

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Universitat Politècnica de Catalunya

Departament d’Arquitectura de Computadors

Load Shedding in Network Monitoring Applications

Pere Barlet-Ros

Advisor: Dr. Gianluca Iannaccone

Co-advisor: Prof. Josep Solé-Pareta

A Thesis Presented to the Universitat Politècnica de Catalunya

in Fulfillment of the Requirements for the Degree of

Doctor in Computer Science

Barcelona, December 2008

ii

Acknowledgments

This thesis would not have been possible without the constant help and guidance of

my advisor Dr. Gianluca Iannaccone. His research expertise and technical skills have

helped me to significantly improve the quality of my research. I also thank Gianluca

for providing me with the opportunity to spend two summers working at Intel Research

Cambridge and Berkeley, where I developed part of the research work presented in this

thesis. I do not forget the day when we discussed the first idea of this thesis on his

whiteboard during one of my visits in Cambridge.

I would also like to thank my co-advisor Prof. Josep Solé-Pareta for his confidence in

me during this whole time. I greatly appreciate his continuous encouragement and help

with any problems I had during the course of this thesis. I also learned many things

from Josep, especially about the management aspects of the research, that will certainly

be very helpful for me in the future.

I want to express my sincere gratitude to Josep Sanjuàs-Cuxart and Diego Amores-

López for their assistance in the development tasks of the load shedding prototype pre-

sented in this thesis and for the quality of their work. Their constructive ideas and

discussions were always of great value to me. I wish them all the success they deserve

in their respective projects.

Several people have also contributed directly or indirectly to this thesis. I am very

grateful to Dr. Ricard Gavaldà and Albert Bifet from the LSI department of UPC for

helpful discussions on game theory. I would like to thank all the people of the CBA

research group, and especially my colleagues Albert Cabellos-Aparicio and René Serral-

Gracià, for many constructive conversations that provided me with a different perspective

of my research. I am also very thankful to Prof. Jordi Domingo-Pascual for his help and

advice whenever I needed it.

I would also like to thank the members of my Ph.D. committee (Prof. Jordi Domingo-

Pascual, Dr. Ricard Gavaldà, Prof. Fernando Boavida, Dr. Fabio Ricciato and Dr. Tanja

Zseby), the external reviewers (Dr. Fabio Ricciato and Dr. Mikhail Smirnov) and my

iii

iv

pre-defense committee (Prof. Jordi Domingo-Pascual, Dr. Ricard Gavaldà and Dr. David

Carrera) for reading the manuscript of this thesis and providing useful comments.

I wish to thank CESCA (Caterina Parals and Carles Fragoso) and UPCnet (José Luis

Montero) for allowing me to collect the packet traces used in this work and to evaluate

the prototype developed in this thesis in the Catalan Research and Education Network

(Anella Cient́ıfica) and in the UPC access link, respectively.

I also thank NLANR and Endace for giving me the opportunity of doing a research

stay in Hamilton (New Zealand) at the beginning of my Ph.D. In particular, I wish to

thank Jörg Micheel for his help and hospitality during my stay.

I would like to acknowledge the Intel Research Council for funding three years of

this research through a University Research Grant. This work was also funded in part

by the Spanish Ministry of Education under contracts TSI2005-07520-C03-02 (CEPOS)

and TEC2005-08051-C03-01 (CATARO).

I will always be grateful to my parents and sister for their unconditional support

and encouragement. Finally, I would like to express my deepest gratitude to Montse.

Gràcies per fer-me costat durant tot aquest temps i per la teva ajuda, especialment en

els moments més dif́ıcils.

Abstract

Monitoring and mining real-time network data streams are crucial operations for man-

aging and operating data networks. The information that network operators desire to

extract from the network traffic is of different size, granularity and accuracy depending

on the measurement task (e.g., relevant data for capacity planning and intrusion detec-

tion are very different). To satisfy these different demands, a new class of monitoring

systems is emerging to handle multiple and arbitrary monitoring applications.

Such systems must inevitably cope with the effects of continuous overload situations

due to the large volumes, high data rates and bursty nature of the network traffic. These

overload situations can severely compromise the accuracy and effectiveness of monitoring

systems, when their results are most valuable to network operators.

In this thesis, we propose a technique called load shedding as an effective and low-cost

alternative to overprovisioning in network monitoring systems. It allows these systems to

handle efficiently overload situations in the presence of multiple, arbitrary and competing

monitoring applications. We present the design and evaluation of a predictive load

shedding scheme that can shed excess load in front of extreme traffic conditions and

maintain the accuracy of the monitoring applications within bounds defined by end users,

while assuring a fair allocation of computing resources to non-cooperative applications.

The main novelty of our scheme is that it considers monitoring applications as black

boxes, with arbitrary (and highly variable) input traffic and processing cost. Without

any explicit knowledge of the application internals, the proposed scheme extracts a set

of features from the traffic streams to build an on-line prediction model of the resource

requirements of each monitoring application, which is used to anticipate overload situa-

tions and control the overall resource usage by sampling the input packet streams. This

way, the monitoring system preserves a high degree of flexibility, increasing the range of

applications and network scenarios where it can be used.

Since not all monitoring applications are robust against sampling, we then extend

our load shedding scheme to support custom load shedding methods defined by end

v

vi

users, in order to provide a generic solution for arbitrary monitoring applications. Our

scheme allows the monitoring system to safely delegate the task of shedding excess load

to the applications and still guarantee fairness of service with non-cooperative users.

We implemented our load shedding scheme in an existing network monitoring system

and deployed it in a research ISP network. We present experimental evidence of the per-

formance and robustness of our system with several concurrent monitoring applications

during long-lived executions and using real-world traffic traces.

Resum

El monitoratge i l’anàlisi de fluxos continus de tràfic són operacions fonamentals per a la

gestió i l’operació de les xarxes de computadors. La informació que els operadors de xarxa

desitgen extreure del tràfic és de diferent mida, granularitat i precisió segons el tipus de

mesura (p.ex. la informació rellevant per a les tasques de planificació de capacitat és

molt diferent a la necessària per a la detecció d’intrusions). Amb l’objectiu de satisfer

aquestes diferents necessitats, actualment està emergint una nova classe de sistemes

de monitoratge de xarxa que permet l’execució de múltiples aplicacions arbitràries de

monitoratge de tràfic.

Aquests sistemes han d’enfrontar-se inevitablement als efectes de situacions de so-

brecàrrega continues degudes a l’elevat volum de dades, les altes taxes de transmissió i

a la naturalesa variable del tràfic de xarxa. Aquestes situacions de sobrecàrrega poden

comprometre severament la precisió i l’efectivitat dels sistemes de monitoratge, precisa-

ment quan els seus resultats són més valuosos per als operadors de xarxa.

En aquesta tesi es proposa una tècnica anomenada load shedding (o despreniment de

càrrega) com una alternativa efectiva i de baix cost al sobredimensionament de recursos

en sistemes de monitorage de xarxa. Aquesta tècnica permet gestionar eficientment les

situacions de sobrecàrrega en la presència de múltiples aplicacions arbitràries de moni-

toratge que competeixen pels mateixos recursos compartits. Aquest treball presenta el

disseny i l’avaluació d’un esquema de load shedding predictiu que és capaç de desprendre’s

de l’excés de càrrega davant de condicions extremes de tràfic i de mantenir la precisió de

les aplicacions de monitoratge dins d’uns ĺımits definits pels usuaris finals, mentre que

assegura una distribució equitativa dels recursos a aplicacions no cooperatives.

La principal novetat d’aquest esquema és que considera les aplicacions de monitoratge

com a caixes negres, amb tràfic d’entrada i cost de processament arbitraris i molt vari-

ables. Sense cap coneixement expĺıcit dels detalls interns de les aplicacions, l’esquema

proposat extreu un conjunt d’atributs del tràfic d’entrada i construeix un model de

predicció en ĺınia de la demanda de recursos de cada aplicació. Aquest model és utilitzat

vii

viii

per anticipar les situacions de sobrecàrrega i controlar l’ús global de recursos mitjançant

el mostreig del tràfic d’entrada. D’aquesta manera, el sistema de monitoratge preserva

un alt grau de flexibilitat, que incrementa el rang d’aplicacions i escenaris de xarxa en

els que pot ser utilitzat.

Donat que no totes les aplicacions de monitoratge són robustes al mostratge de tràfic,

també es presenta una extensió de l’esquema de load shedding per tal de suportar mètodes

de load shedding definits pels usuaris finals, amb l’objectiu de proporcionar una solució

genèrica per a aplicacions arbitràries de monitoratge. L’esquema proposat permet al

sistema de monitoratge delegar de forma segura la tasca de despreniment de càrrega

a les aplicacions, i tot i aix́ı garantir un servei equitatiu en la presència d’usuaris no

cooperatius.

L’esquema de load shedding ha estat implantat en un sistema de monitoratge de

xarxa existent i desplegat en una xarxa acadèmica i de recerca. Aquesta tesi presenta

evidències experimentals del rendiment i la robustesa del sistema proposat, amb diverses

aplicacions de monitoratge concurrents, durant execucions de llarga durada i utilitzant

traces de tràfic de xarxes reals.

Contents

List of Figures xiii

List of Tables xvii

List of Acronyms xix

1 Introduction 1

1.1 Motivation and Challenges . 1

1.2 Problem Space . 4

1.3 Thesis Overview and Contributions . 7

1.4 Thesis Outline . 10

2 Background 13

2.1 The CoMo System . 13

2.1.1 High-level Architecture . 14

2.1.2 Core Processes . 15

2.1.3 Plug-in Modules . 16

2.2 Description of the Queries . 17

2.2.1 Accuracy metrics . 19

2.3 Datasets . 20

2.3.1 Testbed scenarios . 20

2.3.2 Packet traces . 21

2.3.3 Online executions . 22

2.4 Definitions . 23

3 Prediction System 25

3.1 System Overview . 25

3.2 Prediction Methodology . 28

ix

x CONTENTS

3.2.1 Feature Extraction . 28

3.2.2 Multiple Linear Regression . 30

3.2.3 Feature Selection . 33

3.2.4 Measurement of System Resources 35

3.3 Validation . 36

3.3.1 Prediction Parameters . 37

3.3.2 Prediction Accuracy . 39

3.4 Experimental Evaluation . 41

3.4.1 Alternative Approaches . 43

3.4.2 Performance under Normal Traffic 45

3.4.3 Robustness against Traffic Anomalies 46

3.4.4 Prediction Cost . 47

3.5 Chapter Summary . 49

4 Load Shedding System 51

4.1 When to Shed Load . 51

4.2 Where and How to Shed Load . 53

4.3 How Much Load to Shed . 54

4.4 Correctness of the CPU Measurements . 55

4.5 Evaluation and Operational Results . 56

4.5.1 Alternative Approaches . 56

4.5.2 Performance . 57

4.5.3 Accuracy . 59

4.5.4 Overhead . 59

4.5.5 Robustness against Traffic Anomalies 60

4.6 Chapter Summary . 62

5 Fairness of Service and Nash Equilibrium 65

5.1 Objectives and Desirable Features . 66

5.2 Max-Min Fairness . 66

5.2.1 Fairness in terms of CPU Cycles 67

5.2.2 Fairness in terms of Packet Access 68

5.2.3 Online Algorithm . 69

5.3 System’s Nash Equilibrium . 70

5.4 Simulation Results . 73

5.5 Experimental Evaluation . 74

CONTENTS xi

5.5.1 Validation of the Simulation Results 75

5.5.2 Analysis of the Minimum Sampling Rates 76

5.5.3 Performance Evaluation with a Real Set of Queries 76

5.5.4 Overhead . 79

5.6 Chapter Summary . 80

6 Custom Load Shedding 83

6.1 Proposed Method . 83

6.1.1 Enforcement Policy . 84

6.1.2 Implementation . 86

6.1.3 Limitations . 88

6.2 Validation . 89

6.2.1 Validation Scenario . 90

6.2.2 System Accuracy . 91

6.3 Experimental Evaluation . 93

6.3.1 Performance under Normal Traffic 94

6.3.2 Robustness against Traffic Anomalies 96

6.3.3 Effects of Query Arrivals . 97

6.3.4 Robustness against Selfish Queries 98

6.3.5 Robustness against Buggy Queries 100

6.4 Operational Experiences . 100

6.4.1 Online Performance . 101

6.5 Chapter Summary . 103

7 Related Work 105

7.1 Network Monitoring Systems . 105

7.2 Data Stream Management Systems . 109

7.2.1 Aurora . 110

7.2.2 STREAM . 112

7.2.3 TelegraphCQ . 113

7.2.4 Borealis . 115

7.2.5 Control-based Load Shedding . 116

7.3 Other Real-Time Systems . 117

7.3.1 SEDA . 118

7.3.2 VuSystem . 119

8 Conclusions 121

xii CONTENTS

Bibliography 125

Appendices 137

A Publications 137

A.1 Related Publications . 137

A.2 Other Publications . 138

List of Figures

2.1 Data flow in the CoMo system . 14

2.2 Average cost per second of the CoMo queries (CESCA-II trace) 18

2.3 Testbed scenario . 20

3.1 CPU usage of an “unknown” query in the presence of an artificially gen-

erated anomaly compared to the number of packets, bytes and flows . . . 26

3.2 Prediction and load shedding subsystem 27

3.3 Scatter plot of the CPU usage versus the number of packets in the batch

(flows query) . 31

3.4 Simple Linear Regression versus Multiple Linear Regression predictions

over time (flows query) . 32

3.5 Prediction error versus cost as a function of the amount of history used

to compute the Multiple Linear Regression (left) and as a function of the

Fast Correlation-Based Filter threshold (right) 38

3.6 Prediction error broken down by query as a function of the amount of

history used to compute the Multiple Linear Regression (left) and as a

function of the Fast Correlation-Based Filter threshold (right) 39

3.7 Prediction error over time in CESCA-I (left) and CESCA-II (right) traces 40

3.8 Prediction error over time in ABILENE (left) and CENIC (right) traces . 40

3.9 EWMA versus SLR predictions for the counter query (the ‘actual’ line

almost completely overlaps with the ‘SLR’ line) 44

3.10 EWMA prediction error as a function of the weight α 44

3.11 EWMA (left) and SLR (right) prediction error over time (CESCA-II trace) 45

3.12 MLR+FCBF maximum prediction error (left) and 95th-percentile of the

error over time (CESCA-II trace) . 45

3.13 Exponentially Weighted Moving Average prediction in the presence of

Distributed Denial of Service attacks (flows query) 47

xiii

xiv LIST OF FIGURES

3.14 Simple Linear Regression prediction in the presence of Distributed Denial

of Service attacks (flows query) . 48

3.15 Multiple Linear Regression + Fast Correlation-Based Filter prediction in

the presence of Distributed Denial of Service attacks (flows query) 48

4.1 Cumulative Distribution Function of the CPU usage per batch 57

4.2 Link load and packet drops during the evaluation of each load shedding

method . 58

4.3 Average error in the answer of the queries 60

4.4 CPU usage after load shedding (stacked) and estimated CPU usage (pre-

dictive execution) . 61

4.5 CPU usage (left) and errors in the query results (right) with and without

load shedding (CESCA-I trace) . 62

4.6 CPU usage (left) and errors in the query results (right) with and without

load shedding (CESCA-II trace) . 62

5.1 Difference in the average (left) and minimum (right) accuracy between

the mmfs pkt and mmfs cpu strategies when running 1 heavy and 10

light queries in a simulated environment. Positive differences show the

superiority of mmfs pkt over mmfs cpu 74

5.2 Difference in the average (left) and minimum (right) accuracy between

the mmfs pkt and mmfs cpu strategies when running 1 trace and 10

counter queries. Positive differences show the superiority of mmfs pkt

over mmfs cpu . 75

5.3 Accuracy of a generic query . 77

5.4 Average (left) and minimum (right) accuracy of various load shedding

strategies when running a representative set of queries with fixed mini-

mum sampling rate constraints . 79

5.5 Autofocus accuracy over time when K = 0.2 80

6.1 Average prediction and CPU usage of a signature-based P2P flow detector

query when using different load shedding methods 85

6.2 Accuracy error of a signature-based P2P flow detector query when using

different load shedding methods . 87

6.3 Actual versus expected resource consumption of a signature-based P2P

flow detector query (before correction) . 87

LIST OF FIGURES xv

6.4 Accuracy as a function of the sampling rate (high-watermark, top-k and

p2p-detector queries using packet sampling) 91

6.5 Average (left) and minimum (right) accuracy of the system at increasing

overload levels . 92

6.6 Performance of a network monitoring system that does not support cus-

tom load shedding and implements the eq srates strategy 94

6.7 Performance of a network monitoring system that supports custom load

shedding and implements the mmfs pkt strategy 95

6.8 Performance of the network monitoring system in the presence of massive

DDoS attacks . 97

6.9 Performance of the network monitoring system in front of new query arrivals 98

6.10 Performance of the network monitoring system when receiving a selfish

version of the p2p-detector query every 3 minutes 99

6.11 Performance of the network monitoring system when receiving a buggy

version of the p2p-detector query every 3 minutes 101

6.12 CPU usage after load shedding (stacked) and predicted load over time . . 102

6.13 Traffic load, buffer occupation and DAG drops (left) and number of new

connections (right) over time . 103

6.14 Overall system accuracy and average load shedding rate over time 103

xvi LIST OF FIGURES

List of Tables

1.1 Resource management problem space . 5

2.1 Summary of the callbacks and core processes that call them 17

2.2 Description of the CoMo queries . 18

2.3 Traces in our dataset . 21

2.4 Online executions . 22

3.1 Set of traffic aggregates (built from combinations of TCP/IP header fields)

used by the prediction . 29

3.2 Breakdown of prediction error by query (5 executions) 42

3.3 EWMA, SLR and MLR+FCBF error statistics per query (5 executions) . 46

3.4 Prediction overhead (5 executions) . 49

4.1 Breakdown of the accuracy error of the different load shedding methods

by query (mean ± stdev) . 59

5.1 Notation and definitions . 67

5.2 Sampling rate constraints (mq) and average accuracy when resource de-

mands are twice the system capacity (K = 0.5) 76

6.1 Queries used in the validation . 90

6.2 Breakdown of the accuracy by query (mean ± stdev) 104

xvii

xviii LIST OF TABLES

List of Acronyms

ADSL Asymmetric Digital Subscriber Line

AMP Active Measurement Project (NLANR)

API Application Programming Interface

BPF Berkeley Packet Filter

BSD Berkeley Software Distribution

CCABA Advanced Broadband Communications Center

CDF Cumulative Distribution Function

CESCA Centre de Supercomputació de Catalunya

CoMo Continuous Monitoring

CPU Central Processing Unit

CQL Continuous Query Language

DBMS Database Management System

DDoS Distributed Denial-of-Service attack

DMA Direct Memory Access

DoS Denial-of-Service attack

DSMS Data Stream Management System

EWMA Exponentially Weighted Moving Average

FCBF Fast Correlation-Based Filter

FIFO First In First Out

FIT Feasible Input Table (Borealis)

FLAME Flexible Lightweight Active Measurement Environment

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

ISP Internet Service Provider

LSRM Load Shedding Road Map (Aurora)

xix

xx LIST OF ACRONYMS

MLR Multiple Linear Regression

MMFS-CPU Max-Min Fair Share in terms of CPU Access

MMFS-PKT Max-Min Fair Share in terms of Packet Access

NE Nash Equilibrium

NIC Network Interface Card

NIMI National Internet Measurement Infrastructure

NLANR National Laboratory for Applied Network Research

OLS Ordinary Least Squares

P2P Peer-to-Peer

PC Personal Computer

PMA Passive Measurement and Analysis project (NLANR)

PMC Performance-Monitoring Counter

PSAMP Packet Sampling Working Group (IETF)

QoS Quality of Service

RFC Request for Comments

S&H Sample and Hold

SEDA Staged Event-Driven Architecture

SLR Simple Linear Regression

SNMP Simple Network Management Protocol

SONET Synchronous Optical Networking

SQL Structured Query Language

STREAM Stanford Stream Datamanager

SVD Singular Value Decomposition

SYN Synchronize Packet (TCP)

TCP Transmission Control Protocol

TSC Time-Stamp Counter

UPC Universitat Politècnica de Catalunya

Chapter 1

Introduction

Network monitoring applications are prone to continuous and drastic overload situa-

tions, due to the ever-increasing link speeds, the complexity of traffic analysis tasks, the

presence of anomalous traffic and network attacks or simply given the bursty nature of

the network traffic. Overload situations can have a severe and unpredictable impact on

the accuracy of monitoring applications, right when they are most valuable to network

operators. In this thesis, we address the problem of how to efficiently handle extreme

overload situations in network monitoring, given that the alternative of overprovisioning

monitoring systems to handle peak rates or any possible traffic mix is simply not possible

or extremely expensive.

This chapter discusses the motivation behind this dissertation and presents the main

challenges involved in the management of overload situations in network monitoring

systems. It also introduces the problem space and highlights the main contributions of

this thesis. The chapter concludes with an outline of the structure of this document.

1.1 Motivation and Challenges

Data networks are continuously evolving and becoming more difficult to manage. As a

result, in recent years network monitoring has become an activity of vital importance for

operating and managing data networks. Network operators are increasingly deploying

network monitoring infrastructures to collect and analyze the traffic from operational

networks in real-time. The information they provide is crucial for the tasks of traffic

engineering, capacity planning, traffic accounting and classification, anomaly and intru-

sion detection, fault diagnosis and troubleshooting, evaluation of network performance,

usage-based charging and billing, among others.

1

2 CHAPTER 1. INTRODUCTION

However, developing and deploying network monitoring applications is often a com-

plex task. On the one hand, this type of applications has to deal with continuous traffic

streams from a large number of high-speed data sources (e.g., 10 Gb/s links) with highly

variable data rates (e.g., self-similar traffic [92, 109]). On the other hand, they have to

operate across a wide range of network devices, transport technologies, hardware archi-

tectures and system configurations. For example, different measurement devices (e.g.,

standard NICs [129], DAG cards [53], network processors [135, 59], NetFlow-enabled

routers [35] or SNMP-based collectors [29]) implement different interfaces to collect and

process the network traffic traversing a network monitoring system.

Consequently, the developers of each single network monitoring application have to

consider most of these particularities when building their applications, thus increasing

their complexity, development times and probability of introducing undesired errors.

Therefore, the main complexity (and amount of code) of these applications is often ded-

icated to deal with these lateral aspects, which are usually common to any monitoring

application (e.g., traffic collection, filtering, address anonymization, resource manage-

ment, etc.).

At the same time, there is an increasing demand for open monitoring infrastructures

that allow the measurement community to fast prototype new monitoring applications

and share measurement data from multiple network viewpoints in order to test and

validate novel traffic analysis methods and to study the properties of network traffic or

the behavior of network protocols [36].

In order to address these issues, the network measurement research community has

put forward several proposals aiming at reducing the burden on the developers of mon-

itoring applications. A common approach among the various proposals is to abstract

away the inner workings of the measurement infrastructure [40, 69] and allow arbitrary

monitoring applications, developed independently by third parties, to run effectively on

a shared measurement infrastructure [5, 123, 69, 75]. These systems differ from previous

designs in that they are not tailor made for a single specific application, but instead they

can handle multiple, concurrent monitoring applications.

The main challenge in these systems is to keep up with ever-increasing input data

rates and processing requirements. Data rates are driven by the increase in network link

speeds, application demands and the number of end-hosts in the network. The processing

requirements are growing to satisfy the demands from network operators of obtaining

an ever more detailed representation of the traffic traversing the network to improve the

end-user experience and the overall “health” of the infrastructure [64, 107, 106]. For

example, there is a growing interest for monitoring applications that require tracking

1.1. MOTIVATION AND CHALLENGES 3

and inspection of a large number of concurrent network connections for intrusion and

anomaly detection purposes [108, 119].

This challenge is made even harder as network operators expect the monitoring

applications to return accurate enough results in the presence of extreme or anomalous

traffic patterns, when the system is under additional stress. In this context, the ability

to adapt in a timely fashion the resource consumption of a monitoring system in front of

overload situations is crucial to achieve robustness against extreme traffic conditions or

other network anomalies that could be malicious (e.g., DoS attacks or worm infections)

or unexpected (e.g., network misconfigurations or flash crowds). During these events, the

resource requirements of the monitoring applications could easily overwhelm the system

resources leading to unpredictable results, or even interrupted service, right when the

measurements are the most valuable to the network operators.

Unfortunately, previous network monitoring system designs do not directly address

the serious problem of how to efficiently handle overload situations, when resource de-

mands clearly exceed the system capacity. The alternative of overprovisioning the system

to handle peak rates or worst case traffic mixes has two major drawbacks. First, it is not

economically feasible in general and can result in a highly underutilized system based

on an extremely pessimistic estimation of workload [79]. For example, it would require

dimensioning the system buffers to absorb sustained peaks in the case of anomalies or

extreme traffic mixes. Second, it would necessarily lead to reduce the flexibility and

possible applications of the monitoring system [85].

Load shedding has been recently proposed as an effective alternative to overprovision-

ing for handling overload situations in other real-time systems [133, 128, 10, 118, 131].

Load shedding is the process of dropping excess load in such a way that the system

remains stable and no overflow occurs in the system buffers. The idea of load shedding

originally comes from the field of electric power management, where it consists of inten-

tionally disconnecting the electric current on certain lines when the demand becomes

greater than the supply [67].

In this thesis, we address the problem of how to efficiently and fairly shed excess load

from an arbitrary set of network monitoring applications while keeping the measurement

error within bounds defined by the end users.

There are three main requirements that make this problem particularly challenging.

First, the system operates in real-time with live packet streams. Therefore, the load

shedding scheme must be lightweight and quickly adapt to sudden overload situations

to prevent undesired packet losses. Second, the monitoring applications are unaware of

other applications running on the same system and cannot be assumed to behave in a

4 CHAPTER 1. INTRODUCTION

cooperative fashion. Instead, they will always try to obtain the maximum share of the

system resources. The system however must ensure fairness of service and avoid starva-

tion of any application, while trying to satisfy their accuracy requirements. Third, to

provide developers with maximum flexibility, the system has to support arbitrary mon-

itoring applications for which the resource demands are unknown a priori. In addition,

the input data (i.e., the network traffic) is continuous, highly variable and unpredictable

in nature. As a consequence, the system cannot make any assumptions about the input

traffic nor use any explicit knowledge of the cost of the monitoring applications to decide,

for example, when it is the right time to shed load.

We focus our study on the CoMo (Continuous Monitoring) system [69], a general-

purpose network monitoring platform that supports multiple, competing monitoring

applications. CoMo provides a common framework that abstracts away the main dif-

ficulties of dealing with the different hardware technologies used to collect and process

the network traffic. The key differential aspect from previous designs is that the system

allows users to express arbitrary monitoring applications using imperative programming

languages. CoMo is open source and is publicly available under a BSD-style license [130].

1.2 Problem Space

In a distributed network monitoring infrastructure, there are two possible resource man-

agement actions to address overload situations. The first consists of trying to solve

the problem locally (e.g., to apply sampling where an overload situation is detected).

The second option is to take a global action (e.g., to distribute excess load among the

monitors of the infrastructure). If no actions are taken in a timely manner, queues will

form increasing response delays and, eventually, the platform will experience uncon-

trolled packet losses, leading to a severe and unpredictable impact on the accuracy of

the results.

Local resource management techniques are needed to manage the available system

resources in a single monitor, according to a given policy. For example, such a policy

might reduce the response times of monitoring applications or traffic queries, while

minimizing the impact of overload situations on the accuracy of the results. Admission

control (e.g., rejecting incoming queries) is not an option, since queries already running

in the system may also exceed the system capacity. We refer to this problem as the local

resource management problem.

