
FaRNet: Fast Recognition of High Multi-Dimensional
Network Traffic Patterns

Ignasi Paredes-Oliva
UPC BarcelonaTech

Barcelona, Spain
iparedes@ac.upc.edu

Pere Barlet-Ros
UPC BarcelonaTech

Barcelona, Spain
pbarlet@ac.upc.edu

Xenofontas
Dimitropoulos

ETH Zurich
Zurich, Switzerland

fontas@tik.ee.ethz.ch

ABSTRACT
Extracting knowledge from big network traffic data is a mat-
ter of foremost importance for multiple purposes ranging
from trend analysis or network troubleshooting to capac-
ity planning or traffic classification. An extremely useful
approach to profile traffic is to extract and display to a net-
work administrator the multi-dimensional hierarchical heavy
hitters (HHHs) of a dataset. However, existing schemes for
computing HHHs have several limitations: 1) they require
significant computational overhead; 2) they do not scale to
high dimensional data; and 3) they are not easily extensible.
In this paper, we introduce a fundamentally new approach
for extracting HHHs based on generalized frequent item-set
mining (FIM), which allows to process traffic data much
more efficiently and scales to much higher dimensional data
than present schemes. Based on generalized FIM, we build
and evaluate a traffic profiling system we call FaRNet. Our
comparison with AutoFocus, which is the most related tool
of similar nature, shows that FaRNet is up to three orders
of magnitude faster.

Categories and Subject Descriptors: C.2.6 [Computer
- Communication Networks]: Internetworking

Keywords: Network Operation and Management; Traffic
Profiling; Data Mining

1. INTRODUCTION
In recent years, the Internet traffic mix has changed dra-

matically. Mobile applications, social networking, peer-to-
peer applications and streaming services are only a few ex-
amples of the ever-growing list of applications that mold
Internet traffic today. Furthermore, existing applications
continuously change their behavior, while new applications,
services and cyber-threats are emerging. In this rapidly
changing network environment, it is critical to build traf-
fic profiling tools that efficiently process big traffic data to
extract knowledge about what is happening in a network.
AutoFocus [2], the state-of-the-art traffic profiling tool

based on hierarchical heavy hitters, has some important lim-
itations. First, its computational overhead grows exponen-
tially with the number of dimensions. Because of this, it is
restricted to 5-dimensional HHs (where the five dimensions
correspond to the well-known 5-tuple) and it is very hard to
extend it with additional traffic features.

Copyright is held by the author/owner(s).
SIGMETRICS’13, June 17–21, 2013, Pittsburgh, PA, USA.
ACM 978-1-4503-1900-3/13/06.

We introduce a fundamentally new approach based on
generalized frequent item-set mining (FIM) [3]. Generalized
FIM scales much better to higher dimensional data than
AutoFocus and supports attributes of hierarchical nature,
like IP addresses or geolocation data. We exploit generalized
FIM to design and implement a new system, called FaRNet
(FAst Recognition of high multi-dimensional NETwork traf-
fic patterns), for (near) real-time profiling of network traffic
data. Our system is capable of analyzing multi-dimensional
traffic records with both flat and hierarchical attributes.

2. FARNET
FaRNet receives three inputs: NetFlow data, minimum

support (s) and data treatment type. s is the threshold that
determines if the size of a set of flows is big enough to be con-
sidered a frequent item-set. The next parameter indicates
the type of mining: flat or hierarchical. While for the flat
case the input data is considered to be completely plain, in
the hierarchical scenario certain dimensions have associated
hierarchies. For example, IP addresses consist of prefixes
from length 8 to 32. FaRNet has a single output: frequent
item-sets.

By default, FaRNet takes 10 dimensions from each input
flow and builds transactions. Each transaction consists of
the source and destination IP addresses, the source and des-
tination port numbers, the protocol number, the inferred ap-
plication that generated the flow, the source and destination
ASes, and the geolocation of the IP addresses (continent,
country, region and city). Note that although our current
implementation of FaRNet is based on these features, any
other hierarchical element could be trivially addded as the
system scales well with the number of dimensions.

Depending on the selected type of mining, FaRNet will
take different paths. For flat treatment, a FIM algorithm for
flat data will be used. For hierarchical treatment, this pa-
per presents an optimized FIM algorithm extended to deal
with hierarchical traffic attributes. In particular, we first
adapt, extend and optimize the implementations of differ-
ent FIM algorithms (Apriori, Eclat, FP-growth, RElim and
SaM) and then select the one performing the best.

The straightforward solution for allowing FIM to deal with
the hierarchical nature of network traffic is expanding each
element of a flow with its corresponding ancestor/s. For
example, for an IP this means replacing it with all its pos-
sible prefixes from length 8 to 32, i.e., 25 items. For all 10
dimensions this accounts for 67 items per transaction.

