
Load Balancing in Mobile IPv6’s Correspondent
Networks with Mobility Agents

Albert Cabellos-Aparicio, Jordi Domingo Pascual
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
Barcelona, Spain

{acabello,jordid}@ac.upc.edu

Abstract— A foreseeable scenario is where on the Internet Mobile
IPv6 is deployed and a large percentage of the clients are mobile
nodes. These mobile clients will communicate with large servers,
which under the Mobile IPv6’s point of view, will be
Correspondent Nodes. Usually large servers operate in servers
farms with a load balancer device. Mobile clients can
communicate with these servers through their Home Agent (a
sub-optimal path) or directly by using the built-in mechanisms of
Mobile IPv6 Route Optimization. In this paper we detail an
important incompatibility between the Mobile IPv6’s Route
Optimization and several load balancing techniques. This means
that mobile clients need to revert to the sub-optimal path when
communicating with these server farms. This issue reduces
considerably the communications performance increasing the
delay and the infrastructure load. Moreover it may be an
important drawback when considering Mobile IPv6’s
deployment. In this paper we show which load balancing
techniques are incompatible with Route Optimization and we
propose a novel mobile entity that solves this issue for several
load balancing techniques.

Mobile Communications, Load Balancing, Mobile IPv6, Route
Optimization

I. INTRODUCTION
Wireless technologies have rapidly evolved in recent years.

IEEE 802.11 is one of the most used wireless technologies and
it provides up to 54Mbps of bandwidth in an easy an affordable
way. In current Internet status, a user can be connected through
a wireless link but he cannot move without breaking the IP
communications. That’s why IETF designed Mobile IP which
provides mobility to the Internet. With “mobility” a user can
move and change his point of attachment to the Internet
without losing his network connections.

The IETF has designed two versions of Mobile IP, one for
IPv4 and another one for IPv6. Although Mobile IPv6 [1] is
very similar to Mobile IPv4 it is more efficient and avoids
some problems suffered by Mobile IPv4.

In Mobile IPv6 a Mobile Node (MN) has two IP addresses.
The first one identifies the MN’s identity (WHO) while the
second one identifies the MN’s current location (WHERE).
The MN will always be reachable through its WHO IP address
while it will change its WHERE IP address according to its
movements. A special entity called Home Agent placed at the
MN’s home network will maintain bindings between the MN’s

WHO and WHERE addresses. The communications between
the MN and its peers (Correspondent Nodes) will be routed
through the Home Agent. Unfortunately packets routed through
the Home Agent follow a sub-optimal path. If the MN wants to
communicate directly (Route Optimization) it has to inform to
its Correspondent Nodes (CN) about its location changes by
using a special procedure called Return Routability. Obviously
this requires some sort of support at the Correspondent Nodes.

A foreseeable scenario is where, on the Internet, Mobile
IPv6 is deployed. In such this scenario a percentage of the
clients are MNs. These mobile clients will communicate with
large servers, which under the Mobile IPv6’s point of view,
will be Correspondent Nodes. Usually large servers operate
into server farms with a load balancer device. Client requests
are distributed by the load balancer among the servers in order
to increase resource utilization and decrease computing delay.
In this paper we detail an incompatibility between several load
balancing techniques and the Mobile IPv6’s Return
Routability. In such this scenario, Mobile IPv6 clients cannot
benefit from Route Optimization when communicating with
these servers farms. The communications must be routed
through the Home Agent using a sub-optimal path. This issue
reduces considerably the communications performance
increasing the delay and the infrastructure load. Moreover, it
may be an important drawback when considering Mobile
IPv6’s deployment.

In this paper we present a new mobile entity called
Mobility Agent which will act as a front-end for the different
load balancing devices. The Mobility Agent will hide mobility
related issues to the load balancers allowing Mobile IPv6
clients to communicate directly. This novel entity process
Mobile IPv6 Return Routability’s messages on behalf the load
balancer and the servers. In this way mobile clients can
communicate directly with the servers avoiding the problems
suffered by sub-optimal paths. Moreover with our solution
Mobile IPv6 can be deployed flawlessly because it does not
require server (CN) support. Mobile IPv6’s deployment for
such servers is as easy as plug and play. Finally, it is important
to remark that our Mobility Agent does not require modifying
the CN’s kernel, the MNs or the Mobile IPv6 standard.