Given that new network monitoring platforms are distributed systems in nature,

global decisions to overcome overload situations can also be made. Global resource

1.2. PROBLEM SPACE 5

Static (offline) Dynamic (online)

Local
• Static assignment of queries

• Resource provisioning

• Load shedding

• Query scheduling

Global
• Placement of monitors

• Placement of queries

• Dissemination of queries

• Load distribution

Table 1.1: Resource management problem space

management techniques are used to distribute the monitoring applications among the

multiple monitoring systems in order to balance the load of the infrastructure. However,

traditional load balancing and load sharing approaches used in other contexts are usually

not suitable for network monitoring. The main reason is that neither the incoming traffic

nor most applications can be easily migrated to other monitors, since the interesting

traffic resides on the network where the monitor is attached to. We refer to this problem

as the global resource management problem.

On the other hand, some resource management decisions can be made statically (i.e.,

at configuration time) or dynamically (i.e., at run time). Table 1.1 presents the resource

management problem space in the context of network monitoring systems, which can be

divided into four dimensions according to whether decisions are made offline or online,

and if they are local (i.e., in a single monitor) or global (i.e., involving multiple monitors):

1. The local static resource management problem can be divided into two different sub-

problems: (i) provisioning of system resources (i.e., CPU, memory, I/O bandwidth,

storage space, etc.) according to the properties of the network under study (e.g.,

network bandwidth, traffic characteristics, etc.) and (ii) static planning of a fixed

set of monitoring applications or queries to be executed in the network monitor.

2. The global static resource management problem refers to the placement of both

monitors over the network (i.e., where to place the network monitors according to

a given budget and/or measurement goals) and the static distribution of monitoring

applications or queries over the available monitors (e.g., [126, 18, 77]).

3. The local dynamic resource management problem consists of managing the local

monitoring applications or queries given the available resources to ensure fairness

of service and maximize the utility of the system according to a given policy.

6 CHAPTER 1. INTRODUCTION

4. The global dynamic resource management problem basically refers to how to dis-

tribute the load of the platform among the multiple monitors in an effective and

efficient manner.

Although resource management techniques have been extensively studied in other

contexts, such as operating systems [93, 115, 80], distributed systems [28, 88], real-time

databases [3, 114, 105] or multimedia systems [101, 102], network monitoring systems

have several particularities that render solutions adopted in other contexts unsuitable.

These differences can be summarized as follows:

1. Arbitrary input. Traditional resource management techniques have been designed

for pull-based systems, where data feed rates can be easily managed, given that

the relevant data reside on disk. On the contrary, in network monitoring the input

data is the network traffic, which is generated by external sources that cannot

be controlled by the monitoring system. Network traffic is highly variable and

unpredictable in nature, and typically peak rates are several orders of magnitude

greater than the average traffic. Thus, provisioning a network monitoring system

to handle peak rates is not possible. However, it is usually during these bursts

when the monitoring system is most needed and results are more critical (e.g.,

to detect network attacks or anomalies). For this reason, network operators are

particularly interested in capturing the properties of the traffic during overload

situations.

2. Data rates and volume. The input rates and volume of data in an online net-

work monitoring system are usually extremely high (e.g., 10 Gb/s). Traditional

pull-based systems do not target the high data rates involved in network monitor-

ing. This makes traditional approaches, where data are firstly loaded into static

databases, inviable in this scenario.

3. Arbitrary computations. On the one hand, the load of monitoring applications

heavily depends on the incoming traffic, which is unpredictable in nature. On the

other hand, their resource consumption depends on their actual implementation,

which is also arbitrary. In particular, new network monitoring systems allow users

to express monitoring applications or queries with arbitrary resource requirements

(e.g., written in imperative programming languages). As a result, most applica-

tions do not have a fixed cost per packet. For example, a worm detection query

may be idle for a long period of time until attack traffic appears in the network.

1.3. THESIS OVERVIEW AND CONTRIBUTIONS 7

4. Real-time results. Several pull-based resource management techniques assume that

applications do not have severe real-time requirements. On the contrary, most

network monitoring applications require a timely response, whereas some of them

may even come with an explicit deadline the monitoring system must assure. For

those applications, late results may be useless (e.g., virus and worm detection).

1.3 Thesis Overview and Contributions

This thesis studies the local dynamic resource management problem in the context of

network monitoring (see Table 1.1) and addresses the challenges involved in the man-

agement of overload situations in network monitoring systems (see Section 1.1).

Recently, several research proposals have also addressed these challenges in different

real-time and stream-based systems [128, 10, 118, 54, 87, 85]. The solutions introduced

belong to two broad categories. The first includes approaches that consider a pre-defined

set of metrics and can report approximate results in the case of overload [54, 87, 85]. The

second category includes solutions adopted in the context of Data Stream Management

Systems (DSMS) that define a declarative query language with a small set of operators

for which the resource usage is assumed to be known [128, 10, 118]. In the presence of

overload, operator-specific load shedding techniques are implemented (e.g., selectively

discarding some records, computing approximate summaries) so that the accuracy of the

entire query is preserved within certain bounds.

These solutions present two common limitations: (i) they restrict the types of metrics

that can be extracted from the traffic streams, limiting therefore the possible uses and

applications of these systems, and (ii) they assume explicit knowledge of the cost and

selectivity of each operator, requiring a very careful and time-consuming design and

implementation phase for each of them. In addition, recent studies have reported poor

performance of some DSMS when used for network monitoring purposes [112, 122].

This hinders their deployment in the high-speed networks traditionally targeted by the

network monitoring community.

In order to address these limitations, in this thesis we present a novel load shedding

scheme for network monitoring systems that: (i) it does not require any explicit knowl-

edge of the monitoring applications or the type of computations they perform (e.g., flow

classification, maintaining aggregate counters, pattern search), (ii) it does not rely on

any specific model for the incoming traffic, and (iii) it can operate in real-time in high-

speed networks. This way, we preserve the flexibility of the monitoring system, enabling

fast implementation and deployment of new network monitoring applications.

8 CHAPTER 1. INTRODUCTION

The core of our load shedding scheme consists of the real-time modeling and pre-

diction of the system CPU usage that allows the system to anticipate future bursts in

the resource requirements. Without any knowledge of the computations performed on

the packet streams, the system infers their cost from the relation between a large set

of pre-defined features of the input stream and the actual resource usage. A feature

is a counter that describes a specific property of a sequence of packets (e.g., number of

unique source IP addresses). The intuition behind this method comes from the empirical

observation that the cost of a monitoring application is often dominated by the overhead

of basic operations used to maintain its state (e.g., adding, updating or searching en-

tries), which can be modeled by considering the right set of simple traffic features. The

features we compute on the input stream have the advantage of being lightweight with

a deterministic worst case computational cost, thus introducing a minimum delay in

the operations of the monitoring system. The proposed scheme automatically identifies

those features that best model the resource usage of each monitoring application based

on previous measurements of its resource usage and use them to predict the overall load

of the system. This short-term prediction is used to guide the system on deciding when,

where and how much load to shed.

In the presence of overload, the system can apply several load shedding techniques,

such as packet or flow sampling, to reduce the amount of resources required by the

applications to run. Previous load shedding designs select the drop locations (i.e., the

sampling rate applied to each monitoring application) in such a way that an aggre-

gate performance metric, such as the overall system throughput [127] or utility [128], is

maximized. Therefore, each application should provide a utility function to relate the

usefulness of its results with the sampling rate being applied. This solution however

suffers from serious fairness issues and is not optimal when applied to a non-cooperative

environment, where multiple monitoring applications compete for a finite common re-

source. Thus, it is only suitable for scenarios where the system administrator has com-

plete control over the utility functions or priorities of each application. This problem is

well known in the socio-economic literature as the Tragedy of the Commons [65].

On the other hand, traditional approaches that allocate an equal share of computing

resources or memory to applications [85] can be also unfair, given that different monitor-

ing applications can have very different resource requirements to achieve similar levels

of utility or throughput. For example, a simple application that counts the number of

packets that traverse a network link would require very few cycles to compute accurate

results, while more complex applications, such as signature-based intrusion detection,

would require a much larger amount of resources to obtain the same level of accuracy.

1.3. THESIS OVERVIEW AND CONTRIBUTIONS 9

The load shedding scheme presented in this thesis is based instead on a packet sched-

uler that, with minimal information about the accuracy requirements of the monitoring

applications (e.g., minimum sampling rate the application can tolerate to guarantee a

maximum error in the results), it is able to keep the measurement error within pre-

defined bounds, while ensuring fairness of service in the presence of non-cooperative

applications. The main intuition behind its design is that in network monitoring the

number of processed packets often exhibits a stronger correlation with the accuracy of a

monitoring application than the amount of memory or the number of allocated cycles.

The strategy used by our packet-based scheduler to select the sampling rates has the

appealing feature of having a single Nash Equilibrium when the monitoring applications

provide correct information about their accuracy requirements. That is, in our system

there is no incentive for any non-cooperative application to lie. In contrast, the Nash

Equilibrium in those systems that maximize an aggregate performance metric is when

all applications lie about their resource requirements and selfishly ask for the maximum

amount of resources.

For those queries that are not robust against traffic sampling or that can compute

more accurate results using other load shedding mechanisms, we propose a method that

allows the monitoring system to safely offload the work of shedding excess load onto the

monitoring applications themselves. Similar custom load shedding solutions proposed in

other environments [39] require applications to behave in a collaborative fashion, which

is not possible in a competitive environment. Our method instead is able to operate

in the presence of non-cooperative monitoring applications and to automatically police

applications that do not implement custom load shedding methods properly. This is an

important feature given that non-cooperative applications may fail to shed the correct

amount of load (due to inherent limitations) or refuse to do so (maliciously or due to an

incorrect implementation).

We have integrated our load shedding scheme into the CoMo monitoring system [69]

and deployed it on a research ISP network, where the traffic load and resource require-

ments exceed by far the system capacity. We present long-lived experiments with a

set of concurrent applications that range from maintaining simple counters (e.g., num-

ber of packets, application breakdown) to more complex data structures (e.g., per-flow

classification, ranking of most popular destinations or pattern search). In addition, we

introduced several anomalies into the packet traces to emulate different network attacks

to other systems in the network as well as targeted against the monitoring system itself.

Our results show that, with the load shedding mechanism in place, the system ef-

fectively handles extreme load situations, while being always responsive and preventing

10 CHAPTER 1. INTRODUCTION

uncontrolled packet losses even in the presence of non-cooperative monitoring applica-

tions and anomalous traffic patterns. The results also indicate that a predictive approach

can quickly adapt to overload situations and keep the results of monitoring applications

within acceptable error bounds, as compared to alternative load shedding strategies.

In summary, the main contributions of this thesis are as follows:

• We present the design and implementation of a predictive load shedding scheme

for network monitoring applications that can efficiently handle extreme overload

situations, without requiring explicit knowledge of their internal implementation

and cost, or relying on a specific model for the incoming traffic. We show the

superiority of our scheme as compared to reactive and other predictive approaches.

• We introduce the design of a packet-based scheduler for network monitoring sys-

tems that guarantees fairness of service in the presence of overload situations, while

keeping the measurement error of monitoring applications within bounds defined

by non-cooperative users. We model our system using game theory and demon-

strate that it has a single Nash Equilibrium when all applications provide correct

information about their accuracy requirements.

• We present an extension of our load shedding scheme that allows those monitoring

applications that are not robust against traffic sampling to provide custom-defined

load shedding mechanisms, without compromising the integrity of the monitoring

system and still ensuring fairness of service in a non-cooperative environment.

• We implement our load shedding scheme in an existing network monitoring system

and deploy it in a research ISP network. We present an extensive performance

evaluation of our load shedding scheme when running on both real-world packet

traces and long-lived online executions, where the monitoring system faces extreme

overload situations. We also show the robustness of our system in the presence of

non-cooperative monitoring applications and anomalous traffic patterns.

1.4 Thesis Outline

The rest of this thesis is organized as follows. The next chapter presents the necessary

background, including the basic architecture of our network monitoring system as well

as the set of monitoring applications and datasets used to validate and evaluate its

performance. The following four chapters present the four main contributions of this

thesis. Chapter 3 introduces our prediction method, which constitutes the core of our

1.4. THESIS OUTLINE 11

load shedding scheme, together with a detailed validation and performance evaluation

using real-world packet traces. This chapter is based on our work published in [14, 17].

Chapter 4 describes our load shedding scheme in detail and shows how the output of the

prediction method presented in Chapter 3 is used to guide the system on deciding when,

where and how much load to shed. This chapter also presents the performance of our

monitoring system in an operational research ISP network. Most contents of this chapter

are based on [13], although it also includes some results from [14, 17]. In Chapter 5, we

extend our load shedding scheme to handle non-cooperative monitoring applications and

model our system using game theory. Large portions of this chapter are based on [16].

Chapter 6 describes how users can safely define custom load shedding mechanisms in our

system, along with an extensive performance evaluation of the complete load shedding

scheme with anomalous traffic and selfish applications. This chapter is mainly based

on [15]. Finally, Chapter 7 presents in greater detail the related work, while Chapter 8

concludes the thesis and introduces interesting ideas for future work.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, we describe the basic architecture of the network monitoring system that

serves as a case study to validate and evaluate the load shedding scheme proposed in this

thesis. We also present the set of traffic queries and datasets that are used throughout

the various chapters of this thesis to evaluate the different load shedding proposals. We

conclude this chapter with the definitions of several basic concepts that are frequently

employed in the rest of this document.

2.1 The CoMo System

We chose the CoMo platform (Continuous Monitoring) [69] for developing and evaluating

the load shedding techniques proposed in this thesis. The CoMo system is being devel-

oped by Intel Research, in collaboration with, among others, the Advanced Broadband

Communications Center (CCABA) of the Technical University of Catalonia (UPC).

CoMo is an open-source passive network monitoring system that allows for fast im-

plementation and deployment of network monitoring applications. CoMo has been de-

signed to be the basic building block of an open network monitoring infrastructure that

will allow researchers and network operators to easily process and share network traffic

statistics over multiple sites.

CoMo follows a modular approach where users can easily define traffic queries as plug-

in modules1 written in the C language, making use of a feature-rich API provided by the

core platform. Users are also required to specify a simple stateless filter to be applied

to the incoming packet stream (it could be all the packets) as well as the granularity

1In the rest of this thesis, the terms monitoring application, plug-in module and query are used
interchangeably.

13

14 CHAPTER 2. BACKGROUND

Figure 2.1: Data flow in the CoMo system

of the measurements, hereafter called measurement interval (i.e., the time interval that

will be used to report continuous query results). All complex stateful computations are

then contained within the plug-in module code.

In this section, we describe the high-level architecture of CoMo. Further details

about the CoMo system and its architecture are available in [71, 68, 69]. The source

code is publicly available at [130].

2.1.1 High-level Architecture

The architecture of CoMo is divided in two main components as shown in Figure 2.1. On

the one hand, the core processes (gray boxes) control the data path through the CoMo

system and perform all management operations common to any monitoring application

(e.g., traffic collection, filtering, memory management, storage, etc.). On the other

hand, the plug-in modules (white boxes) contain the code needed to compute a specific

traffic metric or even complex monitoring applications, such as systems for intrusion

and anomaly detection, traffic accounting, traffic classification, network performance

evaluation, billing and pricing, etc. While the core processes are implemented by a

core team of developers and are optimized to operate in high-speed networks, the plug-

in modules are written by end users and thus can run sub-optimally or even contain

implementation bugs.

Figure 2.1 also illustrates the data flow across the CoMo system. On the left side,

CoMo collects the network traffic from one or several links. This traffic is processed

by a set of core processes and finally stored onto hard disks. The modules are seen

by these processes just as a set of functions that transform the input data streams to

2.1. THE COMO SYSTEM 15

user-defined traffic metrics or processed measurement data as they traverse the system.

On the right side, users can retrieve the results of their plug-in modules by querying the

CoMo systems.

In order to provide developers with maximum flexibility, CoMo does not restrict the

type of computations a plug-in module can perform nor the data structures it can use.

As a consequence, any load shedding scheme for CoMo must operate only with external

observations of the resource requirements of the modules, because the platform considers

them as black boxes.

Moreover, the CoMo system is open in the sense that any user can submit a plug-in

module to the network infrastructure and cause arbitrary resource consumption at any

time. Therefore, such an open infrastructure must manage its resources carefully in order

to assure fairness of service and offer a graceful performance degradation in the presence

of overload. The resource management problem is even harder considering that the input

network traffic is also arbitrary and bursty in nature, with sustained peaks that can be

orders of magnitude higher than the average traffic. Thus, it is also important that the

load shedding scheme in CoMo does not rely on a specific model for the incoming traffic.

2.1.2 Core Processes

The core system is divided into four main processes as illustrated in Figure 2.1. Two basic

guidelines have driven the distribution of functionalities among the core processes [71].

First, functionalities with stringent real-time requirements (e.g., packet capture or disk

access) are assigned to a single process (capture and storage, respectively). Other pro-

cesses instead operate in a best-effort manner (e.g., query) or with less stringent time

requirements (e.g., export). Second, each hardware device is assigned to a single pro-

cess. For example, the capture process is in charge of the network sniffers, while storage

controls the disk array. Another important feature of this architecture is the decou-

pling between real-time tasks and user driven tasks, which allows CoMo to control more

efficiently the system resources. This is visualized by the vertical lines in Figure 2.1.

The capture process is responsible for traffic collection and filtering. It supports

standard NIC cards accessed via the Berkeley Packet Filter [96] and libpcap API [129],

dedicated packet capture cards for high-speed links, such as Endace DAG cards [53], raw

NetFlow [35] and sFlow [111] streams from routers and switches, and 802.11 wireless

devices operating in RF monitor mode. CoMo converts all these incoming data streams

in a unified packet stream [69] that is passed through a filter to identify the modules that

are interested in processing each packet. Next, the capture process delivers the selected

16 CHAPTER 2. BACKGROUND

packets to the modules, which process them and update their internal data structures. At

each measurement interval, capture sends the content of the data structures maintained

by the modules to the export process. This decouples the real-time requirements of

capture that deals with incoming packets at line rate from storage and user-driven tasks.

The export process is in charge of those long-term analysis tasks that have less time

constrains. The behavior of export is very similar to that of capture with the difference

that it handles state information of the modules rather than incoming packets. At each

measurement interval, the export process receives processed records from capture and

delivers them to the modules for further processing. As opposed to capture, the export

process does not flush periodically the data, but instead it needs to be instructed by the

module. In particular, a module can request the export process to store the data or to

maintain long-term information.

Finally, the storage process is responsible for storing to the hard disk the data main-

tained by the export process when requested by a module, while the query process receives

user requests for module results, retrieves the relevant data from disk via the storage

process and returns them to the user.

2.1.3 Plug-in Modules

The monitoring applications in CoMo are provided as plug-in modules written in the

C language. A module can be seen as a filter:function pair, where the filter selects the

packets of interest to the module and the function specifies the action to be performed on

the selected packets. The module can also define a measurement interval that indicates

how frequently the state data maintained by capture are flushed to the export process.

The filter is provided in the module configuration and executed by the capture process

for each collected packet, while the function is implemented as a shared object with a

set of standardized entry points (“callbacks”). The callback functions are executed in a

pre-defined sequence by the capture, export and query core processes. Table 2.1 provides

a brief summary of the most representative callbacks.

The check() and update() callbacks are used by the module to process the packets

that matched the filter rule and to update its internal data structures. These data

structures are flushed at the end of the measurement interval and their contents are sent

to the export process in the form of tuples. Then, export calls the export() function

for each received tuple, which is used by the module to maintain long-term information.

To indicate which entries have to be stored or discarded in export, the module uses the

action() callback, while the exact information to be stored is provided by the store()

2.2. DESCRIPTION OF THE QUERIES 17

Callback Description Process

check() Stateful filters
capture

update() Packet processing
export() Processes tuples sent by capture

exportaction() Decides what to do with a record
store() Stores records to disk
load() Loads records from disk

query
print() Formats records

Table 2.1: Summary of the callbacks and core processes that call them

callback. Finally, the query process uses the load() and print() callbacks to return

the module results when a user request is received.

It is important to observe that the core processes are agnostic to the state that each

module computes. Core processes just provide the packets to the modules and take care

of scheduling, policing and resource management tasks.

2.2 Description of the Queries

Despite the fact that the actual metric computed by the query is not relevant to the load

shedding scheme proposed in this thesis (our system considers all queries as black boxes)

we are interested in considering a wide range of queries when performing the evaluation.

In this thesis, we have selected a set of queries that are part of the standard distri-

bution of CoMo. We just modified their source code in order to allow them to estimate

their unsampled output when load shedding is performed. In most cases, this modifi-

cation was simply done by multiplying the metrics they compute by the inverse of the

applied sampling rate. We also implemented three additional queries (uni-dimensional

autofocus [55], super-sources [139] and p2p-detector [121, 83]) that make use of more

complex algorithms and data structures.

Table 2.2 provides a brief summary of the queries.2 Three queries (counter, appli-

cation and high-watermark) maintain simple arrays of counters depending on the times-

tamps of the packets (and port numbers for application). The cost of running these

queries is therefore driven by the number of packets. The trace query stores the full pay-

load of all packets that match a stateless filter rule and therefore the cost depends on the

number of bytes to be stored. The query pattern-search stores all packets that contain a

given string, while p2p-detector combines pattern search with the techniques described

in [121, 83] to identify those flows belonging to a P2P application. Both queries use the

2The source code of the queries used in this thesis is available at http://como.sourceforge.net.

http://como.sourceforge.net

18 CHAPTER 2. BACKGROUND

Query Description Method Cost

application Port-based application classification packet low
autofocus High volume traffic clusters per subnet [55] packet med
counter Traffic load in packets and bytes packet low
flows Per-flow classification and number of active flows flow low
high-watermark High watermark of link utilization over time packet low
p2p-detector Signature-based P2P detector [121, 83] packet high
pattern-search Identification of byte sequences in the payload [23] packet high
super-sources Detection of sources with largest fan-out [139] flow med
top-k Ranking of the top-k destination IP addresses [12] packet low
trace Full-payload packet collection packet med

Table 2.2: Description of the CoMo queries

a
p
p
lic

a
ti
o
n

a
u
to

fo
c
u
s

c
o
u
n
te

r

fl
o
w

s

h
ig

h
-w

a
te

rm
a
rk

p
2
p
-d

e
te

c
to

r

p
a
tt
e
rn

-s
e
a
rc

h

s
u
p
e
r-

s
o
u
rc

e
s

to
p
-k

tr
a
c
e

0

1

2

3

x108

43

44

C
P

U
 c

o
s
t

(c
y
c
le

s
/s

)

Figure 2.2: Average cost per second of the CoMo queries (CESCA-II trace)

Boyer-Moore algorithm [23] where the cost is linear with the number of bytes processed.

The flows and top-k queries perform a flow classification and maintain a large number

of per-flow counters for all the flows (in a way similar to NetFlow) or just the ones

that exchanged the largest number of bytes, respectively. The cost of these two queries

depends on the number of flows in the packet stream but also on the details of the data

structures used for the classification. Finally, the queries autofocus (uni-dimensional)

and super-sources report the subnet clusters that generated more traffic [55] and the

source IP addresses with largest fan-out [139], respectively. Figure 2.2 shows the cost of

each query when running on the CESCA-II dataset, which is described in Section 2.3.

All queries use packet sampling, with the exception of flows and super-sources that

use flow sampling instead. Packet sampling consists of randomly selecting packets from

the input streams with probability p (i.e., the sampling rate), while flow sampling consists

2.2. DESCRIPTION OF THE QUERIES 19

of randomly selecting entire flows, rather than single packets, with probability p.

We believe that the set of queries we have chosen form a representative set of typical

uses of a real-time network monitoring system. They present different resource usage

profiles (CPU, memory and disk bandwidth) for the same input traffic and use different

data structures to maintain their state (e.g., aggregated counters, hash tables, sorted

lists, binary trees, bloom filters, bitmaps, etc.). In this thesis, we will show that our

load shedding approach is general enough to handle efficiently all these different cases

in normal and extreme traffic scenarios.

2.2.1 Accuracy metrics

In this thesis, we use the error of the queries as a performance metric to evaluate the

different load shedding proposals. In the case of the counter, flows and high-watermark

queries, we measure the relative error in the number of packets and bytes, flows, and in

the high-watermark value, respectively. The error of the application query is measured

as a weighted average of the relative error in the number of packets and bytes across

all applications. The relative error is defined as the absolute value of one minus the

ratio of the estimated and the actual output of a query, where the actual value in our

experiments is obtained from a complete packet trace.

In order to compute the error of the top-k query, we use the detection performance

metric proposed in [12], which is defined as the number of misranked flow pairs, where

the first element of a pair is in the top-k list returned by the query and the second one

is outside the list.

The error of the autofocus query is defined as the absolute value of one minus the

number of clusters in the delta report (see [55]) over the total number of clusters reported

by the query. The error of super-sources is computed as the average relative error in the

fan-out estimations [139], while in the case of the p2p-detector, the error is computed as

one minus the number of flows correctly identified over the total number of flows.

Finally, the error of the pattern-search and trace queries is considered to be propor-

tional to the number of processed packets, given that no standard procedure exists to

recover their unsampled output from sampled streams and to measure their error. In

particular, we compute the error of these two queries as one minus the ratio between

the number of processed packets and the total number of packets. Note however that

usually the output of these two queries is not used directly by a user, but instead is

given as input to other applications. In this case, the error should be measured in terms

of the applications that use the output of these queries.

20 CHAPTER 2. BACKGROUND

CESCA

scenario

UPC

scenario

optical

spli t ters

optical

spli t ters

1 Gbps1 Gbps

PC-1: online CoMo

(2 x DAG 4.3GE)

PC-2: trace collection

(2 x DAG 4.3GE)

clock synchronization

INTERNET

RedIRIS UPC network
Scientific Ring

(~70 inst i tut ions)

Figure 2.3: Testbed scenario

The selection of queries reflects a typical scenario with two classes of queries. The

first class includes queries that compute a specific traffic statistic or metric for which

we know exactly how to measure its accuracy (e.g., application, top-k, etc.). The second

class includes queries (e.g., trace and pattern-search) that do not compute a specific

metric but instead perform a particular task on the incoming traffic.

2.3 Datasets

In this section, we present the network scenarios, packet traces and online executions that

are used to evaluate the performance of the different load shedding techniques presented

in this thesis.

2.3.1 Testbed scenarios

We carried out several experiments in two operational networks. The testbed equipment

in both scenarios consisted of two PCs with an Intel R© PentiumTM 4 running at 3 GHz,

both equipped with a couple of Endace R© DAG 4.3GE cards [53] with two network

interfaces. Through a pair of optic splitters, both computers received an exact copy of

the traffic of the networks under study. Figure 2.3 presents the two network scenarios

and the exact location of the capture points.

CESCA scenario

The first scenario consists of a Gigabit Ethernet link that connects the Catalan Research

and Education Network (also known as the Scientific Ring) to the global Internet via its

2.3. DATASETS 21

Name Date/Time
Trace Pkts Bytes Load (Mbps)
(GB) (M) (GB) avg/max/min

ABILENE 14/Aug/02 09:00-11:00 34.1 532.4 370.6 411.9/623.8/286.2
CENIC 17/Mar/05 15:50-16:20 3.8 59.5 56.0 249.7/936.9/079.1

CESCA-I 02/Nov/05 16:30-17:00 8.3 103.7 81.1 360.5/483.3/197.3
CESCA-II 11/Apr/06 08:00-08:30 30.9 49.4 29.9 133.0/212.2/096.2

UPC-I 07/Nov/07 18:00-18:30 54.7 95.2 53.0 253.5/399.0/177.8

Table 2.3: Traces in our dataset

Spanish counterpart (RedIRIS). The Scientific Ring is managed by the Supercomputing

Center of Catalonia (CESCA) and connects more than seventy Catalan universities

and research centers using many different technologies that range from ADSL to Gigabit

Ethernet [30]. A trace collected at this capture point is publicly available in the NLANR

repository [103]. In this document, we refer to this first scenario as CESCA.