Nonetheless, in most cases, extending e.g., all prefixes of
an IP is not necessary because a fully defined 32-bit IP ad-



dress is rarely frequent by itself. However, prefixes of inferior
length have higher chances of being above s. For instance,
a certain prefix a.b.0.0/16 might be frequent even though
a more specific subnet (e.g., a.b.c.0/24) is not. Similarly,
while a city is not often frequent by itself, its corresponding
region, country or continent might be.
For simplicity, from here on, all the extensions and op-

timizations will refer only to IP addresses. However, note
that all the proposals made are applicable to the other hier-
archical features presented in this paper and, in general, to
any other hierarchical element.
We first present Progressive Expansion (PE), which will

not always generate all 25 prefixes of an IP. A prefix of length
k will only be explored if its corresponding k−1 prefix (par-
ent prefix or ancestor) is frequent. Otherwise, the expansion
for that IP will end at level k−1. This is because if a certain
prefix is not frequent, all prefixes of superior length will not
be frequent either (downward-closure property [3]). The fre-
quency of a particular prefix is calculated by progressively
counting the frequency of its shorter prefixes.
The main drawback of PE is that it needs to go through

all transactions 25 times, which is very costly in terms of
runtime. Note that the number of passes is due to the depth
of the IP address hierarchy and, therefore, it would change
depending on the hierarchical element we are dealing with
(e.g., 4 for the geolocation). In order to improve this, we
propose Progressive Expansion k-by-k (PEK), which seeks to
reduce this part of the process while avoiding the generation
of useless prefixes. This is achieved by expanding k bits at
each step instead of going one by one (PE is a particular
case of PEK with k = 1). When using PEK, all transactions
will be read 1 + 24/k times instead of 25.
First, PEK generates all prefixes of length l = 8 for all

IPs of all the transactions and, uniquely for these that are
frequent (i.e., these that at least have s flows), a binary tree
is created (only the root node). Afterwards, for each prefix
of length l + k with a frequent ancestor (prefix of length l,
tree level l − 8), its corresponding tree is expanded up to
level l + k − 8. After going through all possible values of l
(8 ≤ l ≤ 32), all frequencies in intermediate nodes (nodes
between explored levels, i.e., among l− 8 and l+ k − 8) are
recursively computed. Finally, transactions are expanded
only with those prefixes that are known to be frequent by
going through the corresponding tree from the root to the
leaves following a depth-first approach.
The following example illustrates how PEK would work

for IP 192.168.10.5 and k = 2. The first step consists of
generating the binary tree for its prefix of length 8, i.e.,
192/8. Afterwards, if the root node is frequent, prefixes
of length 10 are generated (2-bit expansion). Therefore,
frequencies for prefixes 192.192/10, 192.128/10, 192.64/10
and 192.0/10 are calculated. Then, the computation for
intermediate nodes (prefixes of length 9) is calculated by
moving backwards in the binary tree. In this case, pre-
fixes 192.192/10 and 192.128/10 have a common ancestor,
i.e., 192.128/9. Thus, the frequency of the intermediate
node 192.128/9 is the sum of frequencies of its two descen-
dants, 192.192/10 and 192.128/10. Likewise, the frequency
for 192.0/9 comes from prefixes 192.64/10 and 192.0/10.

3. PERFORMANCE EVALUATION
For the evaluation we used NetFlow traffic from 2011 from

the European backbone network of GÉANT. The dataset

0 5 10
10

6

10
7

10
8

M
e
m

o
ry

 U
s
a
g
e
 (

B
y
te

s
)

Minimum Support (%)

 

 

FaRNet (PEK12)
AutoFocus

0 5 10
10

−2

10
0

10
2

10
4

E
x
e
c
 T

im
e
 (

s
e
c
)

Minimum Support (%)

 

 

FaRNet (PEK12)
AutoFocus

Figure 1: Memory usage (left) and execution time
(right) comparison between FaRNet (PEK12) and
AutoFocus for the first 10K flows of the dataset.

used is 15 minutes long and has 0.51× 106 flows, 5.46× 106

packets and 5.55 × 109 bytes. Figure 1 shows how FaRNet
and AutoFocus (AF) perform for different values of s. Note
that only the first 10000 flows of the dataset are used for this
comparison. This is because the available implementation
of AF [1] is not dimensioned to handle more flows (when
it receives more than that amount, it does not count them
accurately due to collisions). FaRNet uses PEK with k=12
(PEK12) on RElim algorithm, which holds the best tradeoff
between memory consumption and execution time. In terms
of runtime (right plot), FaRNet is clearly faster regardless of
s. Moreover, as s decreases, AF’s execution time increases
exponentially, while FaRNet is able to handle it smoothly.
Although for the highest s AF’s runtime (1s) is relatively
close to FaRNet’s (0.10s), for s = 0.1% AF is approximately
three orders of magnitude slower (223s vs 0.48s).

As regards the memory consumption (left plot), AF is
better than FaRNet for s ≥ 1%. However, for lower values
of s, AF consumption rises rapidly and ends up consuming
far more memory than FaRNet (88.77 MB vs 7.79 MB for
s = 0.1%). All in all, FaRNet shows to be quicker and more
resilient to low s than AF, although it uses more memory
for s = 1% and above. Nonetheless, note that the memory
consumption of FaRNet is reasonably low in the worst case
(below 10 MB).

4. CONCLUSIONS
We built FaRNet, a network traffic profiling system that

offers better performance and flexibility and also scales to
a much higher number of dimensions than AutoFocus. In
order to validate the correctness of FaRNet, we compare it
with AutoFocus by using a limited version of our system
configured to produce the same output. Using traffic data
from a large backbone network, we show that when mining
only the 5-tuple, FaRNet is up to three orders of magnitude
quicker than AutoFocus. As a consequence, FaRNet is able
to process high volumes of multi-dimensional traffic data in
(near) real-time, while AutoFocus was designed for offline
analysis of a pre-defined set of 5 dimensions.

5. REFERENCES
[1] AutoFocus implementation.

http://www.caida.org/tools/.

[2] C. Estan, S. Savage, and G. Varghese. Automatically
inferring patterns of resource consumption in network
traffic. In Proc. of ACM SIGCOMM, Aug. 2003.

[3] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent
pattern mining: current status and future directions.
Data Min. Knowl. Discov., 15(1):55–86, 2007.