In the following section a Load Balancing techniques
overview is presented. Our motivation is discussed in section
III. Section IV presents our Mobility Agent while section V

This work was partially funded by IST under contract IST-2006-NoE-
0384239 (IST-CONTENT), MEC (Spanish Ministry of Education and
Science) under contract TSI 2005-07520-C03-02 and the CIRIT (Catalan
Research Council) under contract 2005 SGR 00481.

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1827

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:57 from IEEE Xplore. Restrictions apply.

shows an evaluation. The related work is detailed in section VI,
finally section VII is devoted to the conclusions of our work.

II. LOAD BALANCING TECHNIQUES OVERVIEW
This section presents an overview of the different existing

load balancing techniques. Although these techniques can be
applied for any service in this paper we focus on web services
load balancing techniques.

Web server administrators face the challenge of increase
web server capacity as the Internet grows up. The first option is
to add more hardware resources or improve the web server
itself. While these strategies relieve short-term pressure it is
neither a cost-effective nor long-term solution. A more
appealing solution is to deploy a distributed web server with
multiples nodes. Some system component is needed to
distribute client requests among the servers. The multiple web
servers are loosely coupled and under the client’s point of view
act as a single server. Depending if this virtualization is
extended to the IP level or not there are two different
techniques. In the following subsections these techniques are
detailed.

A. Distributed Web Systems
A distributed web systems consists of a set of web servers

whose IP addresses are visible to client applications and thus,
the virtualization is not extended to the IP level. A client
request is routed to a single web server that belongs to
distributed web system by using two different approaches. The
first one uses the DNS servers while the second one uses web
servers to route incoming client requests.

1) DNS-Based Techniques: The DNS-based technique uses
DNS servers to route incoming client requests to a target web
server. This technique was initially presented in [2] and it is
intended to geographically distributed web systems. DNS-
routing is performed during the client lookup procedure. DNS
Servers reply to DNS requests not with a single IP address but
with a list of IP addresses (the servers’ IP addresses). The list’s
order follows a certain policy. Usually the first returned IP
address belongs to the nearest available server or to the less
busy server. Basic DNS clients simply use the first entry and
discard the rest.

This technique has the main drawbacks from the DNS
hierarchy itself and TTL (Time to live) values [26]. Firstly
DNS servers usually cache DNS replies since DNS information
changes very little. This means that even if a server becomes
unavailable some DNS servers may continue redirecting traffic
to it. Secondly this technique may not distribute traffic
uniformly just because O.S’s do not usually make requests to
the authoritative name servers but to their pre-configured name
servers. Those name servers then forward the requests to the
authoritative DNS servers and cache the reply. Finally, new
information on the DNS hierarchy takes a while to propagate.
This issue does not allow a site to quickly increase its capacity.

2) Web-Based Techniques: The second approach uses web
servers to route client’s requests. In this approach a single web
server receives all the incoming clients’ requests and redirects
them to other web servers through the HTTP redirection [3]

message or the URL rewriting mechanism [4]. The main
drawback for these approaches is that they increase delay as
every redirection requires the client to initiate a new TCP
connection. Even more, the web server that redirects incoming
clients’ requests may be overloaded adding extra delay.

B. Cluster-Based Web Systems
Cluster-based web systems extend the virtualization to the

IP level. In this technique a set of web servers that are
interconnected through a high-speed network and in a single
location can be viewed as a single computer. The cluster
system is accessible under a single IP address, known as virtual
IP address. This virtual IP address is configured at a front-end
node that will handle all the incoming clients’ requests. The
front-end node, known as load balancer, intercepts the servers’
communications to the Internet making the whole system
transparent both to the clients and to the servers. The load
balancer device is able to identify all the servers through a
private IP address or a layer-2 address. This load balancer will
distribute the inbound packets to a target server according to a
certain policy. Mainly, there are two types of load balancers.
The first type uses layer 4 information to make the routing
decision while the second type uses the whole protocol stack to
make the decision.