UPC scenario

The second scenario is located at the Gigabit Ethernet access link of the Technical

University of Catalonia (UPC), which connects around 10 campuses, 25 faculties and 40

departments to the Internet through the Scientific Ring. Real-time figures of the traffic

traversing this Gigabit Ethernet link are publicly available at [74]. In this document, we

refer to this second scenario as UPC.

2.3.2 Packet traces

For evaluation purposes, we collected two 30-minute traces from one of the link directions

of the CESCA scenario in November 2005 and April 2006. In order to capture the

traces, we only used one of the two PCs of our testbed equipment. In the first trace,

we only collected the packet headers, while in the second one the full packet payloads

were acquired. We refer to these traces as CESCA-I and CESCA-II, respectively. In

addition, we captured a third 30-minute unidirectional trace with the entire payloads

from the UPC scenario in November 2007. We refer to this trace as UPC-I. Full-payload

traces are needed to study those queries that require the packet contents to operate (e.g.,

pattern-search and p2p-detector). Details of the traces are presented in Table 2.3.

In order to study our techniques in other environments, we extended our datasets

with two anonymized packet header traces collected by the NLANR-PMA project [103],

in August 2002 and March 2005. The first one (ABILENE) consists of a OC48c Packet-

over-SONET unidirectional trace collected at the Indianapolis router node of the Abilene

22 CHAPTER 2. BACKGROUND

Name Date/Time
Trace Pkts Bytes Load (Mbps)
(GB) (M) (GB) avg/max/min

CESCA-III 24/Oct/06 09:00-17:00 155.5 2908.2 2764.8 750.4/973.6/129.0
CESCA-IV 25/Oct/06 09:00-17:00 152.5 2867.2 2652.2 719.9/967.5/218.0
CESCA-V 05/Dec/06 09:00-17:00 138.6 2037.8 1484.8 403.3/771.6/131.0
UPC-II 24/Apr/08 09:00-09:30 47.6 61.3 46.5 222.2/282.1/176.9

Table 2.4: Online executions

backbone (eastbound towards Cleveland). The second trace (CENIC) consists of the first

30 minutes of the traffic collected on the 10 Gigabit CENIC HPR backbone link between

Sunnyvale and Los Angeles. Details of these traces are also available in Table 2.3.

In several experiments performed in this thesis we use packet traces for the sake

of reproducibility, but all conclusions can be extended to an online system, given that

CoMo does not make any distinctions between running online or offline [69].

2.3.3 Online executions

Apart from the offline experiments using packet traces, we also carried out several online

executions to experimentally evaluate the online performance of a monitoring system

implementing the different load shedding schemes proposed in this thesis.

On the one hand, throughout the thesis, we present the results of three 8 hours-long

executions performed in the CESCA scenario. In this case, the first PC of our testbed

equipment was configured to run the CoMo monitoring system online, while the second

one was used to collect a packet-level trace (without loss), which is used as our reference

to verify the accuracy of the results of the queries described in Section 2.2.

In the first execution (CESCA-III), we ran a modified version of CoMo implement-

ing the load shedding scheme presented in Chapters 3 and 4, while in the other two

executions (CESCA-IV and CESCA-V) we repeated the same experiment, but using a

version of CoMo that implements two alternative load shedding approaches that will be

described in Chapter 4. The first two executions were carried out from 9h to 17h on

two consecutive days in October 2006. Note that we did not run both experiments at

the same time because, although we have two computers, we had to collect an entire

trace using the second PC in order to evaluate the accuracy of the queries. The third

execution was performed during the same period of time, but in December 2006.

On the other hand, we performed an additional 30-minute online execution in the

UPC scenario in April 2008. In this case, the first PC was used to run the load shedding

scheme presented in Chapter 6. The duration of all executions was constrained by the

2.4. DEFINITIONS 23

amount of storage space available to collect the packet-level traces (500 GB) and the

size of the DAG buffers was configured to 256 MB. Table 2.4 presents the details of all

executions.

2.4 Definitions

In this section, we present some definitions of different basic terms that will be used

throughout this thesis.

• Batch: Set of packets collected during a fixed interval of time defined as time bin.

• Time bin: Time duration of a batch (i.e., maximum time between the first and

last packet of a batch).

• Batch cost: Cost of processing a batch by a given query within a particular system

(e.g., CPU cycles, memory usage).

• Response variable: Batch cost that we want to predict.

• Batch feature: Each of the traffic features we can obtain from a batch (e.g., number

of packets, bytes, unique IP addresses).

• Predictors: Subset of batch features that are used to predict a given response

variable.

• Feature selection: Algorithm to decide which batch features are useful as predictors

of a given response variable.

• Measurement interval: Duration of the measurement period defined by the query

(i.e., the time bin that will be used to report continuous query results).

• Load shedding: It is the process of adjusting the demands to match the available

resources according to a given policy. Load shedding is usually implemented by

discarding some fraction of the input data.

• Load shedding scheme: It is the system in charge of deciding when, where and how

much load to shed in order to assure that the monitoring system remains stable

during overload situations.

• Load shedding strategy: It is the algorithm responsible for selecting where to shed

a given amount of load (i.e., which queries) when an overload situation is detected.

24 CHAPTER 2. BACKGROUND

• Load shedding mechanism (or method): It is the technique used to shed excess load.

For example, the load shedding scheme proposed in this thesis supports packet and

flow sampling as well as custom load shedding methods defined by end users.

• Load shedder: It is the component of the load shedding scheme responsible for

shedding excess load using one of load shedding mechanisms according to a given

load shedding strategy.

Chapter 3

Prediction System

In this chapter, we present our prediction methodology that constitutes the core of the

load shedding scheme proposed in this thesis. We also describe the goals and challenges

involved in the design of a prediction mechanism for arbitrary network monitoring and

data mining applications. We conclude the chapter with an extensive performance eval-

uation of the prediction accuracy and cost using real-world packet traces and injecting

artificially-generated traffic anomalies.

3.1 System Overview

As discussed in Chapter 2, CoMo does not restrict the type of computations that a

plug-in module can perform in order to provide the user with maximum flexibility when

writing queries. As a consequence, the platform does not have any explicit knowledge

of the data structures used by the plug-in modules nor the cost of maintaining them.

This approach allows users to define traffic queries that otherwise could not be easily

expressed using common declarative languages (e.g., SQL).

Therefore, any load shedding scheme for such a system must operate only with

external observations of the CPU, memory or bandwidth requirements of the modules –

and these are not known in advance but only after a packet has been processed.

Our thesis is that the cost of maintaining the data structures needed to execute

a query can be modeled by looking at a set of traffic features that characterizes the

input data. The intuition behind this thesis comes from the empirical observation that

each query incurs a different overhead when performing basic operations on the state

it maintains while processing the input packet stream such as, for example, creating

new entries, updating existing ones or looking for a valid match. We observed that the

25

26 CHAPTER 3. PREDICTION SYSTEM

0 10 20 30 40 50 60 70 80 90 100
0

2

4

x 10
6

C
P

U
 c

y
c
le

s

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

P
a

c
k
e

ts

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

x 10
5

B
y
te

s

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

Time (s)

5
−

tu
p

le
 f

lo
w

s

Figure 3.1: CPU usage of an “unknown” query in the presence of an artificially generated
anomaly compared to the number of packets, bytes and flows

time spent by a query is mostly dominated by the overhead of some of these operations.

Therefore, the cost of a query can be modeled by considering the right set of simple

traffic features.

A traffic feature is a counter that describes a property of a sequence of packets. For

example, potential features could be the number of packets or bytes in the sequence,

the number of unique source IP addresses, etc. In the design of our prediction method

we will select a large set of simple features that have the same underlying property:

deterministic worst case computational complexity. Later we will describe how a large

set of features can be efficiently extracted from the traffic stream (Section 3.2.1).

Once a large number of features are efficiently extracted from the traffic stream,

the challenge is in identifying the right ones that can be used to accurately model and

predict the query’s CPU usage. Figure 3.1 illustrates a very simple example. The figure

shows the time series of the CPU cycles consumed by an “unknown” query (top graph)

when running over a 100s snapshot of the CESCA-I data set (described in Section 2.3),

where we inserted an artificially generated anomaly, which simulates a simple attack

that unexpectedly increases the number of flows in the traffic. The three bottom plots

show three possible features over time: the number of packets, bytes and flows (defined

by the classical 5-tuple: source and destination addresses, source and destination port

numbers and protocol number). It is clear from the figure that the bottom plot would

give us more useful information to predict the CPU usage over time for this query. It is

also easy to infer that the query is performing some sort of per-flow classification, hence

the higher cost when the number of flows increases, despite the volume of packets and

3.1. SYSTEM OVERVIEW 27

Figure 3.2: Prediction and load shedding subsystem

bytes remains fairly stable.

Based on this observation, we designed a method that automatically selects the most

relevant feature(s) from small sequences of packets and uses them to accurately predict

the CPU usage of arbitrary queries. This fine-grained and short-term prediction can

then be used to quickly adapt to overload situations by sampling the input streams or

by providing a summarized view of the traffic data.

Figure 3.2 shows the components and the data flow in the system. The prediction

and load shedding subsystem (in gray) intercepts the packets from the filter before they

are sent to the plug-in modules implementing the traffic queries. In order to implement

the prediction we instrumented the core platform to export some performance metrics.

In this work, we focus only on one resource: the CPU cycles consumed by the queries.

As we will show throughout this thesis, the CPU is the primary scarce resource in our

monitoring system. However, other system resources are also critical in network mon-

itoring (e.g., memory, disk bandwidth and disk space) and we believe that approaches

similar to what we propose here could be applied as well.

The system operates in four phases that are executed online. First, it groups each

100ms of traffic in a “batch” of packets.1 Each batch is then processed to extract a

large pre-defined set of traffic features (Section 3.2.1). The feature selection subsystem

is in charge of selecting the most relevant features for prediction purposes according to

the recent history of each query’s CPU usage (Section 3.2.3). This phase is important

to reduce the cost of the prediction algorithm, because it allows the system to discard

beforehand the features regarded as useless for prediction purposes. This subset of

relevant features is then given as input to the multiple linear regression subsystem to

1The choice to use batches of 100ms is somewhat arbitrary. Our goal is not to delay excessively the
query results but at the same time use a time interval large enough to observe a meaningful number of
packets. Indeed an interval too small would add a significant amount of noise in the system and increase
the prediction error. Our results indicate that 100ms represents a good trade-off between accuracy and
delay. However, this is clearly a function of the input traffic traces we used.

28 CHAPTER 3. PREDICTION SYSTEM

predict the CPU cycles required by the query to process the entire batch (Section 3.2.2).

If the prediction exceeds the current allocation of cycles, the load shedding subsystem

pre-processes the batch to discard (e.g., via packet or flow sampling) a portion of the

packets (Chapters 4, 5 and 6). Finally, the actual CPU usage is computed and fed back

to the prediction subsystem to close the loop (Section 3.2.4).

3.2 Prediction Methodology

In this section, we describe in detail the three phases that our system executes to perform

the prediction (i.e., feature extraction, feature selection and multiple linear regression)

and how the resource usage is monitored. The only information we require from the con-

tinuous query is the measurement interval of the results. Avoiding the use of additional

information increases the range of applications where this approach can be used and also

reduces the likelihood of compromising the system by providing incorrect information

about a query.

3.2.1 Feature Extraction

We are interested in finding a set of traffic features that are simple and inexpensive to

compute, while helpful to characterize the CPU usage of a wide range of queries. A

feature that is too specific may allow the system to predict a given query with great ac-

curacy, but could have a cost comparable to directly answering the query (e.g., counting

the packets that contain a given pattern in order to predict the cost of signature-based

IDS-like queries). Our goal is therefore to find features that may not explain in detail

the entire cost of a query, but can provide enough information about the aspects that

dominate its processing cost. For instance, in the previous example of a signature-based

IDS query, the cost of matching a string will mainly depend on the number of collected

bytes.

In addition to the number of packets and bytes, we maintain four counters per traffic

aggregate that are updated every time a batch is received. A traffic aggregate considers

one or more of the TCP/IP header fields: source and destination IP addresses, source

and destination port numbers and protocol number. The four counters we monitor per

aggregate are: (i) the number of unique items in a batch; (ii) the number of new items

compared to all items seen in a measurement interval; (iii) the number of repeated items

in a batch (i.e., items in the batch minus unique) and (iv) the number of repeated items

compared to all items in a measurement interval (i.e., items in the batch minus new).

3.2. PREDICTION METHODOLOGY 29

No. Traffic aggregate

1 src-ip
2 dst-ip
3 protocol
4 <src-ip, dst-ip>
5 <src-port, proto>
6 <dst-port, proto>
7 <src-ip, src-port, proto>
8 <dst-ip, dst-port, proto>
9 <src-port, dst-port, proto>
10 <src-ip, dst-ip, src-port, dst-port, proto>

Table 3.1: Set of traffic aggregates (built from combinations of TCP/IP header fields)
used by the prediction

For example, we may aggregate packets based on the source IP address and source

port number, where each aggregate (or “item”) is made of all packets that share the

same source IP address and source port number pair. Then, we count the number of

unique, new and repeated source IP address and source port pairs.

Table 3.1 shows the combinations of the five header fields considered in this work.

Although we do not evaluate other choices here, we note that other features may be

useful (e.g., source IP prefixes, other combinations of the 5 header fields or payload-

related features). However, we will address the trade-off between the number of features

and the overhead of running the prediction in greater detail in Section 3.3.

This large set of features (four counters per traffic aggregate plus the total packet

and byte counts, i.e., 42 in our experiments) helps narrow down which basic operations

performed by the queries dominate their processing costs (e.g., creating a new entry,

updating an existing one or looking up entries). For example, the new items are relevant

to predict the CPU requirements of those queries that spend most time creating entries

in the data structures, while the repeated items feature may be relevant to queries where

the cost of updating the data structures is much higher than the cost of creating entries.

In order to extract the features with minimum overhead, we implement the multi-

resolution bitmap algorithms proposed in [57]. The advantage of the multi-resolution

bitmaps is that they bound the number of memory accesses per packet as compared to

classical hash tables and they can handle a large number of items with good accuracy and

smaller memory footprint than linear counting [134] or bloom filters [22]. We dimension

the multi-resolution bitmaps to obtain counting errors around 1% given the link speeds

in our testbed.

We use two bitmaps for each aggregation level: one that keeps the per-batch unique

30 CHAPTER 3. PREDICTION SYSTEM

count and another that maintains the new count per measurement interval. The bitmap

used to estimate the unique items is updated per packet. Instead, the one used to

estimate the new items can be updated per batch by performing a bitwise OR with the

bitmap used to maintain the unique count, given that the same bits have to be set in

both bitmaps. The only difference between them is the moment when they are reset

to zero. On the other hand, as mentioned above, it is straightforward to derive the

number of repeated and batch-repeated items from the counts of new and unique items

respectively by keeping just two additional counters.

3.2.2 Multiple Linear Regression

Regression analysis is a widely applied technique to study the relationship between a

response variable Y and one or more predictor variables X1, X2, . . . , Xp. The linear

regression model assumes that the response variable Y is a linear function of the p Xi

predictor variables.2 The fact that this relationship exists implies that any knowledge we

have about the predictor variables provides us information about the response variable.

Thus, this knowledge can be exploited for predicting the expected value of Y when the

values of the p predictor variables are known. In our case, the response variable is the

CPU usage, while the predictor variables are the individual features.

When only one predictor variable is used, the regression model is often referred to as

simple linear regression (SLR). Using just one predictor has two major drawbacks. First,

there is no single predictor that yields good performance for all queries. For example,

the CPU usage of the counter query is well modeled by looking at the number of packets

in each batch, while the trace query is better modeled by the number of bytes in the

batch. Second, the CPU usage of more complex queries may depend on more than a

single feature.

To illustrate this latter point, we plot in Figure 3.3 the CPU usage for the flows

query versus the number of packets in the batch. As we can observe, there are several

underlying trends that depend both on the number of packets and on the number of new

5-tuples in the batch that SLR cannot consider. This behavior is due to the particular

implementation of the flows query that maintains a hash table to keep track of the flows

and expires them at the end of each measurement interval.

Figure 3.4 shows that the prediction error of the flows query by using SLR is relatively

large. The spikes in the CPU usage at the beginning of each measurement interval (1s in

2It would be possible that the CPU usage of a query exhibits a non-linear relationship with the traffic
features. A solution in that case may be to define new features computed as non-linear combinations of
simple features. We discuss this issue in greater detail in Chapter 8.

3.2. PREDICTION METHODOLOGY 31

1800 2000 2200 2400 2600 2800 3000
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

6

packets/batch

C
P

U
 c

y
c
le

s

new_5tuple_hashes < 500

500 <= new_5tuple_hashes < 700

700 <= new_5tuple_hashes < 1000

new_5tuple_hashes >= 1000

Figure 3.3: Scatter plot of the CPU usage versus the number of packets in the batch
(flows query)

this example) are due to the fact that when the table is empty, the number of new entries

to be created is much larger than usual. This error could be much more significant in

presence of traffic anomalies that abruptly increase the number of new entries to be

created.

Multiple linear regression (MLR) extends the simple linear regression model to sev-

eral predictor variables. MLR is used to extract a linear combination of the predictor

variables that is maximally correlated with the response variable. The general form of

a linear regression model for p predictor variables can be written as follows [41]:

Yi = β0 + β1X1i + β2X2i + · · · + βpXpi + εi, i = 1, 2, . . . , n (3.1)

where β0 denotes the intercept, β1, . . . , βp are the regression coefficients that need to be

estimated and εi is the residual term associated with the i-th observation. The residual

term is an unobservable random variable that represents the omitted variables that affect

the response variable, but that are not included in the model.

In fact, Equation 3.1 corresponds to a system of equations that in matrix notation

can be written as:




Y1

Y2

...

Yn




=




1 X11 . . . Xp1

1 X12 . . . Xp2

...
...

...

1 X1n . . . Xpn







β0

β1

...

βp




+




ε1

ε2

...

εn




or simply

32 CHAPTER 3. PREDICTION SYSTEM

1 1.5 2 2.5 3 3.5 4 4.5 5
1.5

2

2.5
x 10

6

Time (s)

C
P

U
 c

y
c
le

s

actual

SLR

MLR

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

Time (s)

R
e
la

ti
v
e
 e

rr
o
r

SLR

MLR

Figure 3.4: Simple Linear Regression versus Multiple Linear Regression predictions over
time (flows query)

Y = Xβ + ε (3.2)

where

• Y is a n × 1 column vector of the response variable observations. We obtain the

values of Y by measuring the CPU usage of the previous n batches processed by

the query;3

• X is a n× (p+1) matrix resulting from n observations of the p predictor variables

X1, . . . , Xp (the first column of 1’s represents the intercept term β0). That is, the

values of the p features we extracted from the previous n batches;

• β is a (p + 1) × 1 column vector of unknown parameters β0, β1, . . . , βp, where

β1, . . . , βp are referred to as the regression coefficients or weights;

• and ε is a n × 1 column vector of n residuals εi.

The estimators b of the regression coefficients β are obtained by the Ordinary Least

Squares (OLS) procedure, which consists of choosing the values of the unknown param-

eters b0, . . . , bp in such a way that the sums of squares of the residuals is minimized.

In our implementation, we use the singular value decomposition (SVD) method [113]

3In Section 3.3.1, we address the problem of choosing the appropriate value for n.

3.2. PREDICTION METHODOLOGY 33

to compute the OLS. Although SVD is more expensive than other methods, it is able

to obtain the best approximation, in the least-squares sense, in the case of an over- or

under-determined system.

The statistical properties of the OLS estimators lie on some assumptions that must

be fulfilled [41, pp. 216]: (i) the rank of X is p + 1 and is less than n, i.e., there are no

exact linear relationships among the X variables (no multicollinearity); (ii) the variable

εi is normally distributed and the expected value of the vector ε is zero; (iii) there is no

correlation between the residuals and they exhibit constant variance; (iv) the covariance

between the predictors and the residuals is zero. In Section 3.2.3, we present a technique

that makes sure the first assumption is valid. We have also verified empirically on the

packet traces that the other assumptions hold.

Going back to the example of the flows query, Figure 3.4 shows the prediction ac-

curacy when using MLR with the number of packets and new 5-tuples as predictors.

However, since queries consist of arbitrary code, the system cannot know in advance

which features perform best as predictors for each query. It would be possible to use

all the extracted traffic features in the regression, since MLR should be able to find a

combination of them that is maximally correlated with the CPU usage. However, as

it can be deduced from Equation 3.2, the cost of MLR does not depend only on the

amount of history used to compute the linear regression (i.e., n), but also on the number

of variables used as predictors (i.e., p). If a large number of predictors is used, the cost

of the MLR would increase significantly and it could impose too much overhead to the

prediction process. Next section presents a technique that is used to select only the

subset of traffic features that is most relevant to predict the cost of a given query.

3.2.3 Feature Selection

Including in the regression model as many predictor variables as possible has several

drawbacks [41]. As we mentioned before, the cost of the linear regression increases

quadratically with the number of predictors included in the model, while the gain the

additional predictors bring usually does not justify their cost. In addition, even if we

were able to include in the model all the possible predictors, there would still be a certain

amount of randomness that cannot be explained by any predictor. Finally, introducing

redundant predictors into the model (i.e., predictors that are linear functions of other

predictors) invalidates the no-multicollinearity assumption.4

4Note that the values of some predictors may become very similar under special traffic patterns. For
example, the number of packets and flows can be highly correlated under a SYN-flood attack.

34 CHAPTER 3. PREDICTION SYSTEM

Once a choice of the features to compute on the batch is made, it is important

to identify a small subset of features to be used as predictors. In order to support

arbitrary queries, we need to define a generic feature selection algorithm. We would

also like our method to be capable of dynamically selecting different sets of features

if the traffic conditions change during the execution, and the current prediction model

becomes obsolete.

Most of the algorithms proposed in the literature are based on a sequential variable

selection procedure [41]. However, they are usually too expensive to be used in a real-

time system. For this reason, we decided to use a variant of the Fast Correlation-Based

Filter (FCBF) [137], which can effectively remove both irrelevant and redundant features

and is computationally very efficient.

Our variant differs from the original FCBF algorithm in that we use the linear corre-

lation coefficient (Equation 3.3) as a predictor goodness measure, instead of the symmet-

rical uncertainty measure [137], which is based on the information-theoretical concept

of entropy. The algorithm consists of two main phases:

1. Selecting relevant predictors: The linear correlation coefficient between each pre-

dictor (X) and the response variable (Y) is computed as follows:

r =

∑n
i=1

(Xi − X)(Yi − Y)√∑n
i=1

(Xi − X)2
√∑n

i=1
(Yi − Y)2

(3.3)

The predictors with a coefficient below a predefined FCBF threshold are discarded

as not relevant.5 This phase has a time complexity that grows linearly with the

number of predictors.

2. Removing redundant predictors: The predictors that are left after the first phase

are ranked according to their coefficient values and processed iteratively to dis-

card predictors that have a mutual strong correlation. Each iteration starts from

the first element of the list (i.e., the predictor with the highest linear correlation

coefficient) and computes the correlation coefficients between this element and all

the remaining predictors. For each pair of predictors, if their relative correlation

coefficient is higher than the correlation between the predictors and the response

variable (computed in the previous phase), the predictor lower in the list is removed

as redundant. Then, the algorithm continues starting again from the second pre-

dictor. In each iteration the algorithm can usually remove a significant number of

5In Section 3.3.1, we address the problem of choosing the appropriate FCBF threshold.

3.2. PREDICTION METHODOLOGY 35

redundant features, giving this phase a time complexity of O(p log p), where p is

the number of predictors in the list.

Finally, the overall complexity of the FCBF is O(n p log p), where n is the number

of observations and p the number of predictors [137].

3.2.4 Measurement of System Resources

Fine grained measurement of CPU usage is not an easy task. The mechanisms provided

by the operating system do not offer a good enough resolution for our purposes, while

processor performance profiling tools [73] impose a large overhead and are not a viable

permanent solution.

In this work, we use instead the time-stamp counter (TSC) [73] to measure the CPU

usage, which is a 64-bit counter incremented by the processor every clock cycle. In

particular, we read the TSC before and after a batch is processed by a query. The

difference between these two values corresponds to the number of CPU cycles used by

the query to process the batch.

Other performance-monitoring counters (PMC) [73] could also give us more accurate

measurements, but are architecture dependent and behave differently depending on the

concrete architecture where the system is executed on.

The CPU usage measurements that are fed back to the prediction system should be

accurate and free of external noise to reduce the errors in the prediction. However, we

empirically detected that measuring CPU usage at very small timescales incurs several

sources of noise:

1. Instruction reordering: The processor can reorder instructions at run time in order

to improve performance. In practice, the rdtsc instruction used to read the TSC

counter is often reordered, since it simply consists of reading a register and it

does not have dependencies with other instructions. The rdtsc instruction at the

beginning of the query can be reordered with other instructions that do not belong

to the query, while the one at the end of the query can be executed before the query

actually ends. Both these events happen quite frequently and lead to inaccuracies

in the measurements. To avoid the effects of reordering, we execute a serializing

instruction (e.g. cpuid) before and after our measurements [73]. Since the use

of serializing instructions can have a severe impact on the system performance,

we only take two TSC readings per query and batch, and do not take any partial

measurements during the execution of the query.

36 CHAPTER 3. PREDICTION SYSTEM

2. Context switches: The operating system may decide to schedule out the query

process between two consecutive readings of the TSC. In that case, we would be

measuring not only cycles belonging to the query, but also cycles of the process

(or processes) that are preempting the query. In order to avoid degrading the

accuracy of future predictions when a context switch occurs during a measurement,

we discard those observations from the MLR history and replace them with our

prediction. To measure context switches, we monitor two fields of the rusage

process structure in the Linux kernel, called ru nvcsw and ru nivcsw, that count

the number of voluntary and involuntary context switches, respectively. In some

strategic places of our code, we also force the process to be uninterruptible using the

sched setscheduler system call and setting the scheduling policy to SCHED FIFO

with maximum priority.

3. Disk accesses: Disk accesses can interfere with the CPU cycles needed to process

a query. In CoMo, a separate process is responsible for scheduling disk accesses

to read and write query results. In practice, since disk transfers are done asyn-

chronously by DMA, memory accesses of queries have to compete for the system

bus with disk transfers. In Section 3.4, we show how disk accesses have a limited

impact on the performance of the prediction system.

We do not take any particular action in the case of other causes of measurement

noise, such as CPU frequency scaling or cycles executed in system mode, since we exper-

imentally checked that they usually have much less impact on the CPU usage patterns

than the sources of error described above.

It is also important to note that all the sources of error we detected so far are

independent from the input traffic. Therefore, they cannot be directly exploited by an

external malicious user trying to introduce errors in our CPU measurements to attack

the monitoring system.

3.3 Validation

In this section, we show the performance of an actual implementation of our prediction

method on several packet traces as well as its sensitivity to the configuration param-

eters. In order to understand the impact of each parameter, we study the prediction

subsystem in isolation from the sources of measurement noise identified in Section 3.2.4.

We disabled the disk accesses in the CoMo process responsible for storage operations to

3.3. VALIDATION 37

avoid competition for the system bus. In Section 3.4, we evaluate our method in a fully

operational system.

To measure the performance of our method we consider the relative error in the CPU

usage prediction while executing a set of seven queries over packet traces. Table 3.2 lists

the subset of queries from those presented in Table 2.2 used in the validation. The

relative error is defined as the absolute value of one minus the ratio of the prediction

and the actual number of CPU cycles spent by the queries over each batch.

3.3.1 Prediction Parameters

In our system, two configuration parameters impact the cost and accuracy of the predic-

tions: the number of observations (i.e., n or the “history” of the system) and the FCBF

threshold used to select the relevant traffic features. In this particular experiment, we

analyze the more appropriate values of these parameters for the CESCA-II trace with

full packet payloads (see Table 2.3), but almost identical values were obtained for the

other traces.

Number of observations

The cost (in terms of CPU cycles) of the linear regression directly depends on the amount

of history, since every additional observation translates to a new equation in the system

in (3.2). The accuracy of the prediction is also affected by the number of observations.

