. Finally, the NeatSPF LB and EA equally weighted
exhibits a well-balanced performance, standing just in the mid-
dle among the previous cases. The power consumption of the
NeatSPF RWA scheme is reported in Fig. 3. As expected, the
lowest energy consumption is achieved by the NeatSPF only
EA, where the energy-related parameter assumes the highest
weight and no LB is pursued, while the worst performance
in terms of power consumption is exhibited by NeatSPF only
LB, which is completely energy unaware. However, it is worth
to note that the power consumption is easily decreased by
assigning even a small weight to the energy-related parameter.
The NeatSPF more LB sensibly decreases its power consump-
tion with respect to NeatSPF only LB, while achieving good
performance in terms of connection blocking. The hybrid Neat-
SPF LB and EA equally weighted exhibits a very low power
consumption, in some points even lower than NeatSPF only EA.
This phenomenon is due to the better load distribution achieved
by the hybrid NeatSPF, which leaves more free resources to be
used by future requests with respect to the pure NeatSPF only
EA algorithm which, in turn, by occupying all of the lowest
emitting routes at the beginning, will possibly not have enough
resources and will be forced to select longer routes which will
lead to slightly increased power consumption. In other words,
the greedy choice of NeatSPF only EA made at each connection
request may punctually lead to suboptimal routing in the long
run (in this case, we can see that “the perfect is the enemy of
the good” as explained numerically by the Pareto principle in
its 80–20 rule [32]); therefore, a more balanced selection of
parameters can lead to better results.

In Figs. 4 and 5, we report the blocking and the power
consumption of several well-known state-of-the-art routing al-
gorithms, whose implementation details are publicly available,
compared with NeatSPF. Only some instances of NeatSPF
are reported for comparison, since the other cases have been
already presented. In particular, we show the performance of

Fig. 5. Power consumption of the well-known state-of-the-art RWA schemes
compared with the NeatSPF algorithm versus the load (routed connections).

Fig. 6. Running times of the well-known state-of-the-art RWA schemes com-
pared with the NeatSPF algorithm versus the connection requests.

minimum hop algorithm (MHA; [33]), shortest widest path
algorithm (SWP; [34]), minimum interference routing algo-
rithm (MIRA; [35]), and green smart parametric adaptive RWA
algorithm based on K-shortest path (GreenSpark; [16]). MHA
selects the shortest route (in terms of hop count) among source
and destination; SWP selects, among the shortest routes, the
widest one, i.e., the one with the highest residual capacity.
MIRA selects the route that is foreseen to less interfere with
future connection requests that are likely to come in the net-
work. GreenSpark is based on a two-stage selection process: in
the first step, the k best balanced paths are selected, according
to an exclusive network engineering objective of optimizing
the LB and thus minimizing the congestion and the consequent
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blocking. In the second step, according to a pure EA objective,
the lowest energy-consuming route among the k is finally se-
lected to route the connection. In Fig. 4, we can observe that the
lowest blocking is achieved by NeatSPF only LB, followed by
MHA which achieves good performance owing to the limited
number of connections in the network. Similar performances
are obtained by GreenSpark MinPower (k = 3) and NeatSPF
LB and EA equally weighted. MIRA performs quite well at the
beginning, but its performance degrades as the load increases,
since it does not take into account the current traffic load in rout-
ing decisions. In Fig. 5, we can observe that the lowest power-
consuming algorithms are NeatSPF only EA and NeatSPF LB
and EA equally weighted. GreenSpark MinPower is the second
less consuming algorithm, with GreenSpark MinPower (k = 3)
better than GreenSpark MinPower (k = 1) as expected, since it
has a higher degree of choice to lower the power consumption
of connections. Following the increasing power-consuming al-
gorithm, the NeatSPF only LB performs better than all of the
remaining algorithms, which are, in the order, MHA, SWP,
and MIRA. MHA, by selecting the shortest paths, achieves
a lower power consumption than SWP and MIRA, which, in
turn, select longest routes in an effort to reduce blocking. It is
worth to note that MHA, SWP, and MIRA are totally energy
unaware, since they do not consider energy-related parameters
in their routing decision; GreenSpark, instead, was designed
with both LB and EA in mind. However, here it suffers for
the lack of grooming capability, for which it was originally
conceived. Furthermore, being based on the k-shortest path,
the computational complexity of GreenSpark linearly depends
on k, while the NeatSPF family has the advantage of being
faster, since its complexity does not depend on any parameter
of the algorithm but just on the size of the network. Such a
consideration leads us to the last chart shown in Fig. 6, in which
the running times of the algorithms have been plotted during
the simulations. NeatSPF exhibits a very low computational
complexity (regardless of the αχ values), overcome only by
a constant factor by MHA, GreenSpark MinPower (k = 1),
and SWP. MHA, which has an extremely simple shortest path
routing algorithm, has, however, well-known drawbacks in
terms of blocking and power consumption too. GreenSpark
MinPower (k = 1) is slightly slower than MHA due to its more
complex LB edge cost function, followed by SWP which has to
add some calculation before selecting the final route. In general,
all of these Dijkstra-based algorithms perform very well in
terms of running times, routing 100 connections in less than 5 s
(0,05 seconds per connection). Notably higher times are shown
by GreenSpark MinPower (k = 3), which shows the effects of
the k-shortest path calculation. Finally, the slowest algorithm
is shown to be MIRA, which suffers for the maximum flow
calculation to identify the “critical” links performed each time
a new lightpath has to be established. In conclusion, NeatSPF,
owing to its parametric cost function, can be easily tuned to
achieve either the best LB or the lowest power consumption
with respect to the other algorithms with which it has been
compared. It also demonstrated that an optimal tradeoff can be
achieved by an appropriate selection of the network and energy-
related parameters according to the objective of the network
operator while maintaining computational complexity very

low and therefore providing more than satisfactory network
responsiveness.

VI. CONCLUSION

We have presented a simple but effective RWA framework,
based on shortest path routing with an adaptive link weighting
function. It is designed to be suitable for real-time network
control and management as well as effective in providing good
wavelength utilization together with low blocking probabilities,
leading to efficient usage of the network’s resources. It also
integrates EA in its decision process, driven by a flexible and
configurable energy model, in order to support sophisticated
strategies for containing the network’s energy consumption and
reducing the associated costs. Apart from being a successful
wavelength routing scheme, the most significant added value
of the proposal is the inherent flexibility of the multiobjective
optimization model, where multiple tunable parameters can
be used to drive the solution toward several sections of the
Pareto curve. This leads to suboptimal solution to the aggregate
problem that may privilege some specific objective (e.g., the
containment of energy consumption) over the others, according
to the dynamically changing carriers’ needs, while maintaining
an affordable polynomial time complexity which makes it
suitable for online routing employed by modern control planes.
Extensive simulation experiments, conducted on several real
network topologies, resulted in a good tradeoff between the
different involved (and apparently conflicting) users’ and car-
rier’s optimization objectives, demonstrating that the proposed
approach is computationally inexpensive, easy to implement,
quite balanced in its results, and, hence, ready for deployment
in real-world optical networks.
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