1) Layer 4 Load Balancers: Layer 4 Load Balancers assign
packets that belong to the same TCP connection to the same
server persistently. Thus clients are identified by a source IP
address and port. There are different mechanisms to redirect
the packets to the selected server.

The first mechanism, Packet Rewriting [5], is based on the
IP Network Address Translation [6] (NAT) and it is
implemented by many commercial products. The Packet
Rewriting load balancer consists of a virtual server which has a
virtual IP address. Clients will always send their requests to the
virtual IP address. In turn, the load balancer will rewrite the
destination IP address of the client’s packet to the IP address of
a server according to a given policy. Next, the load balancer
will forward the packet. Then the server will process the
packet. Server’s responses will flow through the load balancer
that will rewrite the packet’s source IP address to its virtual IP
address. In this way, clients will receive packets as they were
sent from the virtual IP address. As it has been said before,
when a given client has been redirected to a given web server
further client’s requests must be redirected to the same server.

The second mechanism is actually a set of mechanisms
known as One-way architectures. In One-way architectures
inbound packets pass through the load balancer device while
outbound packets flow directly from the servers in order to
avoid that the load balancer becomes the bottleneck of the
whole system. There are different proposals of one-way
architectures such as Packet Tunneling [7] and Packet Layer-2
forwarding [12].

2) Layer 7 Load Balancers: Layer 7 Load Balancers distribute
client’s requests according to information from the application
level (HTTP). This way the load balancers device, acting as a
TCP proxy, establishes a separate TCP connection with the
client and with the target server in order to receive the whole
HTTP request. In this case the load balancer can distribute

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1828

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:57 from IEEE Xplore. Restrictions apply.

different HTTP requests from the same client to different
servers because HTTP is a stateless protocol [3]. This
technique is called TCP Gateway (which actually is a simple
proxy).

The TCP Splicing [8] technique is an enhancement of the
TCP Gateway technique where IP packets are forwarded from
one endpoint to the other one without having to cross the TCP
layer. Once the client-to-server binding has been established,
the load balancer handles the subsequent packets by changing
the IP and TCP headers so that the process is transparent for
the client and for the server.

Layer 7 Load Balancers also work in One-Way
architectures where outbound packets flow directly from the
server to the clients. Approaches such as TCP Handoff [9] and
TCP Connection Hop [10] (a proprietary mechanism) are good
examples. With these approaches, the load balancer “hand
offs” the TCP connection endpoint to the selected server. This
mechanism is transparent to the client as data sent by the
servers appear to be coming from the load balancer.

III. PROBLEM STATEMENT
The following subsections present a discussion of the

incompatibility between MIPv6 and the different load
balancing techniques.

A. Distributed Web Systems
Distributed Web Systems are compatible with MIPv6’s RR

because they do not extend the virtualization to the IP layer.
The communications are always established between a MN and
a single server without any further packet processing.

B. Layer 4 Load Balancers
MIPv6’s RR is not compatible with any Layer 4 Load

Balancing technique because it requires that some state is
stored at the CN. The CNs must store a list of bindings
between the MN’s Home Addresses and the MN’s CoA in a
structure called Binding Cache [1].

Layer 4 Load Balancers are required to establish client-to-
server bindings. In this way, each client has an assigned target
server. Packets sent by the client are forwarded always to the
same server. Upon a client connection establishment, the load
balancer will identify the client according to its source port and
IP address and will create the appropriate binding. Subsequent
packets will be forwarded to the selected server according to
this binding.

With MIPv6, data packets flow with the CoA (the temporal
IP address) as source address. This address will change
according to the MN’s movements. Thus, load balancers
cannot identify clients by inspecting the packet’s source
address.

Load balancers should identify MNs by their Home
Address. This address will not change even if the MN changes
its point of attachment. Each MIPv6’s data and signaling
packet includes the Home Address except for the Care-of Test
Init message.

MNs send the Care-of Test Init message when they start
the RR procedure due to a connection establishment or a
handover. The message is used by the MN to request to the
CN a “care-of keygen token”. This token, combined with the
“home keygen token” (requested trough the Home Test Init
message) provides the binding key used to authenticate the
Binding Update.