In order to decide the appropriate amount of history to keep in our model, we ran

multiple executions in our testbed with values of history ranging from 1s to 100s (i.e.,

from 10 to 1000 batches). We checked that histories older than 100s do not provide us

any new relevant information for prediction purposes. Figure 3.5 (left) shows the cost of

computing the MLR and the prediction accuracy as a function of the amount of history

(each observation corresponds to 100ms of traffic), while Figure 3.6 (left) presents the

prediction accuracy broken down by query.

As we can see, the cost of computation grows linearly with the amount of history,

while the relative error between the prediction and the actual number of CPU cycles

spent by the query stabilizes around 1.2% after 6s (i.e., 60 observations). Larger errors

for very small amounts of history (e.g., 1s) are due to the fact that the number of

predictors (i.e., p = 42) is larger than the amount of history (i.e., n = 10 batches, 1s)

and thus the no-multicollinearity assumption is not met. Increasing the number of

observations does not improve the accuracy, because events that are not modeled by the

traffic features are probably contributing to the error. Moreover, a longer history makes

38 CHAPTER 3. PREDICTION SYSTEM

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

R
e

la
ti
v
e

 e
rr

o
r

History (s)

MLR error vs. cost (100 executions)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
x 10

8

C
o

s
t

(C
P

U
 c

y
c
le

s
)

average error

average cost

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.005

0.01

0.015

0.02

0.025

0.03

R
e

la
ti
v
e

 e
rr

o
r

FCBF threshold

FCBF error vs. cost (100 executions)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

x 10
5

C
o

s
t

(C
P

U
 c

y
c
le

s
)

average error

average cost

Figure 3.5: Prediction error versus cost as a function of the amount of history used to
compute the Multiple Linear Regression (left) and as a function of the Fast Correlation-
Based Filter threshold (right)

the prediction model less responsive to sudden changes in the traffic that may change

the behavior of a query as well as the most relevant features. In the rest of this chapter,

we use a number of observations equal to 60 (i.e., 6s of history).

If needed, the recent literature also provides some algorithms that could be easily

adapted to automatically adjust the value of n from online measurements of the predic-

tion accuracy [21, 20].

FCBF threshold

The FCBF threshold determines which traffic features are relevant and not redundant

in modeling the response variable. Large values of this threshold (i.e., closer to 1) will

result on fewer features selected.

To understand the most appropriate value for the FCBF threshold, we ran multiple

executions in our testbed with values of the threshold ranging from 0 (i.e., all features

will be considered relevant but the redundant ones are not selected) to 0.9 (i.e., most

features are not selected). Figure 3.5 (right) presents the prediction cost versus the

prediction accuracy, as a function of the threshold. The prediction cost includes both

the cost of the selection algorithm and the cost of computing the MLR with the selected

features. Comparing this graph to Figure 3.5 (left), we can see that using FCBF reduces

the overall cost of the prediction by more than an order of magnitude (in terms of CPU

cycles) while maintaining similar accuracy.

As the threshold increases, less predictors are selected, and this turns into a decrease

in the CPU cycles needed to run the MLR. However the error remains fairly close to the

3.3. VALIDATION 39

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

R
e

la
ti
v
e

 e
rr

o
r

History (s)

MLR error (100 executions)

application

counter

pattern−search

top−k

trace

flows

high−watermark

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

R
e

la
ti
v
e

 e
rr

o
r

FCBF threshold

FCBF error (100 executions)

application

counter

pattern−search

top−k

trace

flows

high−watermark

Figure 3.6: Prediction error broken down by query as a function of the amount of
history used to compute the Multiple Linear Regression (left) and as a function of the
Fast Correlation-Based Filter threshold (right)

minimum value obtained when all features are selected, and starts to ramp up only for

relatively large values of the threshold (around 0.6). Very large values of the threshold

(above 0.8) experience a much faster increase in the error compared to the decrease in

the cost.

Lastly, in Figure 3.6 (right) we plot the prediction accuracy broken down by query,

as a function of the FCBF threshold. As expected, queries that can be well modeled with

a single feature (e.g., counter, trace) are quite insensitive to the particular value of the

FCBF threshold, while queries that depend on more features (e.g., flows, top-k) exhibit

a significant degradation in the accuracy of the prediction when the FCBF threshold

becomes closer to 0.9 (i.e., very few features are selected).

In the rest of this chapter, we use a value of 0.6 for the FCBF threshold that achieves

a good trade-off between prediction cost and accuracy for most queries.

3.3.2 Prediction Accuracy

In order to evaluate the performance of our method we ran our seven queries over a

set of four traces presented in Table 2.3, namely CESCA-I, CESCA-II, ABILENE and

CENIC.

Figure 3.7 shows the time series of the average and maximum error over five execu-

tions when running on the packet traces CESCA-I and CESCA-II. The average error in

both cases is consistently below 2%, while the maximum error reaches peaks of about

10%. These larger errors are due to external system events unrelated to the traffic that

cause a spike in the CPU usage (e.g., cache misses) or due to a sudden change in the

40 CHAPTER 3. PREDICTION SYSTEM

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

Prediction error (5 executions − 7 queries)

average error: 0.0065407
max error: 0.19061

average

max

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

Prediction error (5 executions − 7 queries)

average error: 0.012364
max error: 0.13867

average

max

Figure 3.7: Prediction error over time in CESCA-I (left) and CESCA-II (right) traces

0 1000 2000 3000 4000 5000 6000 7000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

Prediction error (5 executions − 7 queries)

average error: 0.0052248
max error: 0.17243

average

max

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

Prediction error (5 executions − 7 queries)

average error: 0.0073963
max error: 0.41237

average

max

Figure 3.8: Prediction error over time in ABILENE (left) and CENIC (right) traces

traffic patterns that is not appropriately modeled by the features that the prediction is

using at that time. However, the time series show that our method is able to converge

very quickly.

The trace without payloads (CESCA-I) exhibits better performance, with average

errors that drop well below 1%. This is well expected given that the trace contains only

headers and the features we have selected allow the system to capture better the queries’

CPU usage. Another interesting phenomenon is the downward trend in the maximum

and average error. We conjecture that this is due to the kernel scheduler becoming

more predictable and thus reducing the likelihood of external system events affecting

our method. Similar results are also obtained for the two NLANR’s traces (ABILENE

and CENIC) as can be observed in Figure 3.8.

In Table 3.2, we show the breakdown of the prediction errors by query. The average

3.4. EXPERIMENTAL EVALUATION 41

error is very low for each query, with a relatively small standard deviation indicating

compact distributions for the prediction errors. As expected, queries that make use

of more complex data structures (e.g., flows, top-k and pattern-search) incur the larger

errors, but still at most around 3% on average.

It is also very interesting to look at the most frequent features that the selection

algorithm identifies as most relevant for each query. Remember that the selection algo-

rithm has no information about what computation the queries perform nor what type

of packet traces they are processing. The selected features give hints on what a query

is actually doing and how it is implemented. For example, the number of bytes is the

predominant traffic feature for the pattern-search and trace queries when running on the

trace with payloads (CESCA-II). However, when processing the trace with just packet

headers (CESCA-I), the number of packets becomes the most relevant feature for these

queries.

Another example worth noticing is the top-k query. In the trace with payloads

(CESCA-II) it uses the number of packets as the most relevant predictor. This is an

artifact of the particular location of the link where the trace was taken. Indeed, the

trace is unidirectional and monitoring traffic destined towards the Catalan network.

This results in a trace where the number of unique destination IP addresses is very

small allowing the hash table used in the top-k query to perform at its optimum with

O(1) lookup cost (hence the cost is driven by the number of packets, i.e., the number of

lookups). This is not the case for the flows query that uses the destination port numbers

as well thus increasing the number of entries (thus the lookup and insertion cost) in the

hash table.

3.4 Experimental Evaluation

In this section, we evaluate our prediction model in a fully operational system with-

out taking any particular action in the presence of disk accesses. First, we compare

the accuracy of our prediction model against two well-known prediction techniques,

namely the Exponentially Weighted Moving Average (EWMA) and the Simple Linear

Regression (SLR), in order to evaluate their performance under normal traffic conditions

(Section 3.4.2). Then, we inject synthetic anomalies in our traces in order to evaluate

the robustness of the prediction techniques to extreme traffic conditions (Section 3.4.3).

Finally, we discuss the cost of each component in our prediction subsystem, and present

the overhead it imposes on the normal operations of the system (Section 3.4.4).

42 CHAPTER 3. PREDICTION SYSTEM

CESCA-I trace (without payloads)
Query Mean Stdev Selected features
application 0.0068 0.0060 repeated 5-tuple, packets
counter 0.0046 0.0053 packets
flows 0.0252 0.0203 new dst-ip, dst-port, proto
high-watermark 0.0059 0.0063 packets
pattern-search 0.0098 0.0093 packets
top-k 0.0136 0.0183 new 5-tuple, packets
trace 0.0092 0.0132 packets

CESCA-II trace (with payloads)
Query Mean Stdev Selected features
application 0.0110 0.0095 packets, bytes
counter 0.0048 0.0066 packets
flows 0.0319 0.0302 new dst-ip, dst-port, proto
high-watermark 0.0064 0.0077 packets
pattern-search 0.0198 0.0169 bytes
top-k 0.0169 0.0267 packets
trace 0.0090 0.0137 bytes, packets

ABILENE trace (without payloads)
Query Mean Stdev Selected features
application 0.0065 0.0068 packets
counter 0.0044 0.0063 packets
flows 0.0217 0.0174 new dst-ip, dst-port, proto
high-watermark 0.0046 0.0063 packets
pattern-search 0.0116 0.0089 packets
top-k 0.0154 0.0181 new src-dst-port, proto, pkts
trace 0.0090 0.0137 packets

CENIC trace (without payloads)
Query Mean Stdev Selected features
application 0.0066 0.0083 packets
counter 0.0064 0.0110 packets
flows 0.0271 0.0341 packets, new 5-tuple
high-watermark 0.0058 0.0093 packets
pattern-search 0.0272 0.0248 packets
top-k 0.0218 0.0341 packets, new 5-tuple
trace 0.0079 0.0099 packets

Table 3.2: Breakdown of prediction error by query (5 executions)

3.4. EXPERIMENTAL EVALUATION 43

3.4.1 Alternative Approaches

Exponentially Weighted Moving Average

EWMA is one of the most frequently applied time-series prediction techniques. It uses

an exponentially decreasing weighted average of the past observations of a variable to

predict its future values. EWMA can be written as:

Ŷt+1 = αYt + (1 − α)Ŷt (3.4)

where Ŷt+1 is the prediction for the instant t + 1, which is computed as the weighted

average between the real value of Y and its estimated value at the instant t, and α is

the weight, also known as the smoothing constant.

In our case, we can use EWMA to predict the CPU requirements of a particular query

at the instant t + 1, based on a weighted average of the cycles it used in the t previous

observations. EWMA has the advantage of being easy to compute, but it only looks at

the response variable (i.e., the CPU usage) to perform the prediction. A consequence of

this is that EWMA cannot take into account variations in the input traffic to adjust its

prediction accordingly. For example, if a batch contains a much larger number of bytes

than the previous ones, EWMA will experience large errors for all queries that depend

on the number of bytes (e.g., pattern-search) and then slowly adapt to the traffic change.

Another example is presented in Figure 3.9. It shows that EWMA is not able to

anticipate a significant increase in the CPU requirements of the counter query when the

number of packets suddenly increases, as it can be observed at time 2.8 and 4.4 seconds.

That is, EWMA predicts the effects (i.e., CPU usage) without taking into account the

causes (i.e., the number of packets in the batch).

In order to pick the appropriate value of α we ran several experiments on the packets

traces. The results presented in this section consider the best prediction accuracy we

obtained that correspond to α = 0.3, as shown in Figure 3.10.

Simple Linear Regression

SLR is a particular case of the multiple linear regression model, where one single pre-

diction variable is used. The SLR model can be written as:

Yi = β0 + β1Xi + εi, i = 1, 2, . . . , n (3.5)

where X is the prediction variable, β0 is the intercept, β1 is the unknown coefficient

and εi are the residuals. As in the case of MLR, the estimator b of the unknown β is

44 CHAPTER 3. PREDICTION SYSTEM

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3
x 10

6

Time (100 ms)

C
P

U
 c

y
c
le

s

actual

EWMA

SLR

EWMA absolute error

SLR absolute error

Figure 3.9: EWMA versus SLR predictions for the counter query (the ‘actual’ line almost
completely overlaps with the ‘SLR’ line)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.04

0.045

0.05

0.055

R
e

la
ti
v
e

 e
rr

o
r

Weight (alpha)

EWMA prediction (36 executions)

Figure 3.10: EWMA prediction error as a function of the weight α

obtained by minimizing the sum of the squared errors.

For those queries that depend on a single traffic feature, one would expect to obtain

similar results to the ones obtained with our prediction model. However, without a

feature selection algorithm, the best traffic feature to be used as predictor is not always

known, given the lack of explicit knowledge of the queries. In Table 3.2, we show that

the most relevant traffic feature for most queries is the number of packets. Thus, in all

the experiments presented in this section, we use the number of packets as predictor to

perform the regression. The amount of history n is set to 6s, as in the case of MLR.

In Figure 3.9, we can observe that SLR can anticipate the increase in the CPU

requirements of the counter query, since its CPU usage only depends on the number of

packets (see Table 3.2).

3.4. EXPERIMENTAL EVALUATION 45

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

Prediction error (5 executions − 7 queries)

average error: 0.055018
max error: 5.5541

average

max

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

Prediction error (5 executions − 7 queries)

average error: 0.039792
max error: 6.632

average

max

Figure 3.11: EWMA (left) and SLR (right) prediction error over time (CESCA-II trace)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

Prediction error (5 executions − 7 queries)

average error: 0.014086
max error: 0.43219

average

max

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

Prediction error (5 executions − 7 queries)

average error: 0.014086
95th percentile error: 0.053479

average

95th percentile

Figure 3.12: MLR+FCBF maximum prediction error (left) and 95th-percentile of the
error over time (CESCA-II trace)

3.4.2 Performance under Normal Traffic

Figure 3.11 and 3.12 compare the prediction error of the three methods running over

the CESCA-II dataset. Similar results were obtained for the CESCA-I trace. In Sec-

tion 3.4.3, we also compare the three methods in the presence of traffic anomalies.

The figures show the time series of the average error over 5 executions. The maximum

error is computed over an interval of 10s and across the 5 executions. Table 3.3 shows

the error for each individual query.

All three methods perform reasonably well with average errors around 10% for

EWMA and SLR during the entire duration of the trace, and below 3% for MLR. This

is expected given the stable traffic conditions that result in relatively stable CPU usage

per query. The maximum errors are sometimes relatively large due to the frequent disk

46 CHAPTER 3. PREDICTION SYSTEM

Query
EWMA SLR MLR+FCBF

Mean Stdev Mean Stdev Mean Stdev

application 0.0533 0.0504 0.0254 0.0344 0.0161 0.0179
counter 0.0429 0.0407 0.0050 0.0161 0.0053 0.0119
flows 0.0677 0.0722 0.0579 0.0828 0.0337 0.0335
high-watermark 0.0441 0.0415 0.0077 0.0199 0.0074 0.0139
pattern-search 0.0748 0.3339 0.0805 0.7953 0.0245 0.0592
top-k 0.0504 0.0606 0.0191 0.0386 0.0187 0.0285
trace 0.0563 0.1780 0.0397 0.3579 0.0218 0.0585

Table 3.3: EWMA, SLR and MLR+FCBF error statistics per query (5 executions)

accesses – the trace query stores to disk all packets it receives. However, in Figure 3.12

(right) we show the 95th-percentile of the prediction error, where we can observe the

limited impact of disk accesses on the prediction accuracy. Overall, the prediction error

for MLR is smaller and more stable than for the other methods.

Inspecting Table 3.3, we can make two observations on the performance of EWMA

and SLR. First, with EWMA the error is uniform across queries although the two queries

that depend on the number of bytes (i.e., the packet sizes) experience higher variability

in the prediction error. This confirms our conjecture that EWMA cannot easily adapt

to changes in the traffic mix. The second observation is that SLR performs relatively

well over all queries for which the number of packets provides enough information on the

CPU usage. However, again for trace and pattern-search, where the packet size matters,

it incurs in larger and more variable errors.

3.4.3 Robustness against Traffic Anomalies

An efficient prediction method for load shedding purposes is most needed in presence

of unfriendly traffic mixes. The system may observe extreme traffic conditions when

it is monitoring an ongoing denial of service attack, worm infection, or even an attack

targeting the measurement system itself. During those events, the query results, even if

approximate, are extremely valuable to network operators.

In order to test our prediction system in this type of traffic conditions, we injected

synthetic anomalies into our traces. We have generated many different types of attacks

to emulate simple such as volume-based denial of service attacks (i.e., an overwhelming

number of packets destined to a single target), worm outbreaks (i.e., a large number

of packets from many different source and destinations while keeping the destination

port number fixed) or attacks against our monitoring system (i.e., attacks that result in

3.4. EXPERIMENTAL EVALUATION 47

0 5 10 15 20 25 30
0

1

2

3

4

5

x 10
6

Time (s)

C
P

U
 c

y
c
le

s

actual

predicted

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

Figure 3.13: Exponentially Weighted Moving Average prediction in the presence of Dis-
tributed Denial of Service attacks (flows query)

highly variable and unpredictable workloads to the system).

Figures 3.13, 3.14 and 3.15 show the performance of the three methods in the pres-

ence of attacks targeting the monitoring system. We injected in the CESCA-II trace a

distributed denial of service attack (DDoS) with spoofed source IP addresses and ports,

which goes idle every other second to generate a higher variable and difficult to predict

workload. The figures show the performance for the flows query, which is highly affected

by this type of attacks.

In Figure 3.15, we can see that MLR predictions track the actual CPU usage very

closely, with errors around the 10% mark (with an average error of 4.77%). MLR can an-

ticipate the increase in CPU cycles, while EWMA (Figure 3.13) is always a little behind,

resulting in large oscillations in the prediction error. In the case of SLR (Figure 3.14),

since the number of packets does not vary as much as the number of 5-tuple flows, the

errors are more stable but persistently around 30% (it converges to the average cost per

packet between the anomalous and normal traffic).

We also generated other types of attacks that targeted other queries with similar

results. For example, we generated an attack consisting of sending burst of 1500 byte

long packets for those queries that depend on the number of bytes (e.g., trace and

pattern-search).

3.4.4 Prediction Cost

To understand the cost of running the prediction we compare the CPU cycles of the

prediction subsystem to those spent by the entire CoMo process. Table 3.4 summarizes

48 CHAPTER 3. PREDICTION SYSTEM

0 5 10 15 20 25 30
0

1

2

3

4

5

x 10
6

Time (s)

C
P

U
 c

y
c
le

s
actual

predicted

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

Figure 3.14: Simple Linear Regression prediction in the presence of Distributed Denial
of Service attacks (flows query)

0 5 10 15 20 25 30
0

1

2

3

4

5

x 10
6

Time (s)

C
P

U
 c

y
c
le

s

actual

predicted

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

Figure 3.15: Multiple Linear Regression + Fast Correlation-Based Filter prediction in
the presence of Distributed Denial of Service attacks (flows query)

the results showing the breakdown of the overhead by component.

The feature extraction phase constitutes the bulk of the processing cost. This is

not surprising, since several features have to be extracted from every batch (i.e., every

100ms). Furthermore, our current implementation does not interact with the rest of

the CoMo system and incurs additional overhead in order to minimize the modifications

in the core platform. An alternative would be to merge the filtering process with the

prediction in order to avoid having to scan each packet twice (first to apply the filter

and then to extract the features) and to share computations between queries that share

the same filter rule.

The overhead introduced by the FCBF feature selection algorithm is only around

3.5. CHAPTER SUMMARY 49

Prediction phase Overhead

Feature extraction 9.070%
FCBF 1.702%
MLR 0.201%
TOTAL 10.973%

Table 3.4: Prediction overhead (5 executions)

1.7% and the MLR imposes an even lower overhead (0.2%), mainly due to the fact that,

when using the FCBF, the number of predictors is significantly reduced and thus there

is a smaller number of variables to estimate. The use of FCBF allows us to increase the

number of features without affecting the cost of MLR.

3.5 Chapter Summary

In this chapter, we presented a system that is able to predict the resource requirements

of arbitrary and continuous traffic queries without having any explicit knowledge of the

computations they perform. It extracts a set of features from the traffic streams to build

an online prediction model with deterministic (and small) worst case computational cost.

We implemented our prediction model in a real system and tested it experimentally with

real packet traces.

Our results show that the system is able to predict the resources required to run

a representative set of queries with small errors, even in the presence of traffic anoma-

lies. In the next chapter, we present the design and implementation of a load shedding

scheme that uses the output of this prediction method to guide the monitoring system

on deciding when, where and how much load to shed.

One of the current limitations of the system is that it assumes a linear dependency

between the CPU usage and the selected features. A solution in that case may be to

define new features computed as non-linear combinations of the existing ones. The study

of specific network data mining applications that exhibit a non-linear relationship with

the traffic features constitutes an important part of our future work. We discuss this

aspect in greater detail in Chapter 8.

50 CHAPTER 3. PREDICTION SYSTEM

Chapter 4

Load Shedding System

In this chapter, we provide our answers to the three fundamental questions any load

shedding scheme needs to address: (i) when to shed load (i.e., which batch), (ii) where

to shed load (i.e., which query) and (iii) how much load to shed (e.g., the sampling rate

to apply). We also evaluate the performance of our load shedding scheme, compared to

other alternatives, during long-lived executions in a research ISP network. The experi-

mental results show that our load shedding scheme is able to handle extreme overload

situations, without introducing undesired packet losses, and that the traffic queries can

always complete and return results within acceptable error bounds.

4.1 When to Shed Load

Algorithm 1 presents our load shedding scheme in detail, which controls the Prediction

and Load Shedding subsystem presented in Figure 3.2. It is executed at each time

bin (i.e., 0.1s) right after every batch arrival. This way, the system can quickly adapt

to changes in the traffic patterns by selecting a different set of features if the current

prediction model becomes obsolete.

To decide when to shed load the system maintains a threshold (avail cycles) that

accounts for the amount of cycles available in a time bin to process the queries. Since

batch arrivals are periodic, this threshold can be dynamically computed as (time bin ×

CPUfrequency) − overhead, where overhead stands for the cycles needed by our pre-

diction subsystem (ps cycles), plus those spent by other CoMo tasks (como cycles), but

not directly related to query processing (e.g., packet collection, disk and memory man-

agement). The overhead is measured using the TSC, as described in Section 3.2.4. When

the predicted cycles for all queries (pred cycles) exceed the avail cycles threshold, excess

51

52 CHAPTER 4. LOAD SHEDDING SYSTEM

Algorithm 1: Load shedding algorithm

Input: Q: Set of qi queries
bi: Batch to be processed by qi after filtering
como cycles: CoMo overhead cycles
rtthresh, delay: Buffer discovery parameters

Data: fi: Features extracted from bi

si: Features selected for qi

hi: MLR history of qi

ps cycles, ls cyclesi, query cyclesi: TSC measurements

srate = 1;1

pred cycles = 0;2

foreach qi in Q do3

fi = feature extraction(bi);4

si = feature selection(fi, hi);5

pred cycles += mlr(fi, si, hi);6

avail cycles = (time bin × CPU frequency) - (como cycles + ps cycles) + (rtthresh -7

delay);
if avail cycles < pred cycles × (1 + êrror) then8

srate = max(0, avail cycles− ̂ls cycles)
pred cycles×(1+êrror)

;9

foreach qi in Q do10

bi = sampling(bi, qi, srate);11

fi = feature extraction(bi);12

̂ls cycles=α×
∑

i ls cyclesi + (1 − α) × ̂ls cycles;13

foreach qi in Q do14

query cyclesi = run query(bi, qi, srate);15

hi = update mlr history(hi, fi, query cyclesi);16

êrror=α × max
(
0, 1 − pred cycles×srate

P

i
query cyclesi

)
+ (1 − α) × êrror;17

load needs to be shed (Algorithm 1, line 8).

We observed that, for certain time bins, como cycles is greater than the available

cycles, due to CoMo implementation issues (i.e., other CoMo tasks can occasionally

consume all available cycles). This would force the system to discard entire batches,

impacting on the accuracy of the prediction and query results. However, this situation

can be minimized due to the presence of buffers (e.g., in the capture devices) that allow

the system to use more cycles than those available in a single time bin. That is, the

system can be delayed in respect to real-time operation as long as it is stable in the

steady state.

We use an algorithm, inspired by TCP slow-start [125], to dynamically discover by

how much the system can safely (i.e., without loss) exceed the avail cycles threshold.

The algorithm continuously monitors the system delay (delay), defined as the differ-

4.2. WHERE AND HOW TO SHED LOAD 53

ence between the cycles actually used and those available in a time bin, and maintains

a threshold (rtthresh) that controls the amount of cycles the system can be delayed

without loss. rtthresh is initially set to zero and increases whenever queries use less

cycles than available. If at some point the occupation of the buffers exceeds a prede-

fined value (i.e., the system is turning unstable), rtthresh is reset to zero, and a second

threshold (initialized to ∞) is set to rtthresh
2

. rtthresh grows exponentially while below

this threshold, and linearly once it is exceeded.

This technique has two main advantages. First, it is able to operate without explicit

knowledge of the maximum rate of the input streams. Second, it allows the system to

quickly react to changes in the traffic.

Algorithm 1 (line 7) shows how the avail cycles threshold is modified to consider the

presence of buffers. Note that, at this point, delay is never less than zero, because if

the system used less cycles than the available in a previous time bin, they would be lost

anyway waiting for the next batch to become available.

Finally, as we further discuss in Section 4.3, we multiply the pred cycles by 1+ êrror

in line 8, as a safeguard against prediction errors, where êrror is an Exponential Weighted

Moving Average (EWMA) of the actual prediction error measured in previous time bins

(computed as shown in line 17).

4.2 Where and How to Shed Load

Our approach to shed excess load consists of adaptively reducing the volume of data to

be processed by the queries (i.e., the size of the batch).

There are several data reduction techniques that can be used for this purpose. These

include filtering (i.e., selection of a subset of packets according to one or more packet

attributes), aggregation (i.e., aggregation of the input packets over time across one or

several packet attributes) and sampling (i.e., selection of a representative subset of the

incoming packets). Since we assume no explicit knowledge of the queries, sampling is

the technique that a priori should be suitable for most of them, because it permits to

retain the measurement detail down to the finest attribute level [48].

In our current implementation, we support uniform packet and flow sampling, and

let each query select at configuration time the option that yields the best results. In

case of overload, the same sampling rate is applied to all queries (line 11).

We implement packet sampling by randomly selecting packets in a batch with prob-

ability p (i.e., the sampling rate), while flow sampling randomly selects entire flows with

probability p. Thus, the actual number of packets or flows can be simply estimated by

54 CHAPTER 4. LOAD SHEDDING SYSTEM

multiplying the number of sampled packets or flows by the inverse of the sampling rate.

In order to efficiently implement flow sampling, we use a hash-based technique called

Flowwise sampling [43]. This technique randomly samples entire flows without caching

the flow keys, which reduces significantly the processing and memory requirements dur-

ing the sampling process. To avoid bias in the selection and deliberate sampling evasion,

we randomly generate a new H3 hash function [27] per query every measurement inter-

val, which distributes the flows uniformingly and unpredictably. The hash function is

applied on a packet basis and maps the 5-tuple flow ID to a value distributed in the range

[0, 1). A packet is then selected only if its hash value is less or equal to the sampling

rate.

Note that the load shedding scheme based on traffic sampling presented in this chap-

ter has two main limitations. First, using an overall sampling rate for all queries does

not differentiate among them. In Chapter 5, we propose a technique that solves this

limitation by using different sampling rates for different queries according to external in-

formation about their accuracy requirements. Second, there is a large set of imaginable

queries that are not able to correctly estimate their unsampled output from sampled

streams. In Chapter 6, we propose a method that allows these queries to safely define

their own, customized load shedding methods.

4.3 How Much Load to Shed

When the system estimates that the avail cycles threshold is going to be exceeded,

excess load has to be shed by reducing the volume of data to be processed. The amount

of load to be shed is determined by the maximum sampling rate that keeps the CPU

usage below the avail cycles threshold.

Since the system does not differentiate among queries, the sampling rate could be

simply set to the ratio avail cycles
pred cycles

in all queries. This assumes that their CPU usage is

proportional to the size of the batch (in packets or flows, depending on whether packet or

flow sampling is used). However, the cost of a query can actually depend on several traffic

features, or even on a feature different from the number of packets or flows. In addition,

there is no guarantee of keeping the CPU usage below the avail cycles threshold, due

to the error introduced by the prediction subsystem.

We deal with these limitations by maintaining an EWMA of the prediction error

(line 17) and correcting the sampling rate accordingly (line 9). Moreover, we have to

take into account the extra cycles that will be needed by the load shedding subsystem

(ls cycles), namely the sampling procedure (line 11) and the feature extraction (line 12),

4.4. CORRECTNESS OF THE CPU MEASUREMENTS 55

which must be repeated after sampling in order to correctly update the MLR history.

Hence, we also maintain an EWMA of the cycles spent in previous time bins by the load

shedding subsystem (line 13) and subtract this value from avail cycles.

After applying the mentioned changes, the sampling rate is computed as shown in

Algorithm 1 (line 9). The EWMA weight α is set to 0.9 in order to quickly react to

changes. It is also important to note that if the prediction error had a zero mean, we

could remove it from lines 8 and 9, because buffers should be able to absorb such error.

However, there is no guarantee of having a mean of zero in the short term.

4.4 Correctness of the CPU Measurements

In Section 3.2.4, we discussed that measuring the CPU usage at very small timescales

incurs several sources of measurement noise. These include context switches, instruc-

tion reordering and competition for the system bus. Of these sources of noise, context

switches are the most problematic, because we run the monitoring system on a general

purpose operating system. Thus, our process can be scheduled out at any time. This

could have a severe impact on the CPU measurements used to guide the load shedding

procedure and, therefore, on the correctness of the sampling rate computed in Algo-

rithm 1 (line 9), which assumes that the system runs in isolation.

In fact, the CoMo system itself consists of different processes that carry out several

tasks besides query processing. These include storage and memory management as well

as control of the capture devices. Therefore, there is no way to avoid context switches, if

we want the monitoring system to be fully operative. Even if we run the CoMo process

responsible of processing the queries with the maximum priority, there would be still no

way to avoid context switches among these processes.

Nevertheless, as we experimentally verify in Section 4.5, context switches do not com-

promise the integrity and performance of our load shedding scheme. Although context

switches can occur at any place in Algorithm 1, when they occur while running the rest

of CoMo (code not included in Algorithm 1) or executing the prediction tasks (lines 1

to 6), the cycles belonging to the process (or processes) that preempted our process are

accounted for as overhead. This is precisely what we need, since we have to discount

these cycles from the avail cycles threshold. Even in the case that a context switch

occurs after computing the sampling rate (and thus the cycles are not discounted from

the avail cycles), they would be discounted in the next time bin, given that in this case

the delay for the next time bin would be larger than zero (see line 7).

Another problem may appear if our process is scheduled out while processing a query

56 CHAPTER 4. LOAD SHEDDING SYSTEM

(line 15). Although we can recover from this situation, like in the previous case, the

MLR history would become corrupt, because cycles belonging to other processes would

be considered as cycles actually used by the query. Since this can have a negative impact

on the accuracy of future predictions, we discard this observation from the history and

replace it with the predicted value.

4.5 Evaluation and Operational Results

In this section, we evaluate our load shedding system in the CESCA scenario (described

in Section 2.3), where the traffic load and query requirements exceed by far the capacity

of the monitoring system. We also assess the impact of sampling on the accuracy of the

queries, and compare the results of our predictive scheme to two alternative systems.

We also present the overhead introduced by the complete load shedding procedure and

discuss possible alternatives to reduce it further. Finally, we study the impact of traffic

attacks on our load shedding scheme.

Throughout the evaluation, we present the results of three 8 hours-long executions

(see Table 2.4 for details). In the first one (CESCA-III), we run a modified version of

CoMo that implements our load shedding scheme (predictive), while in the other two

executions (CESCA-IV and CESCA-V) we repeat the same experiment, but using a

version of CoMo that implements two alternative load shedding approaches described

below. For these experiments, we selected a set of seven queries from those in Table 2.2:

application, counter, flows, high-watermark, pattern-search, top-k and trace. The autofo-

cus, super-sources and p2p-detector queries are evaluated in Chapters 5 and 6.

4.5.1 Alternative Approaches

The first alternative (original) consists of the original version of CoMo, which discards

packets from the input buffers in the presence of overload. In our case, overload situations

are detected when the occupation of the capture buffers exceeds a pre-defined threshold.

Details of this execution are available in Table 2.3 (CESCA-IV execution).

For the second alternative (reactive), we implemented a more complex reactive

method that makes use of packet and flow sampling. This system is equivalent to a

predictive one, where the prediction for a time bin is always equal to the cycles used to

process the previous batch. This strategy is similar to the one used in SEDA [133]. In

particular, we measure the cycles available in each time bin, as described in Section 4.1,

and when the cycles actually used to process a batch exceed this limit, sampling is

4.5. EVALUATION AND OPERATIONAL RESULTS 57

0 2 4 6 8 10 12 14 16

x 10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU usage [cycles/batch]

F
(C

P
U

 u
s
a
g
e
)

CPU limit per batch

Predictive

Original

Reactive

Figure 4.1: Cumulative Distribution Function of the CPU usage per batch

applied to the next time bin. The sampling rate for the time bin t is computed as:

sratet = min

(
1, max

(
α, sratet−1 ×

avail cyclest − delay

consumed cyclest−1

))
(4.1)

where consumed cyclest−1 stands for the cycles used in the previous time bin, delay

is the amount of cycles by which avail cyclest−1 was exceeded, and α is the minimum

sampling rate we want to apply. Table 2.3 (CESCA-V execution) presents the details of

this execution.

4.5.2 Performance

In Figure 4.1, we plot the Cumulative Distribution Function (CDF) of the CPU cycles

consumed to process a single batch (i.e., the service time per batch). Recall that batches

represent 100ms resulting in 3× 108 cycles available to process each batch in our 3 GHz

system.

The figure shows that the predictive system is stable. As expected, sometimes the

limit of available cycles is slightly exceeded owing to the buffer discovery algorithm

presented in Section 4.1. The CDF also indicates good CPU usage between 2.5 and

3 × 108 cycles per batch (i.e., the system is rarely under- or over-sampling).

On the contrary, the service time per batch when using the original and reactive

approaches is much more variable. It is often significantly larger than the batch interar-

rival time, with a probability of exceeding the available cycles greater than 30% in both

executions. This leads to very unstable systems that introduce packet drops without

control, even of entire batches. Figure 4.1 shows that more than 20% of the batches

58 CHAPTER 4. LOAD SHEDDING SYSTEM

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

p
a

c
k
e

ts

Total

DAG drops

Unsampled

(a) Predictive load shedding

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

p
a

c
k
e

ts

Total

DAG drops

(b) Original CoMo

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

p
a

c
k
e

ts

Total

DAG drops

Unsampled

(c) Reactive load shedding

Figure 4.2: Link load and packet drops during the evaluation of each load shedding
method

in the original execution, and around 5% in the reactive one, are completely lost (i.e.,

service time equal to zero).

Figure 4.2 illustrates the impact of exceeding the available cycles on the input stream.

The line labeled ‘DAG drops’ refers to the packets dropped on the network capture card

due to full memory buffers (results are averaged over one second). These drops are

uncontrolled and contribute most to the errors in the query results. The line ‘unsampled’

counts the packets that are not processed due to packet or flow sampling.

Figure 4.2(a) confirms that, during the 8 hours, not a single packet was lost by the

capture card when using the predictive approach. This result indicates that the system

is robust against overload.

Figures 4.2(b) and 4.2(c) show instead that the capture card drops packets consis-

tently during the entire execution.1 The number of drops in the original approach is

expected given that the load shedding scheme is based on dropping packets on the input

interface. Instead, in the case of the reactive approach, the drops are due to incorrect

estimation of the cycles needed to process each batch. The reactive system bases its

estimation on the previous batch only. In addition, it must be noted that traffic condi-

tions in the reactive execution were much less adverse, with almost half of traffic load,

than in the other two executions (see Table 2.4). It is also interesting to note that when

the traffic conditions are similar in all executions (from 9am to 10am), the number of

unsampled packets plus the packets dropped by the reactive system is very similar to the

number of unsampled packets by the predictive one, in spite of that they incur different

processing overheads.

1The values are a lower bound of the actual drops, because the loss counter present in the DAG
records is only 16-bit long.

4.5. EVALUATION AND OPERATIONAL RESULTS 59

Query predictive original reactive

application (pkts) 1.03% ±0.65 55.38% ±11.80 10.61% ±7.78
application (bytes) 1.17% ±0.76 55.39% ±11.80 11.90% ±8.22
counter (pkts) 0.54% ±0.50 55.03% ±11.45 9.71% ±8.41
counter (bytes) 0.66% ±0.60 55.06% ±11.45 10.24% ±8.39
flows 2.88% ±3.34 38.48% ±902.13 12.46% ±7.28
high-watermark 2.19% ±2.30 8.68% ±8.13 8.94% ±9.46
top-k 1.41 ±3.32 21.63 ±31.94 41.86 ±44.64

Table 4.1: Breakdown of the accuracy error of the different load shedding methods by
query (mean ± stdev)

4.5.3 Accuracy

We modified the source code of five of the seven queries executed by the monitoring

system in order to allow them to estimate their unsampled output when load shedding is

performed. This modification was simply done by multiplying the metrics they compute

by the inverse of the sampling rate being applied to each batch.

We did not modify the pattern-search and trace queries, because no standard proce-

dure exists to recover their unsampled output from sampled streams and to measure their

error. In this case, the error should be measured in terms of the application that uses

the output of these two queries. In Chapter 6, we present an alternative load shedding

mechanism for those queries that are not robust against sampling.

Table 4.1 presents the error in the results of the five queries averaged across all the

measurement intervals. We can observe that, although our load shedding system intro-

duces a certain overhead, the error is kept significantly low compared to the two reactive

versions of the CoMo system. Recall that the traffic load in the reactive execution was

almost half of that in the other two executions. Large standard deviation values are due

to long periods of consecutive packet drops in the alternative systems. It is also worth

noting that the error of the top-k query obtained in the predictive execution is consistent

with that of [12]. Figure 4.3 shows that the overall error of the predictive system is below

2% in average, while the error in the two alternative systems is significantly larger.

4.5.4 Overhead

Figure 4.4 presents the CPU usage during the predictive execution, broken down by

the three main tasks presented in Algorithm 1 (i.e., como cycles, query cycles and

ps cycles+ ls cycles). We also plot the cycles the system estimates as needed to process

all incoming traffic (i.e., pred cycles). From the figure, it is clear that the system is

under severe stress because, during almost all the execution, it needs more than twice

60 CHAPTER 4. LOAD SHEDDING SYSTEM

Original Reactive Predictive
0

5

10

15

20

25

30

35

40

45

50

E
rr

o
r

(%
)

Figure 4.3: Average error in the answer of the queries

the cycles available to run our seven queries without loss.

The overhead introduced by our load shedding system (ps cycles + ls cycles) to

the normal operation of the entire CoMo system is reasonably low compared to the

advantages of keeping the CPU usage and the accuracy of the results well under control.

Note that in Section 3.4.4 the cost of the prediction subsystem was measured without

performing load shedding. This resulted in an overall processing cost similar to the

pred cycles in Figure 4.4 and, therefore, in a lower relative overhead.

While the overhead incurred by the load shedding mechanism itself (ls cycles) is

similar in any load shedding approach, independently of whether it is predictive or

reactive, the overhead incurred by the prediction subsystem (ps cycles) is particular

to our predictive approach. As discussed in Section 3.4.4, the bulk of the prediction

cost corresponds to the feature extraction phase, which is entirely implemented using

a family of memory-efficient algorithms that could be directly built in hardware [57].

Alternatively, this overhead could be reduced significantly by applying sampling in this

phase or simply reducing the accuracy of the bitmap counters.

4.5.5 Robustness against Traffic Anomalies

In this experiment, we show how our load shedding scheme can effectively control the

CPU usage under unfriendly traffic mixes by gracefully degrading the accuracy of the

queries via traffic sampling. We consider the flows query, which tracks the number

of active (i.e., for which at least one packet was observed) 5-tuple flows in the packet

streams and reports the count every measurement interval.

During 20 seconds (200 batches), we inject a burst of traffic corresponding to a SYN-

4.5. EVALUATION AND OPERATIONAL RESULTS 61

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9
x 10

9

time

C
P

U
 u

s
a
g
e
 [
c
y
c
le

s
/s

e
c
]

CoMo cycles

Load shedding cycles

Query cycles

Predicted cycles

CPU limit

Figure 4.4: CPU usage after load shedding (stacked) and estimated CPU usage (predic-
tive execution)

flood attack with spoofed IP source addresses in the CESCA-I (without payloads) and

CESCA-II (with payloads) traces in order to force higher CPU usage. To facilitate the

representation of the results, we only run this single query and we manually set the

avail cycles threshold to 6M and 4M cycles per batch in the CESCA-I and CESCA-II

traces, respectively.

The left plot in Figure 4.5 shows the evolution of the CPU usage during the anomaly

with and without load shedding (with flow sampling) for the CESCA-I trace. Without

load shedding, the CPU cycles increase from 4.5M to 11M cycles during the anomaly

(assuming an infinite buffer that causes no packet drops). Instead, when load shedding

is enabled, the CPU usage is well under control within a 5% margin of the set target

usage.

The right plot in Figure 4.5 shows the query accuracy during the anomaly. To

estimate the error in the absence of load shedding, we emulate a system with a buffer of

200ms of traffic and 6M cycles available to process incoming traffic. If the CPU usage

exceeds 6M, we assume that a queue of packets starts building up until the buffer is full

and incoming packets are dropped without control. When load shedding is enabled, the

error in the estimation of the number of flows when using flow sampling is less than 1%,

while when using packet sampling it is slightly larger than 5%. Without load shedding,

the measurement error is in the 35 − 40% range.

Figure 4.6 shows that similar results are obtained for the CESCA-II trace with pay-

loads. The slight differences in both figures are due to the way we generated the attack.

In particular, we inserted a SYN-flood attack out of every 5 packets in the original trace.

Since the trace with payloads has less packets than the trace with only packet headers

62 CHAPTER 4. LOAD SHEDDING SYSTEM

0 5 10 15 20 25 30 35 40 45 50
4

5

6

7

8

9

10

11

12
x 10

6

Time (s)

C
P

U
 c

y
c
le

s

no load shedding

load shedding

CPU threshold

5% bounds

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

no load shedding

packet sampling

flow sampling

Figure 4.5: CPU usage (left) and errors in the query results (right) with and without
load shedding (CESCA-I trace)

0 5 10 15 20 25 30 35 40 45 50
2

3

4

5

6

7
x 10

6

Time (s)

C
P

U
 c

y
c
le

s

no load shedding

load shedding

CPU threshold

5% bounds

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

R
e

la
ti
v
e

 e
rr

o
r

no load shedding

packet sampling

flow sampling

Figure 4.6: CPU usage (left) and errors in the query results (right) with and without
load shedding (CESCA-II trace)

(see Table 2.3), it resulted in a less aggressive attack.

4.6 Chapter Summary

The experimental results from an operational network clearly showed that effective load

shedding methods are indispensable to allow current network monitoring systems to

sustain the rapidly increasing data rates and complexity of traffic analysis methods.

In this chapter, we presented the design and implementation of a predictive load

shedding scheme that operates without explicit knowledge of the traffic queries and

quickly adapts to overload situations by gracefully degrading their accuracy via packet

4.6. CHAPTER SUMMARY 63

and flow sampling. The proposed scheme uses the output of the prediction system

described in Chapter 3 to guide the system on deciding when, where and how much load

to shed in the presence of overload.

We implemented our load shedding scheme in an existing monitoring system and

evaluated its performance and correctness in a research ISP network. We demonstrated

the robustness of our method through an 8 hours-long continuous execution, where the

system exhibited good CPU utilization without packet loss, even when it was under

severe stress. We also pointed out a significant gain in the accuracy of the results

compared to two versions of the same monitoring system that use a non-predictive load

shedding approach instead, while introducing a tolerable (and deterministic) overhead

to the normal operation of the system.

In the following chapters, we present alternative load shedding mechanisms for those

queries that are not robust against sampling. We also develop smarter load shedding

strategies that allow the system to apply different sampling rates to different queries to

further improve the accuracy of the monitoring system during overload situations.

64 CHAPTER 4. LOAD SHEDDING SYSTEM

Chapter 5

Fairness of Service and Nash

Equilibrium

The load shedding strategy described in Chapter 4 has a major limitation: it does not

differentiate among queries, since the load shedder always applies the same sampling

rate to each of them. However, the system would make load shedding decisions in a

more graceful and intelligent manner if it could consider some additional knowledge of

the queries to guide the load shedding procedure, such as their level of tolerance to loss.

For example, when using traffic sampling, some queries (e.g., top-k flows [12]) require

much higher sampling rates than other simpler ones (e.g., packet/byte counts) to achieve

the same degree of accuracy in the results.

Nevertheless, our system cannot directly measure the error of a query to infer its

tolerance to loss, given that it considers them as black boxes. Thus, there is no option

other than obtaining this information from the user. The main drawback of this approach

is that users will tend to request the largest possible share of the resources. Therefore,

the monitoring system must implement mechanisms to ensure fairness of service and

make sure users provide accurate information about their queries.

In this chapter, we present the design of a load shedding strategy that supports

multiple and competing traffic queries. The main novelty of our approach is that it only

requires a high-level specification of the accuracy requirements of each query to guide the

load shedding procedure and assures a fair allocation of computing resources to queries

in a non-cooperative environment. We present an implementation of our load shedding

scheme in an existing network monitoring system and evaluate it with a diverse set of

traffic queries.

65

66 CHAPTER 5. FAIRNESS OF SERVICE AND NASH EQUILIBRIUM

5.1 Objectives and Desirable Features

Our main objective is to design a load shedding strategy that solves the limitations

discussed above. In particular, we would like our method to exhibit some desirable

features, such as:

• Fairness of service: In an environment where multiple network traffic queries are

competing for the same shared resources, it is important to ensure fairness and

avoid starvation of any query. In particular, we would like the system to offer

similar levels of accuracy to similar queries.

• Predictability: Users should understand how the system will handle their queries

in case of overload, according for example to their tolerance to loss or the amount

of resources they request to the system. This way, users can write queries in such

a way that the impact of load shedding decisions on their results is minimized.

• Minimal knowledge of queries: The load shedder should operate with minimum

external knowledge of the queries. This reduces the burden on the users and mini-

mizes the probability of compromising the system by providing incorrect informa-

tion about a query. The system should also enforce that any external information

used by the load shedder is correct and free of bias, especially when this information

is provided by end users.

• Scalability and minimum overhead: The load shedder should be lightweight enough

to make quick load shedding decisions, since network monitoring applications usu-

ally have real-time expectations. However, load shedding decisions are often an

optimization problem, where the cost of finding an optimal solution may increase

exponentially with the number of queries. Thus, methods that require polynomial

time, even if they only offer near-optimal solutions, would be more desirable than

those that require an exhaustive search of the entire solution space.

5.2 Max-Min Fairness

Fairness can be defined in many different ways. A classical technique used to ensure fair

access to a scarce shared resource is the max-min fair share allocation policy. Intuitively,

the max-min fair policy maximizes the smallest allocation of the shared resource among

all users: it assures that no user receives a resource share larger than its demand, whereas

users with unsatisfied demands get an equal share of the resource.

5.2. MAX-MIN FAIRNESS 67

Symbol Definition

Q Set of q continuous traffic queries
C System capacity in CPU cycles

d̂q Cycles demanded by the query q ∈ Q (prediction)
mq Minimum sampling rate constraint of the query q ∈ Q
c Vector of allocated cycles
cq Cycles allocated to the query q ∈ Q
p Vector of sampling rates
pq Sampling rate applied to the query q ∈ Q
aq Action of the query q ∈ Q
a−q Actions of all queries in Q except aq

uq Payoff function of the query q ∈ Q

Table 5.1: Notation and definitions

Table 5.1 summarizes the notation used throughout this chapter. For each query

q ∈ Q at time t, d̂q and cq denote the cycles predicted (using the method described

in Chapter 3) and those actually allocated by the system, respectively. Let C be the

system capacity in CPU cycles at time t.1 A vector c = {cq | q ∈ Q} of allocated cycles

is feasible if the following two constraints are satisfied:

∀q∈Q cq ≤ d̂q (5.1)
∑

q∈Q

cq ≤ C (5.2)

The max-min fair share allocation policy is then defined as follows [19]:

Definition 5.1. A vector of allocated cycles c is max-min fair if it is feasible, and for

each q ∈ Q and feasible c̄ for which cq < c̄q, there is some q′ where cq ≥ cq′ and cq′ > c̄q′.

5.2.1 Fairness in terms of CPU Cycles

We aim at using external information to drive the load shedding decision. A possible

way to express this information is by providing a utility function per query that describes

how the utility varies with the sampling rate. To simplify the system and reduce the

burden on the users, we let the user specify only the minimum sampling rate (mq) a

query q ∈ Q can tolerate. This permits to keep the load shedding algorithm very simple

yet flexible enough to control resource usage.

1In Chapter 4 we described how the system capacity is measured. We also showed that it varies over
time due to the system overhead and the prediction error in previous time bins.

68 CHAPTER 5. FAIRNESS OF SERVICE AND NASH EQUILIBRIUM

Minimum constraints however are not considered in the classical definition of max-

min fairness. For this reason, we modify the constraint (5.1) of the standard max-min

fair policy by the following one in order to introduce the notion of a minimum sampling

rate:

∀q∈Q (mq × d̂q) ≤ cq ≤ d̂q (5.3)

Depending on the query requirements and the system capacity, a max-min fair al-

location that satisfies each query’s minimum rate constraint may or may not exist.

However, if it exists, it is unique. When no feasible solution exists, some queries have to

be disabled. The strategy used by our system to encourage users to request the smallest

amount of resources (i.e., low mq) is to disable the smallest subset of Q′ ⊆ Q queries

to satisfy (5.2) and (5.3), such that
∑

q′∈Q′ mq′ × d̂q′ is maximized. That is, the system

disables first the queries with the largest minimum demands.

As we show in Section 5.3, this (intentionally) simple strategy not only enforces users

to specify mq values as small as possible, since higher values increase the probability of

being disabled in the presence of overload, but also encourages them to write queries

in an efficient manner (i.e., small d̂q), because given two equivalent queries, the least

demanding one will have more chances to run.

5.2.2 Fairness in terms of Packet Access

The strategy described in Section 5.2.1 is max-min fair in terms of access to the CPU

cycles. An alternative strategy is to be max-min fair in the access to the packet stream.

The intuition behind this idea is that the number of processed packets has a stronger

correlation with the accuracy of a query than just the number of allocated CPU cycles.

Simpler queries, such as aggregate packet counters, tend to be more resilient to sampling

and also require very few cycles to execute. On the other hand, complex queries, such

as top-k destinations, are more expensive and more sensitive to sampling. As a result,

allocating CPU cycles may guarantee 100% sampling to simple (and cheap to execute)

queries that do not need that high sampling rate while penalizing more complex queries.

A strategy that is max-min fair in terms of packet access consists of optimizing

the minimum number of packets processed among all queries, rather than the allocated

cycles, while satisfying the minimum sampling rate constraints.

Letting C be the system capacity in CPU cycles at time t, we say that a vector

p = {pq | q ∈ Q} of sampling rates is feasible if the following two constraints are satisfied:

5.2. MAX-MIN FAIRNESS 69

∀q∈Q mq ≤ pq ≤ 1 (5.4)
∑

q∈Q

(pq × d̂q) ≤ C (5.5)

We then define the max-min fair share policy in terms of access to the packet stream

as follows:

Definition 5.2. A vector of sampling rates p is max-min fair in terms of access to the

packet stream if it is feasible, and for each q ∈ Q and feasible p̄ for which pq < p̄q, there

is some q′ with pq ≥ pq′ and pq′ > p̄q′.

Like in the strategy described in Section 5.2.1, when no feasible solution exists, the

system uses the minimum demands (i.e., mq × d̂q) to decide which queries are allowed to

run, but then allocate spare cycles according to each query per-packet processing cost.

5.2.3 Online Algorithm

The main advantage of both strategies is that they are simple yet fair in a non-cooperative

environment. Both strategies can run online given that an algorithm exists to compute

the optimal solution in polynomial time [19].

Our algorithm is based on the classical max-min fair share algorithm [19], but it

includes the minimum sampling rate constraints. It is divided into two main phases.

The first phase is common to both strategies, since they both aim at satisfying the

minimum requirements (mq) and only differ on how the remaining cycles are distributed

among the queries. First, it sorts the queries according to their mq × d̂q values and

checks if the following condition can be satisfied without disabling any query:

∑

q∈Q

(mq × d̂q) ≤ C (5.6)

If (5.6) is satisfied, the algorithm continues to the second phase. Otherwise, it sets

cq (or pq when using the strategy that is fair in terms of packet access) of the query

with the greatest value of mq × d̂q to 0 (i.e., the first query of the list is disabled), q is

removed from the list, and the process is repeated again with the remaining queries.

The second phase differs depending on the strategy being implemented. In the

strategy that is fair in terms of CPU access, the second phase consists of finding a

vector c′ ⊆ c of allocated cycles that is max-min fair, while satisfying the minimum rate

70 CHAPTER 5. FAIRNESS OF SERVICE AND NASH EQUILIBRIUM

constraint of each query q′ ∈ Q′, where Q′ stands for the queries that are left in the

list after the first phase. The algorithm starts allocating mq′ × d̂q′ cycles to each query.

The queries are then divided in two lists. The first initially contains the query with the

smallest cq′ , while the second list includes the rest of the queries sorted by ascending

cq′ values. Throughout the algorithm, the first list always contains queries with equal

cq′ that are also always smaller than any other in the second list. The cq′ values of all

queries in the first list are set to the minimum of: (i) the cq′ value of the first query in

the second list, (ii) the minimum d̂q′ of the queries in the first list, and (iii) their current

cq′ plus the remaining cycles over the number of items in the first list. If (i) is used, the

first query in the second list is moved to the first list, while if (ii) is used, the cq′ of the

query with minimum d̂q′ is definitive and q′ is removed from the first list. This process

is repeated until there are no queries left on the lists or the system capacity is reached

(i.e., when the value (iii) is used). Finally, the sampling rates pq to be applied to each

query q ∈ Q can be directly computed as the ratio between cq and d̂q.

The second phase of the strategy that is fair in terms of packet access consists of

finding a vector p′ ⊆ p of sampling rates that is max-min fair, while satisfying the mini-

mum sampling rate constraint of each query q′ ∈ Q′. The algorithm starts computing a

global sampling rate r = C/(
∑

q′ dq′). Then, for all queries q′ ∈ Q′ such that mq′ > r,

the sampling rate pq′ is set to mq′ . The sampling rate of these queries is definitive and

they are removed from the list. Next, r is recomputed for the rest of the queries and the

process is repeated again, but subtracting from the system capacity the cycles already

allocated. The algorithm finishes when there is no query q′ ∈ Q′ such that mq′ > r. In

this case, pq′ of the queries still remaining in the list is set to r.