According to the information contained in this message the
load balancer will not be able to identify the MN (client). This
message includes the new Care-of Address that will be used by
the MN and a “care-of init cookie” which is a newly generated
random number. The reserved field has not been yet
standardized and the MIPv6 RFC [1] does not define any
Mobility Options for such message.

This information is not enough to relate it neither to the
client nor to the stored state at the server. In other words, the
load balancer cannot relate the Care-of Test Init message with
any pre-established client-to-server binding. This means that
the load balancer is unable to process this message and thus,
the RR procedure will fail forcing the MN to communicate
through the HA (sub-optimal path). An obvious option would
be to forward the Care-of Test Init message to all the servers.
In this case each server would reply to the MN with its own
“care-of keygen tokens” leading to an authentication failure.

C. Layer 7 Load Balancers
The TCP Gateway technique is compatible with the

MIPv6’s RR because the load balancer creates separate TCP
connections with the clients and with the servers. In this case
the MN would perform the RR procedure with the load
balancer. The RR’s state would be stored at the load balancer.
However the TCP Splicing technique is not compatible. As it
has been explained in section II.B this technique also creates
separate TCP connections but, in order to improve the
performance of the TCP Gateway technique, it forwards IP
packets from one endpoint to another without crossing the TCP
layer. Packets are forwarded directly from one connection to
another changing its IP and TCP headers appropriately. This
means that the required MIPv6’s RR state is stored at the
server instead of at the load balancer. Once again, when a Care-
of Test Init message arrives, the load balancer will be unable to
identify the client and relate it to the appropriate client-to-
server binding. TCP Handoff and TCP Connection Hop are not
compatible with the RR procedure. These techniques also
create client-to-server bindings and they forward the TCP
connection state to the selected server. Even if these protocols
were updated to forward also the required MIPv6’s RR state
the load balancers would fail to identify the client when a Care-
of Test Init message arrived.

D. Summary
As we have shown, Distributed Web Systems techniques

are compatible with mobile clients while the only Cluster
Based Web System compatible technique is the TCP Gateway
mechanism. In this paper we present a novel entity that will act
as a load balancer front-end that will allow Route Optimized
connections with the most common approaches, the Packet
Rewriting and the TCP Splicing techniques.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1829

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:57 from IEEE Xplore. Restrictions apply.

IV. PROBLEM STATEMENT
This section presents our novel mobile entity.

A. Load Balancing Architecture
Fig. 1 presents our novel load balancer architecture which

has two modules, the first one is called Mobility Agent. A
Mobility Agent is a new mobile entity placed at the
Correspondent Network that it is able to perform the RR
procedure on behalf the Correspondent Nodes (i.e large
servers). The second module is a regular load balancer device
(a Packet Rewriting or a TCP Splicing device). We have not
introduced any modification on these devices.

Figure 1. Proposed Load Balancer Architecture

Clients will address their requests to the server’s network.
The novel architecture will receive these packets that will be
initially processed by the Mobility Agent module. If the packet
belongs to a non-MIPv6 client (i.e it does not use Mobility
Extension Headers) the Mobility Agent module will forward it
to the load balancer device. In this case the load balancer will
process the packet as usual. It will identify the client by
inspecting the packet’s source address and it will forward the
packet to the selected server according to the client-to-server
binding.

If the client is a MN that wants to establish a Route
Optimized connection with the servers it will start the RR
procedure. As it is detailed in subsection IV.B, the Mobility
Agent module will process the RR’s signaling on behalf the
servers, hiding mobility related issues. This way the required
MIPv6’s RR’s state will be stored at the load balancer and it
will be able to reply to Care-of Test Init messages with its own
“care-of keygen tokens”.

Once the RR procedure has finished the MN will start to
send data packets using the Extension Headers [1]. For each
data packet the Mobility Agent will replace the MN’s CoA for
the MN’s Home Address and it will process the Extension
Headers hiding mobility issues to the load balancer (subsection
IV.C). In this way the load balancer can process the packet as
usual, as if the MN was a fixed node or at home. It can identify
the MN by inspecting the packet’s source address, in this case
the Home Address.

B. Mobility Agents Operations
Fig. 2 shows how the Mobility Agent module performs the

RR procedure on behalf the servers.

The Mobility Agent will act as a transparent proxy for the
MIPv6 protocol, receiving and processing all the signaling
messages. When the MN’s Binding Update has been

authorized it will store it and it will reply with a Binding
Acknowledgement. The functionalities required by the Mobile
Agent module are exactly the same to those provided by
Correspondent Nodes as defined in Section 9 of the MIPv6
RFC [1].

Figure 2. Mobility Agents interaction with RR

C. Mobility Agents Signaling Interaction
When the MN sends Route Optimized packets to the load

balancer it includes the Home Address Option. Fig. 3 shows
how they are processed by the Mobility Agent.

Figure 3. Home Address Option processing

When a data packet including a Home Address Option is
received by the Mobility Agent module it will first check if it
has a binding between the packet’s source address (CoA) and
the Home Address. If it has a binding it will remove the
extension header and it will replace the packet’s source address
CoA for the MN’s Home Address included into the Home
Address Option. The Mobility Agent module will also set the
IPv6’s Next Header field according to the new headers. In this
way the load balancer module will receive a packet from the
MN’s Home Address and it will process it as usual. This
procedure is very similar to the MIPv6 CN’s support. It is very
important to remark that the TCP checksums must not be
recomputed by our module. In fact, the MIPv6 RFC [1] states
that these checksums must be computed with the Home
Address instead of with the Care-of Address.

When the server sends packets to the MN in MIPv6 it
includes a Routing Header, however with our novel load
balancer the servers do not have MIPv6 support and thus, they
send the packets as stated by the IPv6 RFC [11]. First the
packet will be received by the load balancer that will process it
as usual. Next, as shown in fig. 4, the packet will be received

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1830

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:57 from IEEE Xplore. Restrictions apply.

by the Mobility Agent module that it will check if it has a
binding for the packet’s destination address (the MN’s Home
Address). If it does not have a binding it will forward it as
defined in the IPv6 standard. However if a binding exists it will
replace the packet’s destination address with the MN’s CoA
and it will add the Routing Header Type 2 Extension Header.
This extension header will include the MN’s Home Address.
The Mobility Agent will also set the Next Header field
according to the new headers. This procedure is very similar to
the MIPv6 CN’s support. Once again, the TCP checksum must
not be recomputed because the server has computed it with the
Home Address. Moreover the load balancer has recomputed
them to match to the Virtual IP address. The MIPv6 protocol
states that the MN will verify this checksum with its Home
Address and not with the actual packet source address, the
Care-of Address.

Figure 4. Routing Header processing

V. LOAD BALANCER EVALUATION
This section presents an evaluation of our novel load

balancer architecture as well as the benefits that it provides.

A. Load Balancing Techniques Compatibility
Our Mobility Agent module provides compatibility for the

Packet Rewriting and the TCP Slicing load balancing
techniques with the MIPv6’s RR. While Distributed Web
Systems are yet compatible, our Mobility Agents provide
compatibility for the many existing Cluster-Based Web
Systems. Table II and III present a classification of several
products that provide Layer 4 and Layer 7 Load Balancers.
Tables are based on [12,26] and have been updated to reflect
recent changes.

As we can see many commercial products use the Packet
Rewriting technique and they can benefit from our Mobility
Agent module. Many other products use the Packet
Forwarding technique, unfortunately this is a One-Way
approach where our Mobility Agent cannot provide MIPv6’s
RR compatibility.

As the table III shows the TCP Splicing technique is also
used by many major Layer 7 Load Balancers vendors. These
products can also benefit from our Mobility Agents.