5.3 System’s Nash Equilibrium

To verify that no user has an incentive to provide incorrect mq values, we evaluate our

strategy in terms of game theory. In particular, our system can be modeled as a strategic

game with Q players, where each player q corresponds to a query. Each player has a

set of possible actions that consist of its minimum CPU demands, denoted by aq (i.e.,

mq × d̂q).
2 The objective of a non-cooperative player is to obtain the maximum number

of cycles from the system. Thus, the payoff function uq, which specifies the player’s

preferences, is the number of cycles actually allocated by the system to the query q,

which depends on aq and the minimum demands of the rest of the queries a−q (the −q

2Note the difference between the full demand of a query (bdq) and its minimum demand (aq), which
denotes the number of cycles required by the query to achieve its minimum sampling rate (mq).

5.3. SYSTEM’S NASH EQUILIBRIUM 71

subscript stands for all queries except q).

In particular, according to the strategies described in Sections 5.2.1 and 5.2.2, our

system tries to satisfy all minimum demands and eventually shares any spare cycles

max-min fairly (in terms of CPU or packet access) among the queries. However, if the

sum of all aq values is greater than the system capacity, the system disables first the

queries with largest aq. We can express the payoff uq of a query q as a function of the

action profile a = (aq, a−q) as follows:

uq(aq, a−q) =






aq + mmfsq(C −
∑

i:ui>0

ai), if
∑

i:ai≤aq

ai ≤ C

0, if
∑

i:ai≤aq

ai > C
(5.7)

where i denotes the set of all queries (i ∈ Q) and mmfsq(x) is the max-min fair share

of x cycles (in terms of CPU or packet access) that correspond to the query q given the

action profile a. The first condition of Equation 5.7 gives us the payoff uq of a query

q when the system can satisfy its minimum demand. This occurs when the sum of all

minimum demands less than or equal to aq (including aq) is less than or equal to the

system capacity C. In this case, the query will receive at least its minimum demand aq

and, if the sum of the minimum demands of the queries that remain active (i.e., those

with ui > 0) is less than C, the query will additionally receive its max-min fair share of

the spare cycles. Note that although ui is recursively defined, there is only one possible

value for each ui and no cycles occur. On the other hand, if aq cannot be satisfied, no

cycles are allocated to the query q and its payoff is 0, as captured in the second condition

of Equation 5.7.

Definition 5.3. A Nash Equilibrium (NE) is an action profile a∗ with the property that

no player i can do better by choosing an action profile different from a∗i , given that every

player j adheres to a∗j [104].

Theorem 5.1. Our resource allocation game has a single Nash Equilibrium when all

players demand C
|Q| cycles.

First, we prove that the action profile a∗, with a∗i = C
|Q| for all i ∈ Q, is a NE. Next,

we show that in fact it is the only NE of our game.

Proof (a∗ is a NE). According to Definition 5.3, an action profile a∗ is a NE if ui(a
∗) ≥

ui(ai, a
∗
−i) for every player i and action ai. We differentiate two different cases that

cover all possible actions with ai 6= a∗i and show that, for none of them, a query i can

72 CHAPTER 5. FAIRNESS OF SERVICE AND NASH EQUILIBRIUM

obtain greater payoff than C
|Q| , which is the one it would obtain by playing a∗i , if all other

queries keep their actions fixed to C
|Q| .

1. ai > C
|Q| . In this case the sum of the minimum demands is greater than C. There-

fore, according to Equation 5.7, the payoff ui(ai, a
∗
−i) is 0, since i is the query with

the largest minimum demand.

2. ai < C
|Q| . In this case the sum of the minimum demands is less than C and

ui(ai, a
∗
−i) = ai + mmfsi(

C
|Q| − ai), where C

|Q| − ai are the cycles left to reach the

system capacity C. Independently of whether the system uses the strategy that is

fair in terms of CPU or packet access, by definition mmfsi(x) ≤ x and, therefore,

ui(ai, a
∗
−i) ≤

C
|Q| .

Proof (a∗ is the only NE). In order to prove that our game has a single NE, it is sufficient

to show that for any action profile other than a∗i = C
|Q| , for all i ∈ Q, there is at least one

query that has an incentive to change its action. We differentiate three different cases

that cover all possible situations:

1.
∑

i ai > C. In this case the system does not have enough resources to satisfy

the minimum demands of all queries. Those with the largest minimum demands

are disabled and obtain a payoff of 0. Therefore, at least these queries have an

incentive to decrease their demands in order to obtain a non-zero payoff.

2.
∑

i ai < C. In this case the system capacity is not reached and the spare cycles are

distributed among the queries in a max-min fair fashion. Therefore, in this scenario

any query would prefer to increase its minimum demand in order to capture the

spare cycles rather than sharing them with other queries.

3.
∑

i ai = C and ∃i : ai 6= C
Q

. In this case at least one query has an incentive to

increase its minimum demand in order to force the system to disable the query

with the largest minimum demand and capture the cycles it would free.

Therefore, we can conclude that our load shedding strategy intrinsically assures that

no player has an incentive of demanding more cycles than C
|Q| in a system with capacity

C and Q queries, which is exactly the fair share of C. Moreover, given that |Q| and

C are unknown for the players, this strategy discourages them to specify a minimum

sampling rate greater than their actual requirements, because it increases the probability

of demanding more than C
|Q| and, as a consequence, the probability of being disabled in

the presence of overload.

5.4. SIMULATION RESULTS 73

Note also that a strategy that maximizes the sum of the query utilities, instead of the

minimum allocation, such as the one used in Aurora [128], would be extremely unfair and

not suitable for a non-cooperative setting. In Aurora, the Nash Equilibrium is when all

players ask for the maximum possible allocation, which in Aurora consists of providing

a utility function that drops to zero if the sampling rate is less than 1.

5.4 Simulation Results

In this section, we study the differences between the two variants of our load shedding

strategy for non-cooperative monitoring applications, namely max-min fairness in terms

of access to the CPU (mmfs cpu) and in terms of access to the incoming packet stream

(mmfs pkt).

We set up a simple simulation environment that allows us to compare both strategies

and easily discuss the effects of the level of overload and the minimum sampling rate

constraints on the accuracy of the traffic queries. The simulation scenario does not

pretend to be representative nor demonstrate the superiority of one strategy over the

other, but instead it tries to highlight the differences between them. A comparison of

both strategies in a real scenario is presented in Section 5.5.

For ease of exposition, in this experiment we only simulate two types of queries. The

first type is a lightweight query (light) which is tolerant to low sampling rates. The

second type (heavy) consists of a more expensive query, but less tolerant to packet loss.

In particular, the computational cost of heavy is 10 times that of light. Given that in

a simulated environment we cannot measure the actual accuracy of these queries, we

define the accuracy of light as 1 − ((1 − plight) × 0.05) when plight > 0, and 0 when

plight = 0, while the accuracy of heavy is defined as pheavy. These accuracy functions

emulate the behavior of the counter and trace queries respectively (see Table 2.2), as

we show in Section 5.5.

In the simulation, we vary the minimum sampling rate (mq) of all queries and the

overload level (K) from 0 to 1 (in steps of 0.1). K = 0 denotes no overload (the system

capacity C is equal to the sum of all demands), whereas K = 1 expresses infinite overload

(the system capacity is 0). Therefore, the system capacity is computed as C × (1 −K).

Figure 5.1 shows the difference in the average and minimum accuracy between the

packet-based (mmfs pkt) and the CPU-based (mmfs cpu) strategies, when running

1 heavy and 10 light queries concurrently (i.e., the sum of the demands of the light

and heavy queries is equal). While the difference in the average accuracy is negligible

(it is almost a flat surface), Figure 5.1 (right) confirms that the packet-based strategy

74 CHAPTER 5. FAIRNESS OF SERVICE AND NASH EQUILIBRIUM

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

overload level (K)
min srate (m

q
)

a
c
c
u

ra
c
y
 (

m
e

a
n

)

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

overload level (K)
min srate (m

q
)

a
c
c
u

ra
c
y
 (

m
in

)
Figure 5.1: Difference in the average (left) and minimum (right) accuracy between the
mmfs pkt and mmfs cpu strategies when running 1 heavy and 10 light queries in
a simulated environment. Positive differences show the superiority of mmfs pkt over
mmfs cpu

significantly improves the minimum accuracy, because mmfs cpu highly penalizes the

accuracy of the heavy query. This result indicates that, in terms of accuracy, mmfs pkt

is significantly fairer than mmfs cpu. The diagonal from mq = 0 to K = 0 shows the

point from which both strategies are equivalent, because the heavy query is disabled.

Although the simulation scenario was especially chosen to emphasize the differences

between both strategies, note however that the same figure for the minimum accuracy

would be obtained by defining the same accuracy functions for both queries (light and

heavy), given that the minimum accuracy in the simulation is driven by the most ex-

pensive query. Section 5.5 discusses the practical implications of these results.

5.5 Experimental Evaluation

In this section, we evaluate our load shedding scheme in the CoMo platform. We first

validate in a real environment the results obtained through simulation. Next, we eval-

uate the performance of the two variants of our load shedding scheme (mmfs cpu and

mmfs pkt) with a diverse set of real traffic queries. We compare both methods to a

system that does not implement any explicit load shedding mechanism and to the system

presented in Chapter 4, which applies the same sampling rate to all queries. We also

compare our solution to the reactive system presented in Section 4.5.

We implemented both strategies in the CoMo platform and performed several experi-

ments using the CESCA-II trace, which contains the full packet payloads. Although sim-

5.5. EXPERIMENTAL EVALUATION 75

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

overload level (K)
min srate (m

q
)

a
c
c
u

ra
c
y
 (

m
e

a
n

)

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

overload level (K)
min srate (m

q
)

a
c
c
u
ra

c
y
 (

m
in

)

Figure 5.2: Difference in the average (left) and minimum (right) accuracy between the
mmfs pkt and mmfs cpu strategies when running 1 trace and 10 counter queries.
Positive differences show the superiority of mmfs pkt over mmfs cpu

ilar results were obtained using publicly available datasets, such as those in the NLANR

repository [103], we present only the results when running the system on a packet trace

with the entire payloads in order to evaluate those CoMo queries that require packet

contents to operate (e.g., pattern-search).

5.5.1 Validation of the Simulation Results

In this experiment, we validate the results obtained through simulation in Section 5.4.

We perform 121 executions with a trace query plus 10 counters in our packet trace (see

Table 2.2 for details about the queries). The accuracy of counter is computed according

to the actual error in the results, given that we can now obtain its actual output from

the entire packet trace. Thus, the accuracy is simply defined as 1 − εcounter, while the

accuracy of trace is left as in the simulation (i.e., ptrace), since no standard procedure

exists to measure the error of this query, as we further discuss in Section 5.5.2. When a

query is disabled, its accuracy drops to 0.

Figure 5.2 shows the difference in the average and minimum accuracy between both

strategies, which resembles the results obtained through simulation. The differences are

explained by the fact that in a real scenario we can measure the actual accuracy of

the queries. In addition, the results are now computed as the minimum of the average

accuracy per batch over all queries. We cannot plot the minimum per batch because it

would lead to unrealistic results, given that the demands of a query vary over time (they

depend on the incoming traffic). For example, a real system may be highly overloaded

for a certain batch, despite the value of K for that execution being very low.

76 CHAPTER 5. FAIRNESS OF SERVICE AND NASH EQUILIBRIUM

Query mq
Accuracy (mean ±stdev, K = 0.5)

no lshed reactive eq srates mmfs cpu mmfs pkt

application 0.03 0.57 ±0.50 0.81 ±0.40 0.99 ±0.04 1.00 ±0.00 1.00 ±0.03
autofocus 0.69 0.00 ±0.00 0.00 ±0.00 0.05 ±0.12 0.97 ±0.06 0.98 ±0.04
counter 0.03 0.00 ±0.00 0.02 ±0.12 1.00 ±0.00 1.00 ±0.00 0.99 ±0.01
flows 0.05 0.00 ±0.00 0.66 ±0.46 0.99 ±0.01 0.95 ±0.07 0.95 ±0.06
high-watermark 0.15 0.62 ±0.48 0.98 ±0.01 0.98 ±0.01 1.00 ±0.01 0.97 ±0.02
pattern-search 0.10 0.66 ±0.08 0.63 ±0.18 0.69 ±0.07 0.20 ±0.08 0.41 ±0.08
super-sources 0.93 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.95 ±0.04 0.95 ±0.04
top-k 0.57 0.42 ±0.50 0.67 ±0.47 0.96 ±0.09 0.99 ±0.03 0.96 ±0.07
trace 0.10 0.66 ±0.08 0.63 ±0.18 0.68 ±0.01 0.64 ±0.17 0.41 ±0.08

Table 5.2: Sampling rate constraints (mq) and average accuracy when resource demands
are twice the system capacity (K = 0.5)

5.5.2 Analysis of the Minimum Sampling Rates

In general, the minimum sampling rate constraint of a query (mq) should be provided

by the user. However, given that the queries in the standard distribution of CoMo do

not provide this value yet, we perform 100 executions on our packet trace by ranging

the sampling rate from 0.01 to 1 (in steps of 0.01) to determine reasonable values for

mq, which in a real scenario will depend on the user’s requirements.

Table 5.2 presents the selected values for mq. They are set to the minimum sampling

rate that guarantees an average error below 5% in the output of each query. Note that

the value of 5% is arbitrary and is used just as an example to evaluate the different

methods. For all queries, we measure the relative error as defined in Section 2.2. For

pattern-search and trace, we define the accuracy as the overall ratio of packets processed

by the query. To provide for realistic sampling requirements, we set mq to 0.1 (i.e., 10%

sampling) for these two queries.3 Table 5.2 also shows that the level of tolerance of most

queries to sampling is very different, resulting in very diverse values of mq.

5.5.3 Performance Evaluation with a Real Set of Queries

In this experiment, we study both strategies by running the set of nine queries listed in

Table 5.2. A detailed description of these queries is available in Section 2.2. To evaluate

the performance of our solution, we compare the mmfs cpu and mmfs pkt strategies to

three alternative systems. The first consists of a version of CoMo without any explicit

3Note that usually the output of these two queries is not used directly by a user, but instead is given
as input to other applications. In this case, the error should be measured in terms of the applications that
use the output of these queries. Although the value of 0.1 is somewhat arbitrary, it can be considered
fairly conservative given the lower sampling rates typically used by network operators for this class of
resource-intensive queries.

5.5. EXPERIMENTAL EVALUATION 77

1 0
0

1

sampling rate

a
c
c
u
ra

c
y

m
q

1 − ε
q

Figure 5.3: Accuracy of a generic query

load shedding scheme (no lshed). It simply discards packets without control as buffers

fill in the presence of overload. In order to estimate the error in the absence of load

shedding when running on packet traces, we emulate a buffer of 200ms of traffic. The

second alternative implements a modified version of the load shedding strategy presented

in Chapter 4, which applies the same sampling rate to all queries (eq srates). In this

version, when the sampling rate is below the minimum sampling rate of a query, the query

is disabled during one batch, and the sampling rate is computed again for the queries

that remain active. The third alternative (reactive) also applies an equal sampling rate

to all queries, but it implements the reactive approach presented in Section 4.5. This

system is equivalent to a predictive one, where the prediction for a batch is always equal

to the cycles used to process the previous one. This strategy is similar to the one used

by SEDA [133].

Figure 5.3 shows how the accuracy is defined to evaluate the different load shedding

alternatives. In particular, the accuracy of a query is computed as 1− εq when pq ≥ mq

and is considered 0 otherwise, where εq is the actual error of the query as described in

Section 2.2. Note that the values between sampling rate 1 and mq depend on the actual

error of each particular query and, therefore, the accuracy of each query results in

different shapes. In order to make all systems comparable, the accuracy of the no lshed

system is assumed to be 0 when the error is greater than 5% (or greater than 90% in the

case of trace and pattern-search), given that the minimum constraints are not considered

in this system.

It is important to note that our system only requires the minimum sampling rates

to operate and does not use any other external information, such as complex utility

78 CHAPTER 5. FAIRNESS OF SERVICE AND NASH EQUILIBRIUM

functions needed by other systems (e.g., [128]). Throughout the evaluation, we use the

accuracy of the queries as a performance metric to compare the different load shedding

alternatives. However, in a real environment the users are responsible for selecting the

minimum sampling rates according to their actual requirements, which may be very

different for every user and may not necessarily depend on the accuracy of the queries.

For example, in Section 5.5.2 we selected the mq values of some queries in such a way

that a maximum error in the results is guaranteed (e.g., application, top-k, etc.), while

for other queries (e.g., trace and pattern-search) mq is selected according to a minimum

performance requirement, without considering directly their accuracy. Our system al-

lows non-cooperative users to directly provide this different type of preferences without

compromising the system integrity, given that a single Nash Equilibrium exists in C
|Q| ,

as shown in Section 5.3.

Figure 5.4 plots the average and minimum accuracy among all queries when using

the minimum sampling rate constraints defined in Table 5.2. The figure shows that

the mmfs cpu and mmfs pkt strategies outperform the three alternative systems. The

good performance of the original version of CoMo (no lshed) when K = 0.1 is explained

by the fact that the capacity of this system is slightly larger than the rest, since it does

not incur the overhead of the load shedding scheme itself. The drop in the accuracy when

K = 1 is also expected, given that K = 1 denotes zero cycles available to process queries.

Recall that the system capacity is computed as C×(1−K), where C is experimentally set

to the minimum number of cycles that assure that no sampling is applied in our testbed.

The figure also confirms that, even with a diverse set of real queries, the mmfs pkt

strategy significantly improves the minimum accuracy as compared to the mmfs cpu

strategy, while maintaining a similar average accuracy.

Table 5.2 presents the average accuracy broken down by query when K = 0.5 (i.e.,

when the resource demands are twice the system capacity). The table confirms that the

accuracy of all queries is preserved within the pre-defined bounds, with a small standard

deviation, when using the mmfs cpu and mmfs pkt strategies.

In this experiment, the minimum accuracy is driven by pattern-search (i.e., the most

expensive query in Table 5.2), which is commonly used for worm and intrusion detection

purposes. In that case, a monitoring system implementing the mmfs cpu strategy

would miss much more intrusions than one using mmfs pkt, while obtaining similar

accuracy for the rest of the queries. Although this query achieves greater accuracy in

the alternative systems, note the large impact of this gain on the accuracy of the rest of

the queries, resulting in a significant decrease in the fairness of service.

This is the main reason why the CoMo system implements its own scheduler, and does

5.5. EXPERIMENTAL EVALUATION 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

overload level (K)

a
c
c
u

ra
c
y
 (

m
e

a
n

)

no_lshed

reactive

eq_srates

mmfs_cpu

mmfs_pkt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

overload level (K)

a
c
c
u

ra
c
y
 (

m
in

)

no_lshed

reactive

eq_srates

mmfs_cpu

mmfs_pkt

Figure 5.4: Average (left) and minimum (right) accuracy of various load shedding strate-
gies when running a representative set of queries with fixed minimum sampling rate
constraints

not leave the responsibility of scheduling the monitoring applications to the Operating

System, which is basically designed to be fair in terms of access to the CPU. However,

in our current implementation, the strategy to be used can be chosen at configuration

time.

So far, we have only looked at the average accuracy over the entire duration of

the experiment. In order to better understand the stability of the system, we plot in

Figure 5.5 the accuracy of the autofocus query over time when K = 0.2. The figure shows

the large impact of light overload situations in two alternative systems. In particular, the

poor performance of the eq srates system is due to the fact that the query is disabled

quite frequently given the variability in the incoming traffic, although in average the

sampling rate during the entire execution is above the minimum presented in Table 5.2.

This has an important impact in the accuracy of this particular query. Instead, the

mmfs cpu and mmfs pkt strategies are more stable and allow the system to keep the

sampling rate above the minimum sampling rate, even if the incoming traffic is highly

variable.

5.5.4 Overhead

Applying different sampling rates to different queries has direct impact on the cost of

running the prediction algorithm as compared to the system presented in Chapter 4,

because the traffic features have to be recomputed for each query after applying traffic

sampling in order to correctly update the MLR history. In contrast, in Chapter 4 the

traffic features could be recomputed just once, given that all queries always process equal

80 CHAPTER 5. FAIRNESS OF SERVICE AND NASH EQUILIBRIUM

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

a
c
c
u

ra
c
y

autofocus (no_lshed, K = 0.2)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

a
c
c
u

ra
c
y

autofocus (eq_srates, K = 0.2)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

a
c
c
u

ra
c
y

autofocus (mmfs_cpu, K = 0.2)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

time (s)

a
c
c
u

ra
c
y

autofocus (mmfs_pkt, K = 0.2)

Figure 5.5: Autofocus accuracy over time when K = 0.2

batches (i.e., an equal sampling rate is applied to all queries).

An optimization that allows to reduce this overhead consists of scaling the actual

CPU usage of each query with its sampling rate while using the original features to

update the MLR history (avoiding a second full feature extraction on each batch). The

overhead imposed by our load shedding system (mmfs pkt strategy) on the entire CoMo

platform is of 10.30%, with similar prediction accuracy as a system that recomputes

the traffic features. The results presented in Section 5.5 were obtained on a system

implementing this optimization.

Note also that the overhead of the different strategies to compute the max-min fair

sampling rates is negligible compared to the cost of extracting the traffic features, as

discussed in Section 3.4.4.

5.6 Chapter Summary

In this chapter, we presented a load shedding strategy based on a packet scheduler that

applies different sampling rates to different queries according to external information

about their accuracy requirements. Although this strategy incurs negligible overhead as

compared to the alternative of applying an equal sampling rate to all queries described

in Chapter 4, our results points out a significant increase in the average and minimum

accuracy of the monitoring system during overload situations.

The main novelty of our load shedding strategy is that it ensures that excess load is

shed in a fair manner among the queries, even when dealing with non-cooperative users,

5.6. CHAPTER SUMMARY 81

given that a single Nash Equilibrium exists when users provide correct information about

the accuracy requirements of the queries.

We implemented our load shedding strategy in the CoMo system and evaluated it

with a diverse set of real traffic queries. Our results confirm that our strategy ensures

fairness of service and maintains high levels of accuracy for all queries, even in the

presence of severe overload situations. The experimental results also indicate that our

load shedding strategy based on a packet scheduler is preferable for handling multiple

queries in a network monitoring system over the more common approach of providing

fair access to the CPU used by typical Operating System task schedulers.

In the next chapter, we extend our system to support custom load shedding mecha-

nisms for those queries that are not robust against packet and flow sampling.

82 CHAPTER 5. FAIRNESS OF SERVICE AND NASH EQUILIBRIUM

Chapter 6

Custom Load Shedding

In previous chapters, load shedding has been implemented by means of traffic sampling.

However, not all monitoring applications are robust against sampling and often other

techniques can be devised to shed load more effectively.

In order to provide a generic solution for arbitrary monitoring applications, in this

chapter we present an extension of our load shedding scheme that, besides supporting

standard sampling techniques, allows applications to define custom load shedding meth-

ods. The main novelty of our approach is that the monitoring system can delegate the

task of shedding excess load to applications in a safe manner and still guarantee fairness

of service in the presence of non-cooperative or selfish users.

We use real-world packet traces and deploy a real implementation of our load shed-

ding scheme in a large university network in order to show the performance and robust-

ness of the monitoring system in front of deliberate traffic anomalies and queries that

fail to shed load correctly.

6.1 Proposed Method

The load shedding strategy described in Chapter 5 assures a fair allocation of resources

to queries as long as all queries are equally robust against the load shedding mechanisms

provided by the core monitoring platform (i.e., packet and flow sampling). However,

this strategy penalizes those queries that do not support sampling (e.g., signature-based

IDS queries), forcing them to set their minimum tolerable sampling rate (mq) to 1. As a

consequence, they have a high probability of being disabled in the presence of overload

since, according to the strategy presented in Chapter 5, the system stops first those

queries with greater resource demands (i.e., those with greater values of mq × d̂q) when

83

84 CHAPTER 6. CUSTOM LOAD SHEDDING

it cannot satisfy the minimum sampling rates.

On the other hand, there are queries that, although being robust against sampling,

can compute more accurate results using different sampling methods than those provided

by the core platform. For example, previous works have shown that Sample and Hold [56]

achieves better accuracy than uniform sampling for detecting heavy-hitters. In that case,

using packet or flow sampling would force these queries to use greater values of mq than

those actually needed when using other, more appropriate sampling methods. This

would result not only in a waste of resources, but also in worse accuracy, given that the

query would have a higher probability of being disabled during overload situations.

A possible solution would consist of including as many load shedding mechanisms

as possible in the core system (e.g., lightweight summaries [118] or different sampling

algorithms [56, 116, 37]) to increase the probability of finding a suitable one for any

possible traffic query the system receives. However, this solution is not viable in practice

for a system that supports arbitrary network traffic queries, such as CoMo, and it does

not allow for testing or deploying new load shedding methods.

We propose instead a simple yet effective alternative: to allow queries to provide

custom load shedding mechanisms. This way, when a suitable load shedding mechanism

is not found for a given query, the system can delegate the task of shedding excess load

to the query itself.

The intuition behind this idea is that queries can potentially shed load in a more

effective and graceful manner than the monitoring system, because they know their

actual implementation, whereas the system treats them as black boxes. For example,

they can take into account the particular measurement technique employed and the data

structures involved in order to implement a load shedding mechanism that has a lower

impact on their accuracy. Thus, these queries will also be able to gracefully reduce

their resource requirements and compete therefore, under fair conditions, for the shared

resources with those that use one of the sampling methods provided by the core platform.

Even, in the unlikely case that such a custom load shedding mechanism for a given

query does not exist, the query could always keep, during overload conditions, the rel-

evant data (or a summary of it) needed to later compute its output, and postpone the

actual computations until more resources are available.

6.1.1 Enforcement Policy

In this solution, queries are part of the load shedding procedure, which raises additional

fairness concerns. Similar custom load shedding designs have been proposed for other

6.1. PROPOSED METHOD 85

10.90.80.70.60.50.40.30.20.10

10
9

10
10

load shedding rate

C
P

U
 c

y
c
le

s
 (

lo
g
)

selfish prediction

selfish actual

custom prediction

custom actual

custom−corrected prediction

custom−corrected actual

Figure 6.1: Average prediction and CPU usage of a signature-based P2P flow detector
query when using different load shedding methods

environments (e.g., [39]) where applications behave in a collaborative fashion, a require-

ment that is not met in the presence of non-cooperative users. For example, in such

an environment, there is no guarantee that queries will implement their custom load

shedding methods correctly, for malicious reasons or otherwise.

Our solution instead consists of ensuring that queries shed the requested amount of

load by penalizing those that do not shed it correctly. Although several policies would

be possible for this purpose (e.g., [98, 5]), we empirically verified that our prediction

method inherently penalizes selfish queries by increasing exponentially their predicted

cycles (d̂q) and thus their probability of being disabled.

Figure 6.1 illustrates this property with a real example. The line labeled as ‘selfish

prediction’ shows the predicted cycles for a selfish signature-based P2P flow detector

query (see Table 2.2, p2p-detector query) that does not shed any load, irrespective of the

amount of load shedding requested by the core. The figure confirms that d̂q increases

exponentially with the load shedding rate, instead of remaining constant (note logarith-

mic axes). As a result, the running probability of this query decreases exponentially,

because it depends directly on the value of d̂q, as discussed in Section 5.2.

This interesting behavior is consequence of the way we update the history main-

tained by the Multiple Linear Regression module (MLR) to perform the prediction. In

particular, the value used to update the MLR history is computed as
dq

1−rq
, where dq

stands for the actual CPU cycles used by a query q ∈ Q and rq is the load shedding rate

requested by the core system. This correction is necessary because the actual resource

consumption of a query can only be measured after shedding excess load.

It is then clear that the value of
dq

1−rq
will increase exponentially if rq increases but

86 CHAPTER 6. CUSTOM LOAD SHEDDING

dq is not reduced in the same proportion (i.e., when q sheds less load than requested).