TABLE I. LAYER-4 LOAD BALANCERS

Packet Rewriting Packet Tunneling Packet Layer-2
Forwarding

Cisco’s
LocalDirector [13]
LinuxVirtualServer [14]
F5’s BIG/IP [15]
Foundry Networks
ServerIron [16]
IBM WebSphere
Edge Server
Network Dispatcher [17]
Coyote Point Equalizer
[18]
Allot NetEnforcer [19]

LinuxVirtualServer [14]

IBM WebSphere Edge
Server Network
Dispatcher [17]
Cisco’s
LocalDirector [13]
LinuxVirtualServer
[14],
F5’s BIG/IP [15]
Foundry Networks
ServerIron [16]
IBM WebSphere Edge
Server Network
Dispatcher [17]
Nortel Networks
Application Switch [20]
Radware’s AppDirector
[21]

TABLE II. LAYER-7 LOAD BALANCERS

TCP Gateway TCP Splicing TCP
Handoff

TCP Connection
Hop

IBM WebSphere
Edge Server
Network Dispatcher
[17]

F5’s BIG/IP [15]
Foundry
Networks
ServerIron [16]
Nortel Networks
Web OS [20]
Radware’s
AppDirector [21]
Lucent Web
Switch [22]
Cisco CSS [13]
Zeus ZXTM-LB
[23]
IBM WebSphere
Edge Server
Network
Dispatcher [19]
TCPSP [25]

TCPHA
[24]

Resonate’s Central
Dispatch [10]

Regarding Distributed Web Systems they are usually used
in combination of some sort of Cluster-Based Web Systems for
geographically distributed architectures. DNS servers redirect
users to the closest web cluster. In this way load balancing is
performed in two separate levels. First geographically in a
coarse-grained approach and then selecting the “best” web
server from the cluster.

B. Load Balancer Performance Evaluation
Without Mobility Agents MNs must communicate through

the sub-optimal route with the servers. This subsection presents
the main drawbacks of sub-optimal paths [27].

First, the longer route increases delay and infrastructure
load. When the CN and the MN are close to one another but
relatively far from the Home Agent the increase in delay is
very large. Such increase may not be tolerated by time sensitive
applications. Moreover such increase may affect the TCP
protocol performance since the sending rate depends on the
round-trip-time. Moreover, the total network resource
utilization is higher due to the longer path.

Second the MN encapsulates [7] packets to the Home
Agent and thus, the sub-optimal path leads to an increased
packet overhead. This tunnel may also lead to an increase of
the processing delay due to packet’s encryption/decryption and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1831

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:57 from IEEE Xplore. Restrictions apply.

other verifications. This tunnel may also increase the chances
of the packets being fragmented due to the increased packet
size.

Third, as the sub-optimal path is longer it is less robust
against link-failures. And finally, since all the packets to and
from MNs are forwarded through the Home Agent, the Home
Agent itself or the Home Link may be overloaded. This means
that the Home Agent or the Home Link may become the
bottleneck of the whole system. Moreover, a congested Home
Agent can lead to additional packet delay or even packet loss.

VI. RELATED WORK
At the best of the authors’ knowledge the incompatibility

between several load balancing techniques and the RR
procedure has not been addresses so far. Nevertheless, several
papers have presented solutions that run the RR procedure on
behalf the Correspondent Nodes. In [31] the authors present an
agent-based route optimization for Mobile IPv4. In their
proposal, a special entity located at the Correspondent Network
border router achieves Route Optimization on behalf the
Correspondent Nodes. Data packets are tunneled between the
special entity and the MNs.

In [32] authors propose a bi-directional route optimization
for Mobile IPv4. With the authors’ solution, a special entity
called Correspondent Agent is placed at the correspondent
network border router. This entity also achieves Route
Optimization on behalf the Correspondent Nodes. Another
special entity (Foreign Agent) is placed at the MN’s visited
network. The Correspondent Agent establishes a bi-directional
tunnel with the Foreign Agent to send and receive data packets.

Our Mobility Agents is intended for MIPv6 instead of
Mobile IPv4. Moreover, with our solution packets are not
tunneled but sent using the mobility extension headers. These
headers provide less overhead than the traditional tunneling
technique.

VII. CONCLUSIONS
In this paper we have shown an incompatibility between

several load balancing techniques and the MIPv6’s Return
Routability procedure. Due to this incompatibility mobile
clients cannot benefit from Route Optimization connections
leading to a sub-optimal path. We have detailed the loss of
performance of sub-optimal paths which includes increased
delay, round-trip-time and infrastructure load among others.
We have also presented which load balancing techniques are
affected by this incompatibility.

We have presented a novel entity called Mobility Agents
that solves this incompatibility for two load balancing
techniques. Our Mobility Agent acts as a front-end for the load
balancing devices hiding mobility related issues to the load
balancer itself and to the servers. Moreover, our Mobility
Agent reduces the MIPv6’s deployment cost because it
provides Correspondent Node support (and Route
Optimization) without modifying the servers. Finally, our
solution is transparent both to the MNs and to the servers and it
does not require modifying the MIPv6 standard.

Finally it is important to remark that we have shown that
many existing commercial product use the Packet Rewriting
and the TCP Splicing load balancing technique and they can
benefit from our Mobility Agent module.

REFERENCES

[1] D. Johnson et al. “Mobility Support in IPv6”. RFC 3775, June 2004
[2] T. Brisco “DNS Support for Load Balancing” RFC 1794, April 1995
[3] T. Berners-Lee, R. Fielding and H. Frystyk. “Hypertext Transfer

Protocol – HTTP/1.0” RFC 1945, May 1996
[4] Q. Li et al. “Distributed Cooperative Apache Web server” WWWC,

2001.
[5] P.Srisuresh, D.Gan “Load Sharing using IP Network Address

Translation (LSNAT)”. RFC 2391, August 1998
[6] K. Egevang and P. Francis “The IP Network Address Translator (NAT)”.

RFC 1631, May 1994.
[7] C. Perkins. “IP encapsulation within IP”. RFC 2003, Oct 1996
[8] A. Cohen et al. “On the performance of TCP splicing for URL-aware

redirection” USENIX, Oct 1999
[9] V.S. Pai et al. “Locality aware request distribution in cluster-based

network servers”. ASPLOS, Oct 1998
[10] Resonate Inc. http://www.resonate.com
[11] S. Deering, et al. “Internet Protocol, Version 6 (IPv6) Specification”.

RFC 2460, December 1998
[12] V. Cardellini, E. Casalicchio, M. Colajanni, P.S. Yu, ``The state of the

art in locally distributed Web-server systems'', ACM Computing Surveys,
Vol. 34, No. 2, pp. 263-311, June 2002.

[13] Cisco Systems http://www.cisco.com
[14] Linux Virtual Server Project http://www.linuxvirtualserver.org
[15] F5 Networks BIG/IP http://www.f5labs.com/products/bigip/
[16] Foundry Networks ServerIron

http://www.foundrynet.com/products/webswitches/serveriron/docs.html
[17] IBM Network Dispatcher

http://www.ibm.com/software/webservers/edgeserver/
[18] Coyote Point Systems Equalizer http://www.coyotepoint.com
[19] Allot Communications NetEnforcer http://www.allot.com
[20] Nortel Networks http://www.nortelnetworks.com
[21] Radware Inc. http://www.radware.com
[22] Lucent Web Switch: http://www.bell-labs.com/project/webswitch
[23] Zeus ZXTM-LB http://www.zeus.com
[24] TCPHA for Linux Virtual Server http://dragon.linux-

vs.org/~dragonfly/htm/tcpha.htm
[25] TCPSP for the Linux Kernel:

http://www.linuxvirtualserver.org/software/tcpsp/index.html
[26] Tony Bourke: Server Load Balancing, O'Reilly, ISBN 0-596-00050-2
[27] T. Clauser et al. “NEMO Route Optimisation Problem Statement”

(Internet Draft), October 2004
[28] W. Haddad et al. “Applying Cryptographically Generated Addresses to

Optimize MIPv6 (CGA-OMIPv6)” (Internet Draft) March 2006
[29] V. Devarapalli, R. Wakikawa, A. Petrescu, P. Thubert. Network Mobility

(NEMO) Basic Support Protocol. RFC 3963, January 2005
[30] C. Perkins, Securing Mobile IPv6 Route Optimization Using a Static

Shared Key. RFC 4449, June 2006
[31] R. Vadali et al. “Agent-Based Route Optimization for Mobile IP,” IEEE

54th Vehicular Technology Conference, 2001.
[32] Chun-Hsin Wu et al. "Bi-directional Route Optimization in Mobile IP

over Wireless LAN", IEEE Vehicular Technology Conf, 2002

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1832

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:57 from IEEE Xplore. Restrictions apply.