For example, the line labeled as ‘selfish actual’ in Figure 6.1 shows that the value of dq is

almost constant (i.e., q never sheds excess load), resulting in the mentioned exponential

ramp on the predicted cycles (‘selfish prediction’ line). Therefore, users have no option

other than implementing their custom load shedding mechanisms correctly, otherwise

their queries will have no chance to run under overload conditions.

Note that the alternative of recomputing the traffic features used in Chapter 4,

rather than scaling the CPU cycles, would be only valid for those queries that use

sampling as their load shedding option, besides being computationally more expensive

(see Section 5.5.4).

6.1.2 Implementation

Our current implementation offers two equivalent ways of notifying the magnitude of

load shedding to those queries that implement a custom mechanism. First, it provides

the query with the load shedding rate (rq) to be applied, which is relative to its current

CPU usage. This rate is computed as 1 − pq, where pq is obtained as described in

Section 5.2. Second, it informs the queries about the absolute amount of CPU cycles to

be shed, which is simply computed as rq × d̂q.

As an example, we implemented a custom load shedding method for our previous ex-

ample of a signature-based P2P flow detector query. Typically, the signatures employed

to detect P2P applications appear within the first bytes of a flow [121, 83]. Therefore,

an effective way to shed load is to always scan the first packet of a flow and inspect

subsequent packets with probability 1− rq. In order to efficiently detect whether a flow

has already been seen, we use a Bloom filter [22].

While this query could use packet or flow sampling instead, Figure 6.2 shows the

notable improvement achieved after implementing our custom-defined load shedding

mechanism. Note that the error of this query is defined as 1 minus the ratio of the

number of flows correctly classified (according to the results obtained with the same

query when all packets are inspected) and the total number of flows. The error of 1

when the load shedding rate is greater than 0.8 is due to the fact that the query is

stopped at that point, as we will explain shortly.

Nevertheless, there are cases where reducing the amount of computations by the load

shedding rate does not guarantee an equivalent decrease in the query’s CPU usage. For

example, in the case of the P2P detector query, there is a fixed cost that the query cannot

reduce, which corresponds to checking and updating the Bloom filter and scanning the

6.1. PROPOSED METHOD 87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

load shedding rate

e
rr

o
r

flow sampling

packet sampling

custom load shedding

Figure 6.2: Accuracy error of a signature-based P2P flow detector query when using
different load shedding methods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x 10
9

load shedding rate

C
P

U
 c

y
c
le

s

actual CPU usage

expected CPU usage

k
q
 = 0.82

Figure 6.3: Actual versus expected resource consumption of a signature-based P2P flow
detector query (before correction)

first packet of each flow.

Figure 6.1 plots the prediction and actual resource usage of this query when using the

mentioned load shedding method. The line labeled as ‘custom prediction’ shows that the

predicted cycles still increase exponentially, although the resource consumption decreases

linearly (note logarithmic axes) with the load shedding rate (‘custom actual’ line). This

is a result of the query shedding less load than requested by the core system due to this

fixed cost and, therefore, being penalized by our prediction algorithm. Figure 6.3 shows

the actual resource usage of the query compared to that expected by the core system

as a function of the load shedding rate. The figure verifies that the query is actually

shedding less load than requested by the core.

88 CHAPTER 6. CUSTOM LOAD SHEDDING

In order to solve this practical problem, we allow the query to inform the core system

about this extra cost. This way, the system can correct beforehand the amount of

load shedding requested to the query in order to compensate for this cost and avoid

exponential penalization. Assuming a linear relationship between the load shedding rate

and the resource consumption, the core system computes the actual load shedding rate

(rq) to be applied to those queries that implement a custom method as:

rq = min

(
1,

r′q
kq

)
(6.1)

where r′q is the original load shedding rate computed as r′q = 1 − pq, and kq is a value

provided by the query, which indicates the minimum load shedding rate from which

the query q is not able to further reduce its resource consumption. When r′q is greater

than or equal to kq, the query is disabled given that it cannot shed the amount of load

requested by the core system. In the case of the p2p-detector query, kq was obtained

empirically as illustrated in Figure 6.3. In particular, kq is 1 minus the ratio of cycles

consumed with a load shedding rate of 0 and those consumed with a load shedding rate

of 1, resulting in a value of kq = 0.82.

Note that another option would consist of performing this correction internally within

the query. In fact, by implementing it in the core system we are actually allowing both

options, since a query can always provide a value of kq = 1 and perform the correction

by itself.

Figure 6.1 shows the impact of applying the mentioned correction to the load shed-

ding rate. The line labeled as ‘custom-corrected prediction’ shows that, in this case, the

predicted cycles are constant and independent of the load shedding rate being applied,

which indicates that now this query is shedding the correct amount of load and, there-

fore, is not penalized by our prediction algorithm. The ‘custom-corrected actual’ line

shows the actual resource consumption of the query after applying the correction.

6.1.3 Limitations

The custom load shedding scheme presented in this chapter incurs two different types

of limitations. We first discuss some limitations inherent to our load shedding scheme.

Next, we present more practical limitations that stem from the current implementation

of CoMo.

First, our load shedding scheme assumes a linear relationship between the resource

consumption of a query and the load shedding rate. Different relationships, although

possible, would indicate that the query does not implement load shedding correctly.

6.2. VALIDATION 89

Queries shedding less load than requested are exponentially penalized by our system as

explained. On the contrary, inefficiencies in the system arise if queries shed more load

than necessary. Both cases result in over-shedding and therefore the integrity of the

system is not compromised.

Second, the user must provide the fixed cost (kq) of those queries using a custom

load shedding method. Although, this value could be automatically discovered by the

core system from previous observations, this option is not yet available in our current

implementation. For example, the system could send a batch with a load shedding rate

of zero and then the same batch with a load shedding rate of one, and measure the

reduction in the resource consumption of the query to obtain its kq value.

Finally, the rest of limitations are related to security aspects of the current imple-

mentation of CoMo, which is not yet robust against malicious queries that attempt to

bring the system down. For example, a query could not return the control to the core

system, while processing a batch, entering an endless loop. Similarly, a query could

unexpectedly delay its execution to cause the input packet buffers to overflow. Never-

theless, these issues could be easily solved by implementing a timeout clock to preempt

the CPU from a query when it significantly exceeds its allocation of CPU cycles.

Other security aspects not fully covered in the current version of CoMo include

protection against queries that cause, for example, segmentation faults or other system

exceptions, execute system calls bypassing the interfaces provided by the core system,

access arbitrary memory regions (including packet buffers and data structures of other

queries) or monopolize the system memory.

In order to address these limitations, the next version of CoMo, which is currently un-

der development, will isolate queries in separate sandboxed virtual machines to increase

the resilience of the system against such potential threats.

6.2 Validation

In this section, we validate the custom load shedding strategy described in Section 6.1.

In particular, we study the performance of a network monitoring system implementing

our load shedding strategy compared to our two previous solutions presented in Chap-

ters 4 and 5. We also study the impact of different levels of CPU overload on the

accuracy of the traffic queries.

90 CHAPTER 6. CUSTOM LOAD SHEDDING

Query Method mq kq

application packet 0.03 -
autofocus packet 0.51 -
counter packet 0.02 -
flows flow 0.03 -
high-watermark packet 0.10 -
p2p-detector custom 0.91 0.82
super-sources flow 0.91 -
top-k packet 0.50 -
trace custom 0.95 0.49

Table 6.1: Queries used in the validation

6.2.1 Validation Scenario

In order to validate our load shedding strategy, we implemented it in the CoMo moni-

toring platform and performed several executions using the UPC-I trace (see Table 2.3).

This dataset contains the entire packet payloads, which are needed to study those queries

that require the packet contents to operate (e.g., p2p-detector query).

Table 6.1 lists the set of nine queries from Table 2.2 used in the validation and

presents the load shedding method employed by each query. While most queries use

packet or flow sampling, which are provided by the core platform, two queries (p2p-

detector and trace) implement a custom load shedding method. The p2p-detector query

uses the method already described in Section 6.1, which consists of dynamically reducing

the number of packets inspected per flow. Instead, the trace query implements a custom

method based on dynamically reducing the number of payload bytes collected per packet

in the presence of overload. The table also presents the values of kq for these queries,

which are computed as described in Section 6.1.

As discussed in Chapter 5, each query can specify at configuration time a minimum

sampling rate value (mq) that will be used by the core system to make scheduling

decisions and select the sampling (and load shedding) rates. This value will determine

the probability of the query being stopped under overload conditions and the minimum

accuracy it can achieve while active.

In a real scenario, mq should be decided by the end user who submits the query.

However, given that the queries in the standard distribution of CoMo do not include this

value yet, and in order to provide reasonable values for mq to validate our proposal, we

determined them experimentally using the same methodology described in Section 5.5.2.

Figure 6.4 shows the accuracy curves of three queries (high-watermark, top-k and

a sampling-based version of the p2p-detector query) as a function of the sampling rate.

6.2. VALIDATION 91

00.10.20.30.40.50.60.70.80.91
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sampling rate (p
q
)

a
c
c
u

ra
c
y
 (

1
−
ε
q
)

high−watermark

top−k

p2p−detector

Figure 6.4: Accuracy as a function of the sampling rate (high-watermark, top-k and
p2p-detector queries using packet sampling)

Note that while the accuracy of the first two queries drops gradually until a certain point

beyond which it degrades drastically, in the case of the sampling-based p2p-detector the

accuracy decreases almost linearly with the sampling rate, and such a critical point does

not exist. This result confirms that this query is not able to gracefully reduce its accuracy

using packet sampling, but can do better by using a custom load shedding method, as

the one described in Section 6.1.

From the results of these executions, we set the mq values to the minimum sampling

rate that guarantees an average error below or equal to 5% for each query, as discussed

in Section 5.5.2. Note that the value of 5% is arbitrary and is used just as an example

to validate our proposal. Similar conclusions would be also drawn with different values

for the maximum error. Table 6.1 presents the selected values of mq for those queries

that use traffic sampling using the UPC-I trace.

6.2.2 System Accuracy

In order to show the benefits of our custom load shedding strategy (custom), we com-

pare its performance to three different load shedding alternatives. The first alternative

(no lshed) consists of the original version of CoMo, which does not implement any ex-

plicit load shedding scheme. Instead, it simply discards packets without control as the

buffers fill in the presence of overload. The second alternative (eq srates) implements the

simple load shedding strategy described in Chapter 4, which assigns an equal sampling

rate to all queries. That is, in this system the amount of cycles allocated to each query

is proportional to its relative cost. Finally, the third alternative (mmfs pkt) implements

92 CHAPTER 6. CUSTOM LOAD SHEDDING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

overload level (K)

a
c
c
u

ra
c
y

no_lshed

eq_srates

mmfs_pkt

custom

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

overload level (K)

a
c
c
u

ra
c
y

no_lshed

eq_srates

mmfs_pkt

custom

Figure 6.5: Average (left) and minimum (right) accuracy of the system at increasing
overload levels

the packet-based strategy presented in Chapter 5. In this strategy, the system tries to

satisfy the minimum sampling rate constraints of all queries and eventually distributes

the remaining cycles in such a way that the minimum sampling rate among all queries

is maximized. In case that the system capacity is not enough to satisfy the minimum

requirements of all queries, those with higher minimum demands (i.e., mq × d̂q) are

disabled.

Throughout the validation we use the accuracy of the queries as the performance

metric to compare the different load shedding alternatives. We define the accuracy of a

query q ∈ Q as a function of its error, as described in Section 5.5.3 (see Figure 5.3).

The left plot in Figure 6.5 shows the average accuracy of the various load shedding

strategies as a function of the overload level in the monitoring system. The overload

level K is defined as one minus the ratio between the system capacity and the sum of the

query demands. In order to simulate the different levels of overload in our testbed, we

perform 10 executions ranging the value of K from 0 to 1 (in steps of 0.1), as described

in Section 5.4. Recall that K = 0 denotes no overload (the system capacity is equal to

the sum of all demands), whereas K = 1 expresses infinite overload (the system capacity

is 0).

The figure shows a consistent improvement of around 10% in the average accuracy

of the custom system compared to the best alternative (mmfs pkt). This improvement

is achieved thanks to the trace and p2p-detector queries that now implement a custom

load shedding method, and can therefore significantly increase their accuracy. This

improvement is more evident when K reaches 0.2, which is the point from which the

p2p-detector is disabled in the mmfs pkt system. Note that in the eq srates and mmfs pkt

6.3. EXPERIMENTAL EVALUATION 93

systems, p2p-detector and trace use packet sampling and their mq constraints are set to

the values shown in Table 6.1.

The right plot in Figure 6.5 shows the minimum accuracy among all queries. The

improvement in the minimum accuracy is even much more significant than in the average

case. In particular, the minimum accuracy is sustained above 0.95 until K = 0.8,

when the p2p-detector query is stopped. This result confirms than the custom system is

significantly fairer in terms of accuracy than the other alternatives, given that the trace

and p2p-detector queries can now compete under fair conditions for the shared resources

with the other queries. Note that in the best of the other alternatives, the accuracy of

at least one query is already zero when K reaches 0.2.

On the other hand, the good performance of the original version of CoMo when

K = 0.1 is explained by the fact that the capacity of this system is slightly larger than the

rest, since it does not incur the additional load shedding overhead. The poor performance

of the eq srates system is also expected, given that this strategy is not designed to

consider the minimum sampling rates, resulting in a large number of violations of the

minimum constraints, even when K = 0.1.

6.3 Experimental Evaluation

In this section, we evaluate the performance of our custom load shedding strategy in

a fully operative network monitoring system with a wide range of queries and traffic

scenarios. In particular, we focus the evaluation on studying the robustness of an actual

implementation of our load shedding system against traffic anomalies and queries that

do not behave properly. In the first case, we inject artificially-generated network attacks

that result in a highly variable and difficult to predict workload to stress our prediction

system. In the second case, we evaluate the impact of new query arrivals, selfish queries

and queries that have implementation bugs on the performance of the monitoring system.

With these experiments we try to verify that, even when delegating the task of

shedding excess load onto non-cooperative users, the system is able to achieve robustness

and isolation between queries.

In all experiments, the size of the batches is set to 100ms, the FCBF threshold is

0.6 and the length of the MLR history is configured to 6s (n = 60), according to the

results obtained in Chapter 3. We do not evaluate here other non-predictive alternatives,

because the superiority of a predictive approach over other choices (e.g., reactive systems)

was already shown in Chapters 4 and 5.

94 CHAPTER 6. CUSTOM LOAD SHEDDING

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

x 10
9

c
y
c
le

s

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
prediction error

re
la

ti
v
e
 e

rr
o
r

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
delay compared to real time

d
e
la

y
 (

s
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

system accuracy

a
c
c
u
ra

c
y

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
load shedding overhead

o
v
e
rh

e
a
d

time (s)

cycles available to CoMo prediction actual (after sampling)

Figure 6.6: Performance of a network monitoring system that does not support custom
load shedding and implements the eq srates strategy

6.3.1 Performance under Normal Traffic

We first compare the performance of our custom load shedding method to the system

presented in Chapter 4 under normal traffic conditions. Recall that our previous proto-

type (eq srates) only supports packet and flow sampling and applies an equal sampling

rate to all queries in the presence of overload. Instead, the system presented in this

chapter (custom) supports custom load shedding and applies different sampling rates to

different queries according to the packet-based strategy (mmfs pkt) presented in Sec-

tion 5.2. In this system, the trace and p2p-detector queries implement the custom load

shedding methods described in Section 6.2, while the rest of the queries use packet or

flow sampling.

Figures 6.6 and 6.7 plot five different system performance parameters over time (i.e.,

predicted and actual CPU usage, prediction error, system delay, system accuracy and

load shedding overhead, respectively) for both systems when running the nine queries

presented in Table 6.1 on the UPC-I trace. Results are averaged over one second.

The first two plots show the time series of the predicted cycles per second compared

to the actual CPU usage of the system and the prediction error. The bold horizontal

line depicts the total CPU cycles allocated to CoMo, which in this experiment are set in

such a way that the overload factor is K = 0.5 in average during the entire execution.

That is, in both systems the sum of resource demands for all queries is twice the system

6.3. EXPERIMENTAL EVALUATION 95

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

x 10
9

c
y
c
le

s

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
prediction error

re
la

ti
v
e
 e

rr
o
r

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
delay compared to real time

d
e
la

y
 (

s
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

system accuracy

a
c
c
u
ra

c
y

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
load shedding overhead

o
v
e
rh

e
a
d

time (s)

cycles available to CoMo prediction actual (after sampling)

Figure 6.7: Performance of a network monitoring system that supports custom load
shedding and implements the mmfs pkt strategy

capacity.

The plots show that, in both systems, the prediction error is very low, resulting in

an overall CPU usage (‘actual’ line) very close to the limit of available cycles (‘cycles

available to CoMo’ line).

The third plot (‘delay’) shows the delay of the system compared to the real time.

In principle, the delay should be at least 0.1s, given that the monitoring system always

waits to have an entire batch before passing it to the queries. Recall that batches contain

0.1s of traffic. In addition, this figure gives us a measure of the buffer size required to

avoid packet losses in the case of running the system on a real link, instead of taking the

input traffic from a trace file as in this example.

The figure shows that the delay is almost constant and centered in 0.2s, indicating

that both systems are stable and only require a buffer able to hold two batches, the one

that is being processed and the next one. This behavior is well expected given that the

CPU is fully utilized and therefore the processing time of a batch is 0.1s in average. On

the contrary, the delay in an unstable system would increase without bound when using

a packet trace. This behavior would be translated into uncontrolled packet losses in a

real scenario with a finite buffer.

The fourth plot (‘system accuracy’) shows the overall accuracy of the system over

time, which is computed as the sum of the accuracy for all queries divided by the total

number of queries. Figure 6.7 shows that the overall accuracy of the custom system

96 CHAPTER 6. CUSTOM LOAD SHEDDING

is very close to the maximum value of 1, even when the system is highly overloaded.

On the contrary, the accuracy of the eq srates system (Figure 6.6) is significantly lower,

given that it does not consider the minimum sampling rate constraints when selecting

the sampling rates. This results in an allocation that is not optimal according to the

accuracy requirements of the queries.

Finally, the bottom plot (‘overhead’) shows the overhead over time of both load

shedding strategies. The overhead is constant (about 7%) in both systems, although the

predicted cycles are quite variable (as shown in the top plot), thanks to the space-efficient

algorithms used in the feature extraction phase, which have a deterministic worst case

computational cost. This result confirms that the load shedding strategy presented in

this chapter is able to obtain a significant improvement in the overall system accuracy

with similar overhead. The few spikes in the overhead are caused by context switches

during the execution of the load shedding procedure, which result in the measurement

of additional cycles belonging to the process (or processes) that preempted CoMo.

In the rest of this section, we evaluate the system with anomalous traffic and un-

expected or unusual resource usage patterns. In the following examples, we use the

same system configuration as in this experiment and omit the figures depicting the load

shedding overhead, since we already showed that it is small and constant.

6.3.2 Robustness against Traffic Anomalies

The performance of a network monitoring system can be highly affected by anomalies in

the network traffic. For example, a system can be underutilized for a long period of time

and suddenly become highly overloaded due to the presence of a Distributed Denial-of-

Service attack (DDoS) or a worm spread. During these situations, the results of the

monitoring system, even if approximate, are extremely valuable to network operators.

In this experiment, we evaluate the impact of network anomalies on the robustness

of the monitoring system. In this particular example, we inject a massive DDoS attack

every 3 minutes into our traces. The attack consists of injecting 1 new flow, with

spoofed IP source addresses and ports, out of every 3 packets already existing in the

original trace. Although each attack lasts 1 minute, the prediction history is set to 6

seconds. Therefore, when a new attack arrives after 3 minutes the system has forgotten

all previously observed attacks.

Figure 6.8 plots the predicted and actual CPU usage together with the system accu-

racy and delay during the attacks. The figure shows that the predicted cycles increase

significantly during the anomaly (note logarithmic scale in the top plot) since the queries

6.3. EXPERIMENTAL EVALUATION 97

0 200 400 600 800 1000 1200 1400 1600 1800
10

9c
y
c
le

s
 (

lo
g
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
prediction error

re
la

ti
v
e
 e

rr
o
r

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
delay compared to real time

d
e
la

y
 (

s
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

system accuracy

a
c
c
u
ra

c
y

time (s)

cycles available to CoMo prediction actual (after sampling)

Figure 6.8: Performance of the network monitoring system in the presence of massive
DDoS attacks

that depend on the number of flows in the traffic (e.g., p2p-detector) are highly affected

by this type of attacks. However, the system is stable during the anomaly and its impact

on the overall system accuracy and delay is negligible. Note also that although the pre-

diction accuracy is somewhat affected at the end of each attack, all prediction errors are

overestimations, given that the delay of the system decreases when the prediction error

increases. This result indicates that the prediction algorithm is able to quickly detect

the anomaly but needs a little longer to forget it.

Another interesting behavior is the decrease in the actual CPU usage and delay

during the first two attacks. The cause of this behavior is that the fixed cost (kq) of

the p2p-detector query is highly affected by these attacks, given that the first packet of

each flow is always inspected. As a consequence, the core system detects that the query

is not shedding the correct amount of load during the first anomalies and proceeds to

penalize the query increasing its prediction as described in Section 6.1. Nevertheless,

this situation has no impact on the accuracy of the other queries running on the system,

as can be observed in the bottom plot of Figure 6.8.

6.3.3 Effects of Query Arrivals

Another source of instability in our monitoring system is the arrival of new queries. At

a given point of time, the resource consumption of the monitoring system can increase

significantly due to the arrival of a new query, for which the system does not have any

previous observations to predict its resource usage.

98 CHAPTER 6. CUSTOM LOAD SHEDDING

0 200 400 600 800 1000 1200 1400 1600 1800

10
9

c
y
c
le

s
 (

lo
g
)

cycles available to CoMo prediction actual (after sampling)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
prediction error

re
la

ti
v
e
 e

rr
o
r

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
delay compared to real time

d
e
la

y
 (

s
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

system accuracy

a
c
c
u
ra

c
y

time (s)

Figure 6.9: Performance of the network monitoring system in front of new query arrivals

Figure 6.9 shows the effects of new query arrivals in our monitoring system. In this

experiment, the system is initially running the trace query until minute 6, when we start

submitting a new query every 3 minutes from those listed in Table 6.1. The system

does not start experiencing overload until minute 27, when the p2p-detector query is

submitted and resource demands become twice the system capacity (note logarithmic

scale in the top plot). The figure shows that the system delay is below 0.2s until minute

27, and increases up to 0.2s when the last query is submitted and the CPU starts to be

fully utilized.

Figure 6.9 verifies that the impact of new arrivals on the prediction error and delay

is minimal. The spikes in the prediction error during the arrival of some queries are

only punctual, which indicates that the system is able to learn the resource patterns of

previously unseen queries very quickly.

6.3.4 Robustness against Selfish Queries

One of the critical aspects of our custom load shedding strategy is that the monitoring

system has to operate in a non-cooperative environment with selfish users. Therefore,

the enforcement policy presented in Section 6.1.1 is crucial to achieve robustness and

assure a fair allocation of computing resources to queries.

In this experiment, we evaluate the robustness of our enforcement policy in the

presence of a selfish query. In particular, the selfish behavior is simulated by employing

a custom load shedding method that never sheds excess load, irrespective of the amount

6.3. EXPERIMENTAL EVALUATION 99

0 200 400 600 800 1000 1200 1400 1600 1800

10
9

c
y
c
le

s
 (

lo
g
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
prediction error

re
la

ti
v
e
 e

rr
o
r

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
delay compared to real time

d
e
la

y
 (

s
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

system accuracy

a
c
c
u
ra

c
y

time (s)

cycles available to CoMo prediction actual (after sampling)

Figure 6.10: Performance of the network monitoring system when receiving a selfish
version of the p2p-detector query every 3 minutes

of load shedding (rq) requested by the core platform. We consider a query implementing

this custom method as selfish, given that it always tries to obtain a larger share of the

system resources than other queries that shed the correct amount of load when requested

by the core system.

We modified the p2p-detector query to implement this selfish custom load shedding

method. The resulting query is then submitted to the monitoring system every 3 minutes

and withdrawn after 1 minute. Initially, the system is running the remaining eight queries

listed in Table 6.1 and it is not experiencing overload. Note that the p2p-detector query

is the most expensive in Table 6.1, with a cost more than 10 times greater than the rest

of the queries.

Figure 6.10 shows that this selfish query is quickly penalized and does not have any

chance to run after very few observations of its selfish behavior. Note also that the

system would have enough cycles to run a version of the same query that implements a

correct load shedding method instead.

The bottom plot shows the overall system accuracy without including the selfish

query and confirms that the impact of this query on the accuracy of the rest of the

queries is negligible. The exponential penalization can be easily observed in the predicted

cycles depicted in the top plot of Figure 6.10. In subsequent arrivals, the query is never

executed again, given that the system still maintains its MLR history for some time.

This additional check to identify the query is simply done by computing a hash of the

query binary code.

100 CHAPTER 6. CUSTOM LOAD SHEDDING

6.3.5 Robustness against Buggy Queries

Even if a query is not malicious or selfish in nature, sometimes its resource consumption

can increase unexpectedly due to an implementation error. In that case, the network

monitoring system must be able to detect the situation and take the necessary actions

to make sure that this misbehavior has no impact on the accuracy of other (correct)

queries running on the same monitoring system.

In this experiment, we evaluate the impact of queries that have implementation bugs

on the overall system accuracy. In particular, we intentionally introduce a bug in the

p2p-detector query. The bug consists of setting the size of its hash table, which maintains

the state of the collected flows, to a very small value. This leads to a large number of

collisions that cause a significant increase in the resource consumption of the query,

compared to its correct implementation.

As in the previous example, the buggy query is submitted every 3 minutes and

withdrawn after 1 minute. In addition, before submitting the new query, the monitoring

system is already executing the nine queries listed in Table 6.1, including also a correct

version of the p2p-detector query. Therefore, unlike in our previous example, the system

is already experiencing overload when it receives the buggy query.

Figure 6.11 confirms that the impact of this erroneous query on the accuracy of the

other queries running on the monitoring system is minimal. The bottom plot shows the

overall system accuracy without including the buggy query. Note that although there

are two almost identical p2p-detector queries running on the same monitoring system,

the system is able to detect the buggy one and stop it in order to guarantee the accuracy

of the rest of the queries.

6.4 Operational Experiences

The objective of this section is to validate the results obtained through packet traces in

an operational network with live network traffic. We study the online performance of our

load shedding scheme in a real scenario where the monitoring system faces continuous

and changing overload conditions. We show how, under these adverse conditions, the

load shedder is able to gracefully degrade the performance of the monitoring system and

minimize the impact of overload on the accuracy of the traffic queries.

In this experiment, we deploy our monitoring system in the UPC scenario presented

in Section 2.3 and run online the nine queries described in Table 6.1. We present the

results of a 30-minute execution of our monitoring system in an Intel Xeon running at 3

6.4. OPERATIONAL EXPERIENCES 101

0 200 400 600 800 1000 1200 1400 1600 1800

10
10

c
y
c
le

s
 (

lo
g
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
prediction error

re
la

ti
v
e
 e

rr
o
r

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5
delay compared to real time

d
e
la

y
 (

s
)

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

system accuracy

a
c
c
u
ra

c
y

time (s)

cycles available to CoMo prediction actual (after sampling)

Figure 6.11: Performance of the network monitoring system when receiving a buggy
version of the p2p-detector query every 3 minutes

GHz. Details of this execution (UPC-II) are available in Table 2.4.

6.4.1 Online Performance

Figure 6.12 plots the time series of the CPU cycles consumed by the monitoring system

to process one second of traffic (i.e., 10 batches) together with the predicted cycles and

the overhead of our load shedding scheme over time. It is clear that the monitoring

system is highly overloaded since the predicted load is more than twice the total system

capacity. The prediction increases over time due to the increase in the network traffic

and number of connections, as can be observed in Figure 6.13. This is an expected

behavior given the time of the day at which this experiment was carried out.

The figure confirms that our load shedding system is able to keep the CPU usage of

the monitoring system consistently below the 3 GHz threshold, which marks the limit

from which the system would not be stable. It succeeds in predicting the increase in the

CPU demands and in adapting the CPU usage of the queries accordingly. Figure 6.14

shows how the average load shedding rate increases with the traffic load. Moreover,

during the entire execution, the CPU usage is very close to the limit of available cycles,

which indicates that the predictions are accurate and the system is shedding the bare

minimum amount of load. The CPU usage only decreases a little bit at the end, when

the predicted load is so high that the minimum requirements of all queries cannot be

satisfied for some batches, and the p2p-detector (the most expensive query) is sometimes

102 CHAPTER 6. CUSTOM LOAD SHEDDING

09:00 09:05 09:10 09:15 09:20 09:25 09:30
0

2

4

6

8

10

12

14

16

18
x 10

9

time [hh:mm]

C
P

U
 u

s
a

g
e

 [
c
y
c
le

s
/s

e
c
]

CoMo + load_shedding overhead

Query cycles

Predicted cycles

CPU limit

Figure 6.12: CPU usage after load shedding (stacked) and predicted load over time

stopped to avoid uncontrolled packet drops.

As a result, the left plot in Figure 6.13 shows that the occupation of the incoming

buffer of the DAG card is controlled around 5 MB (2% of the total buffer size) and only

reaches values of up to 50 MB at the beginning of the execution when the prediction

system is still not trained. Since the buffer limit is never reached, no packets are dropped

by the DAG card during the entire execution, as depicted in Figure 6.13 (left).

The reduction of the overhead in Figure 6.12, compared to the results previously

presented in Figure 4.4, is explained by two facts: (i) in this experiment we ran the

CoMo system on a dual-processor computer and forced the CoMo process responsible

of processing the traffic queries to run on a different CPU than the rest of the CoMo

processes, using the sched setaffinity() system call. This resulted in a significant

reduction of the overhead incurred by the rest of CoMo tasks on the CPU controlled

by our load shedding scheme, and (ii) we implemented the optimization proposed in

Section 5.5.4 to avoid a second full feature extraction on each batch.

Figure 6.14 plots the overall accuracy of the queries over time. As expected, the

accuracy is very high, even when the system is more overloaded, given that the minimum

constraints of all queries (except p2p-detector) are preserved and not a single packet is

dropped without control due to buffer overflows. Table 6.2 shows the accuracy broken

down by query. We can observe that the average accuracy of most queries is kept

above 95% with a small standard deviation, except for the p2p-detector query, which is

sometimes disabled, especially at the end of the execution, when the traffic conditions

are more extreme and its minimum requirements cannot be guaranteed. In the table, we

omit the results of the trace query, given that no standard procedure exists to measure

6.5. CHAPTER SUMMARY 103

09:00 09:05 09:10 09:15 09:20 09:25 09:30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
4

time [hh:mm]

total packets

buffer occupation (KB)

DAG drops

09:00 09:05 09:10 09:15 09:20 09:25 09:30
4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

time [hh:mm]

fl
o

w
s
/s

Figure 6.13: Traffic load, buffer occupation and DAG drops (left) and number of new
connections (right) over time

09:00 09:05 09:10 09:15 09:20 09:25 09:30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [hh:mm]

system utility

average load shedding rate

Figure 6.14: Overall system accuracy and average load shedding rate over time

its accuracy, as discussed in Section 2.2. In particular, the load shedding rate of this

query was kept during the entire execution below the maximum of kq = 0.49 defined in

Table 6.1, with an average load shedding rate rq = 0.26.

6.5 Chapter Summary

In this chapter, we presented an extension of our load shedding scheme that allows

monitoring applications to use custom-defined load shedding methods. This feature is

very important to those applications that are not robust against the sampling methods

provided by the core platform and to those than can achieve better accuracy by using

other, more appropriate, load shedding methods.

104 CHAPTER 6. CUSTOM LOAD SHEDDING

Query Accuracy

application 1.00 ±0.02
autofocus 0.99 ±0.04
counter 0.99 ±0.01
flows 0.95 ±0.06
high-watermark 0.99 ±0.03
p2p-detector 0.88 ±0.03
super-sources 0.96 ±0.01
top-k 0.96 ±0.06

Table 6.2: Breakdown of the accuracy by query (mean ± stdev)

The main novelty of our approach is that the monitoring system can still achieve

robustness and fairness of service in the presence of overload situations, even when

delegating the task of shedding excess load to non-cooperative applications. The pro-

posed method is able to police applications that do not implement custom load shedding

methods correctly using a lightweight and easy to implement technique, given that the

enforcement policy is an intrinsic feature of the prediction algorithm presented in Chap-

ter 3.

This technique completes the design of our load shedding scheme, which now is

generic enough to support arbitrary monitoring applications from the point of view of

both their resource consumption and the method employed to shed excess load.

We validated our solution to support custom load shedding methods using real-world

packet traces and evaluated its online performance in a large university network. We

also showed the robustness of our load shedding scheme in front of extreme overload

conditions, anomalous traffic patterns, selfish users and buggy applications.

Our experimental results show a significant improvement in the average and minimum

accuracy of the monitoring system, given that with the extension presented in this

chapter those queries that are not robust against sampling can increase their probability

of being executed in the presence of overload by implementing a custom load shedding

method. This results in increased fairness of service, since now all applications can

compete under fair conditions for the shared system resources, regardless of the load

shedding method being employed.

Chapter 7

Related Work

The design of mechanisms to handle overload situations is a classical problem in any real-

time system design and several previous works have proposed solutions to the problem.

Due to the vast amount of existing literature in this field, we limit our review to those

techniques of overload management that we consider most relevant to our work. In this

chapter, we classify existing solutions by different system areas and cover in greater

detail previous load shedding designs, most of them proposed in the context of data

stream management systems.

7.1 Network Monitoring Systems

In network monitoring, the simplest form of load shedding consists of discarding packets

without control in the presence of overload. This naive approach is still adopted by

most monitoring applications, although it is known to have a severe (and unpredictable)

impact on the accuracy and effectiveness of these applications [44, 48].

In order to minimize this impact, critical monitoring systems often integrate special-

ized hardware (e.g., DAG cards [53], SCAMPI adapters [76], router add-ons [81], network

processors [135, 59]) or make use of ad-hoc configurations (e.g., [120]) to avoid the in-

herent hardware limitations of the PC-based architecture for network monitoring [70, 4].

Although these solutions have demonstrated their effectiveness in some scenarios, they

present scalability issues that make them viable only as a short-term solution.

Other monitoring systems have opted to significantly reduce their online function-

alities in order to operate in high-speed environments (e.g., OC3MON [6], Sprint IP-

MON [61]). In this case, complex traffic analysis computations are postponed to an

offline stage, which significantly limits their usefulness and possible applications.

105

106 CHAPTER 7. RELATED WORK

Recently, several research works have proposed solutions that offer a more robust

and predictable behavior in the presence of overload. Traffic sampling is arguably the

most widely accepted technique to cope with the high resource requirements imposed

on network monitoring systems, and is currently under standardization by the PSAMP

working group at the IETF [72]. Duffield reviews in [43] the extensive literature existing

in this field. The research on traffic sampling can be divided into two main groups. On

the one hand, several works have focused on estimating general traffic properties (e.g.,

number and average length of flows [46], flow size distributions [47, 66]), on identify-

ing traffic of particular interest to network operators (e.g., elephant flows [99], top-k

flows [12, 38]) and on evaluating the impact of sampling on some applications (e.g., flow

accounting [140], anomaly detection [95, 94, 24]) from sampled measurements collected

using Sampled NetFlow [34] and/or other methods. On the other hand, other research

works have proposed efficient sampling techniques to improve the accuracy of certain

applications. Thus, these proposals usually require changes on the collection devices.

For example, some techniques have concentrated on the detection of large flows in high-

speed networks, which account for most Internet traffic [58], (e.g., sample-and-hold and

multistage filters [56], shared-state sampling [116]), while others have proposed sampling

algorithms that can operate before (e.g., step sample-and-hold [37]) or after aggregation

(e.g., threshold sampling [49, 45], priority sampling [48, 50]) to estimate the size of an

arbitrary set of flows. Duffield and Grossglauer [51] have also proposed a hash-based

technique, called trajectory sampling, that allows different monitors to sample the same

set of flows.

Our work is complementary to the existing research on traffic sampling, since most of

the sampling techniques described above could be directly implemented in our monitoring

system either as custom load shedding methods or in the core monitoring platform. For

example, the hash-based flow sampling technique supported in our system is based on

the trajectory sampling method proposed in [51].

Several network monitoring systems use data reduction techniques, such as packet

filtering, traffic sampling, flow aggregation or a combination of them to handle overload

situations. The most representative example is arguably Cisco’s NetFlow [35]. NetFlow

is considered the state-of-the-art technology for network monitoring. It is a widely

deployed, general-purpose solution supported in most of today’s routers. It extracts

pre-defined per-flow information (depending on the version of NetFlow) and periodically

reports to a central collection server. In order to handle the large volumes of data

exported and to reduce the load on the router, Sampled NetFlow [34] resorts to packet

sampling. The sampling rate must be defined at configuration time, and to handle

7.1. NETWORK MONITORING SYSTEMS 107

unexpected traffic scenarios network operators tend to set it to a low “safe” value (e.g.,

1/100 or 1/1000 packets). NetFlow input filters [33] also permits to configure different

sampling rates to different groups of flows defined by the network administrator.

Adaptive NetFlow [54] allows routers to dynamically tune the sampling rate to the

memory consumption in order to maximize the accuracy given a specific incoming traffic

mix. Flow Slices [87] uses a combination of packet sampling, sample-and-hold and a

variant of threshold sampling to independently control the CPU, memory and reporting

bandwidth usage of routers. While the sampling parameters used to control the memory

and bandwidth usage are dynamically adapted to runtime conditions, the sampling rate

used to control the CPU usage is statically set at configuration time to a conservative

value as in Sampled NetFlow. ProgME [138] uses aggregation instead of sampling to

control the memory consumption. ProgME is a programmable flow aggregation engine

based on the novel concept of flowset. A flowset is an arbitrary set of flows that is

defined using a composition language based on set algebra. The main advantage of

ProgME is that the memory consumption depends only on the number of flowsets the

user is interested in and not on the observed traffic mix, which can significantly reduce

the memory consumption for certain types of applications. Keys et al. [85] extend the

approach used in NetFlow by extracting and exporting a set of 12 traffic summaries

that allow the system to answer a fixed number of common questions asked by network

operators. The summaries focus on the detection of heavy hitters. The system deals

with extreme traffic conditions and anomalous traffic patterns by gracefully degrading

the accuracy of the summaries using adaptive sample-and-hold and memory-efficient

counting algorithms.

Several works have also addressed similar problems in the intrusion detection space.

For example, Dreger et al. discuss in [42] several modifications to Bro [108], such as

dynamically selecting the restrictiveness of the packet filters, to allow Bro to operate in

high-speed environments. Gonzalez et al. [63] also propose the inclusion of a secondary

path into Bro that implements sampling and filtering to reduce the cost of those anal-

ysis tasks that do not require stream reassembly and stateful inspection. However, the

capture ratio in the secondary path cannot be adapted to the resource usage.

Although most of these solutions are more effective and scalable, they incur one of

the following two limitations: (i) they are designed to address overload situations only

in traffic collection devices, without considering the cost of analyzing these data on-

line [35, 34, 33, 54, 87], or (ii) they are limited to a pre-defined set of traffic reports or

analyses [138, 85, 42, 63].

Our load shedding scheme differs from these previous approaches in that it can handle

108 CHAPTER 7. RELATED WORK

arbitrary network monitoring applications and operate without any explicit knowledge

of their actual implementation. This way, we significantly increase the potential appli-

cations and network scenarios where a monitoring system can be used.

This flexibility however raises different problems to those addressed in previous works,

such as how to ensure fairness of service. For example, [85] divides the memory among

the various components of the system in equal parts and assumes that their average

cost per packet is a constant share of the total CPU usage. This assumption is a direct

consequence of their careful design, but does not hold for any arbitrary monitoring appli-

cation. Conversely, our system is able to deal with arbitrary, non-cooperative monitoring

applications, with different (and variable) cost per packet and accuracy requirements.

Similar open network monitoring infrastructures to CoMo have opted instead for

more strict and inflexible resource management policies. For example, FLAME [5] is

a modular network monitoring platform that allows users to extend the system with

arbitrary measurement modules. The main feature of FLAME is that it provides pro-

tection mechanisms to ensure that user-defined modules can be executed safely on the

monitoring infrastructure. FLAME modules are written in Cyclone [78], a safe dialect

of C, and processed by a trusted compiler. In order to deal with competing modules,

FLAME bounds their execution time using a cycle counter. A similar solution is adopted

by Scriptroute [123], an open distributed platform for active network monitoring. The

main difference between Scriptroute and other infrastructures in the active monitoring

space, such as NIMI [110], Surveyor [82] or AMP [97], is that it allows users to conduct

arbitrary active measurements in the monitoring infrastructure. Measurement tasks are

provided as Ruby scripts that are executed on-demand on the Scriptroute servers. In

order to allow untrusted users to execute arbitrary code, each Scriptroute script runs on

an independent resource-limited sandbox, with no local storage access and limited exe-

cution time, memory and bandwidth. Scriptroute servers also implement several checks

to avoid the use of the measurement infrastructure to generate network attacks. Scripts

that do not meet these policies are aborted.

The resource management techniques proposed in this thesis are significantly different

and more complex than those adopted by these systems. The inflexible solution of simply

limiting the amount of resources allocated to each application in advance can result in

poor accuracy due to excessive and arbitrary packet drops, and does not allow the system

to degrade gracefully in the presence of overload.

Recently, some research proposals have tried to bring the flexibility of declarative

queries to network monitoring, as an alternative to the complexity of the procedural

languages commonly used by network operators and analysts. The most well-known

7.2. DATA STREAM MANAGEMENT SYSTEMS 109

example is probably the Gigascope project [40]. Gigascope is a proprietary stream

database for network monitoring developed at AT&T. In Gigascope, declarative queries

are written in GSQL, a restricted subset of SQL extended to operate with data streams.

Gigascope has been explicitly designed to operate in high-speed networks. Thus, GSQL

queries are first translated into C or C++ code and then broken down into two com-

ponents. The first component is a low-level subquery that performs a first aggregation

of the network traffic, which in some cases can run directly on the hardware NIC. The

second component performs more complex processing tasks. This design resembles the

architecture of CoMo divided in the capture and export processes. In Gigascope, users

can write new functions and operators in order to implement those tasks that can no be

easily expressed in GSQL. This makes it difficult to implement in Gigascope the load

shedding schemes used by similar stream-based databases presented in the next section.

Finally, our load shedding scheme is based on extracting features from the traffic

streams with deterministic worst case time bounds. Several solutions have been proposed

in the literature to this end. For example, counting the number of distinct items in

a stream has been addressed in the past by both the database [60, 134, 11, 52] and

networking [57] communities. In this work, we implemented the multi-resolution bitmap

algorithms for counting flows proposed in [57].

7.2 Data Stream Management Systems

Data management systems that deal with live input streams are becoming increasingly

common. These systems are known as data stream management systems (DSMS). Such

systems present several particularities, such as their push-based nature and the support

for continuous queries, that make the research proposals in the stream database literature

very relevant to our work. The survey papers [9, 62] present a good overview of the work

in the field of DSMS.

The main limitation of most load shedding approaches in this area is that proposed

solutions require the use of declarative query languages with a restricted set of operators,

for which their cost and selectivity are assumed to be known. On the contrary, in our

context we have no explicit knowledge of the queries and therefore we cannot make any

assumption on their cost or selectivity to know when it is the right time to drop records or

to decide how much load to shed. This significantly limits the flexibility of load shedding

proposals in the field of DSMS to be used for network monitoring purposes, where there is

a clear need for supporting arbitrary traffic queries and complex monitoring applications

that cannot be easily expressed using standard declarative languages [69].

110 CHAPTER 7. RELATED WORK

Although some solutions in the scope of DSMS assume that accurate estimates of the

average values of these parameters can be obtained at runtime from historical values, it

is also assumed that they change quite infrequently over time. In contrast, in network

monitoring, queries can consist of arbitrary code with very different and highly-variable

cost per packet due to both implementation issues and the variability of the incoming

traffic. For example, a given query can incur different processing overheads depending

on whether a specific kind of traffic is found in the input streams (e.g., IDS). On the

other hand, the average processing cost per packet of a query that depends on a specific

traffic feature (e.g., number of unique flows) can vary significantly from one batch to

another, given that different batches can have very different values for these features.

Next, we review the most relevant load shedding proposals in the context of four

well-known data stream management systems, namely Aurora, STREAM, TelegraphCQ

and Borealis, and discuss their main differences with the load shedding scheme proposed

in this thesis. Finally, we also review a control-based load shedding approach that, unlike

previous methods, it is explicitly designed to operate with more variable input data rates

and processing costs.

7.2.1 Aurora

Aurora is a Data Stream Management System developed at Brandeis University, Brown

University and MIT [25, 2], which supports the concurrent execution of multiple contin-

uous queries on several input streams.

In Aurora, queries are provided as a workflow diagram using a graphical interface.

Each query consists of a directed acyclic graph built out of a set of eight basic operators.

A continuous query accepts push-based inputs (i.e., continuous sequences of tuples) from

an arbitrary number of sources and produces a single output. Each query can express its

QoS expectations using three different QoS graphs (i.e., utility functions) that describe

the relationship between various characteristics of the output and its utility.

The three QoS graphs supported in Aurora are: (i) a latency graph, which indicates

how the utility of a query drops when an answer is delayed, (ii) a loss-tolerance graph

that shows how the utility of a query decreases as a function of the rate of dropped

tuples, and (iii) a value-based graph, which provides information about the importance

of the possible values in the output space of a query. In order to simplify the resource

management problem, Aurora assumes that (i) and (ii) have concave shapes. In par-

ticular, the loss-tolerance graph of a query is very similar to our concept of a minimum

sampling rate.

7.2. DATA STREAM MANAGEMENT SYSTEMS 111

Aurora concentrates on the processor as the limited resource and all resource man-

agement decisions are driven by the QoS functions. In Aurora, the resource management

decisions are made independently by two different components of its architecture: the

scheduler and the load shedder.

The Aurora scheduler [26] is in charge of the processor allocation during underload

conditions and relies on the existence of an independent load shedder to get rid of excess

load during overload situations. The scheduler keeps track of the latency of the tuples

in the operator queues and schedules the execution of those operators that provide the

highest aggregate QoS delivered to queries, according to the latency-based QoS functions.

The other two QoS graphs are only used by the load shedder.

In [128], Tatbul et al. present in detail the design of the Aurora load shedder. Load

shedding in Aurora is based on the insertion of drop operators into query plans during

overload conditions. To detect overload situations, Aurora uses explicit knowledge of

the cost and selectivity of each query operator. In the presence of overload, the loca-

tion of drop operators is selected in such a way that the overall utility of the system

is maximized. This renders this solution inviable in our monitoring system, given that

when dealing with non-cooperative (selfish) queries the strategy of maximizing an aggre-

gate performance metric can be extremely unfair and lead to severe starvation. Thus,

this solution is only suitable in scenarios where the system administrator has complete

control over the utility functions, as in the case of Aurora. On the contrary, our load

shedding scheme tries to satisfy the minimum accuracy requirements of all queries, while

maximizing their minimum sampling rate.

A key aspect of the load shedding approach of Aurora is that, with explicit knowledge

of the cost and selectivity of each query operator and the relative proportions of the

input rates, the placement of drop operators can be pre-computed offline. This way, the

run-time overhead of the load shedding scheme is significantly reduced. To this end,

Aurora constructs a static table called Load Shedding Road Map (LSRM) that contains

the possible drop locations sorted (in ascending order) by their loss/gain ratio. The

loss/gain ratio is a metric that allows Aurora to quantify the loss in accuracy (according

to the loss-tolerance QoS graph) compared to the gain in cycles (i.e., the cycles recovered)

for each particular drop location and percentage of drop. Since the overload problem in

Aurora is a variant of the well-known Fractional Knapsack problem, in order to minimize

the loss of utility in the presence of overload, the load shedder can simply follow the

greedy approach of applying first those drops with smaller loss/gain ratio in the LSRM.

Implicitly, Aurora assumes that the set of queries is static, and that the cost and

selectivity of each query operator and the relative input data rates do not change over

112 CHAPTER 7. RELATED WORK

time, since for every change the LSRM needs to be recomputed. In contrast, we support

arbitrary queries with different and highly variable cost per packet (i.e., per tuple) and

we expect the set of queries running on the monitoring system to change frequently over

time. Thus, we cannot make any assumption about the queries nor their input traffic in

order to make load shedding decisions.

In Aurora, the value-based QoS graphs are used for semantic load shedding, which

consists of dropping tuples based on the importance of their content instead of doing it in

a randomized fashion. In this case, it is assumed that the histogram of the output values

of a query is available for each interval in the value-based QoS graph. With this infor-

mation, Aurora estimates a loss-tolerance graph and constructs an approximate filter

predicate in order to apply the same method used for random load shedding described

above. In our system, it is also possible to implement semantic-based load shedding

methods by using the custom load shedding feature presented in Chapter 6.

7.2.2 STREAM

STREAM [100] is a general-purpose stream processing system built at Standford Uni-

versity that supports multiple continuous queries expressed in CQL [7], a declarative

stream query language based on SQL. STREAM also provides a graphical interface that

allows users to inspect and adjust the system at runtime.

As in the case of Aurora, the load shedding scheme in STREAM [10] is based on

dropping tuples by dynamically inserting drop operators into query plans. However, [10]

focuses on minimizing the impact of load shedding on the accuracy of the queries, while

in Aurora the objective is to maximize the total system utility based on the QoS graphs.

In STREAM, overload situations are detected when the rate at which tuples arrive

is greater than the rate at which tuples can be processed. This however requires explicit

knowledge of the processing cost per tuple and the selectivity of each query operator,

which are estimated from historical values.

In the presence of overload, excess load is shed in such a way that the maximum

relative error across queries is minimized. That is, the sampling rate to be applied to

each query is selected so that the relative accuracy is the same for all queries. In order

to relate sampling rate and accuracy, [10] limits its solution to a single class of queries:

sliding window aggregates over data streams (e.g., sum and count). In this case, it is

possible to derive probabilistic bounds for the relative error of a query as a function of

the sampling rate, which is not possible for more complex queries. However, additional

statistics about the average and standard deviation of the values of the input tuples

7.2. DATA STREAM MANAGEMENT SYSTEMS 113

being aggregated need to be available.

With this information, the system computes the effective sampling rates that guar-

antee an equal (and minimum) relative error across all queries. Once the sampling rates

of each query are available, the system has to find the proper locations of drop operators

in the query plans, taking into account that several operators can be shared among mul-

tiple queries. For this purpose, [10] uses a simple algorithm that guarantees an optimum

placement in terms of processing time, which basically consists of inserting the drop

operators as early as possible into the query plans.

The idea of minimizing the maximum relative error across queries is very similar

in spirit to the strategy of maximizing the minimum sampling rate used by our load

shedding scheme. However, our load shedding scheme is not limited to a single class of

queries, but instead has to deal with arbitrary monitoring applications, for which it is

impossible to know their relation between accuracy and sampling rate. For this reason,

we introduced the notion of a minimum sampling rate, which allows users to specify the

minimum sampling rate at which their queries can obtain a minimum acceptable accu-

racy. With this information, our load shedding scheme tries to guarantee the minimum

accuracy requirements of all queries given the available resources, and distributes the

remaining cycles in such a way that the minimum sampling rate is maximized. Assuming

equal accuracy requirements for all queries, this strategy would be very similar to the

idea of minimizing the maximum relative error. However, our strategy is more general in

the sense that, apart from supporting arbitrary queries, allows them to specify different

accuracy requirements.

Finally, it is also interesting to note that some of the resource management techniques

used in STREAM focus on the memory as the primary limited resource. For example,

Babcock et al. present in [8] the design of an operator scheduler that minimizes the

memory used in the operator input queues subject to a maximum latency constraint,

while [124] proposes a load shedding strategy for sliding-window joins that considers

the memory to maintain the join state as the limited resource. The design of load

shedding techniques for arbitrary network monitoring applications that can consider

multiple system resources, such as memory or disk bandwidth, constitutes an important

part of our future work, as we discuss in Chapter 8.

7.2.3 TelegraphCQ

TelegraphCQ [32] is a stream query processor developed at UC Berkeley. The soft-

ware architecture of TelegraphCQ is based on the relational DBMS PostgreSQL, but it

114 CHAPTER 7. RELATED WORK

includes large extensions to support streaming data and continuous queries.

In order to deal with overload situations, TelegraphCQ implements an architecture

called Data Triage [117, 118]. The main difference between Data Triage and other load

shedding schemes, such as those implemented in Aurora [128] and STREAM [10], is that

it applies approximate query processing techniques, instead of dropping tuples, in order

to provide approximate and delay-bounded answers in presence of overload.

In TelegraphCQ, queries can specify a delay constraint to bind the latency between

data arrivals and the generation of the query results. The main mission of the Data

Triage architecture is to ensure that the TelegraphCQ query processor meets all the

delay constraints.

The architecture of Data Triage is divided in two data paths: a primary data path

that performs normal query processing and a secondary data path that uses approxi-

mation. When the system detects that there is no enough time to perform full query

processing on every tuple, Data Triage sends selected tuples through the secondary path

in order to keep the delay within the bounds defined by end users.

In the secondary path, the tuples are first summarized and provisionally stored into

a summary data structure. At the end of each time window, the summarized data are

processed by a shadow query that uses approximate processing techniques. Finally, the

results of the shadow query as well as those of the main query are presented to the user,

who can combine them to obtain an approximate version of the query answer.

In order to detect when the delay constraints cannot be satisfied and tuples need to

be send through the secondary data path, Data Triage continuously monitors its input

queues and uses explicit information about the cost per tuple of the main query, the cost

of adding a tuple in the summary data structure and the cost of the shadow query.

The Data Triage framework supports several well-known summarization techniques,

such as multidimensional histograms, wavelet-based histograms or random sampling.

Whereas the main query can be provisioned for typical data rates, summarization algo-

rithms must be tuned to handle worst case scenarios.

An important feature of TelegraphCQ is that it has built-in support for network mon-

itoring [118]. We argue however that, although the flexibility of declarative queries is

very adequate for a wide range of simple network monitoring tasks, more complex appli-

cations cannot be easily expressed using common declarative languages (e.g., automated

worm fingerprinting [86], application identification [84], anomaly detection [89, 90]) and

they require the use of imperative programming languages.

In addition, some preliminary studies have reported very poor performance when

using DSMS for network monitoring purposes [112, 122], which hinders their deployment

7.2. DATA STREAM MANAGEMENT SYSTEMS 115

in the high-speed networks traditionally targeted by the network monitoring community.

Apart from supporting arbitrary monitoring applications, the main difference be-

tween our load shedding scheme and the Data Triage approach is that, while [118]

assumes that the primary data path can be provisioned to handle the 90th or 95th

percentile of the data rates, we focus on more extreme scenarios where the system is

continuously overloaded.

Regarding the summarization techniques, our current implementation uses packet

and flow sampling, but other methods, such as those supported in Data Triage, can be

provided using the custom load shedding approach described in Chapter 6.

7.2.4 Borealis

Recently, several DSMS designs have turned into distributed systems in order to address

the intrinsic scalability issues of stream processing systems. Although the most natural

way of addressing the resource management problem in a distributed context is by means

of load distribution and load balancing techniques (e.g., [136]), some recent works have

also proposed load shedding solutions in the context of distributed stream processing

systems. Of particular interest is the case of FIT [127], a load shedding scheme for the

Borealis system. Borealis [1] is a distributed DSMS developed at Brandeis University,

Brown University and MIT, which is based on the query processing engine of Aurora.

In Borealis, queries consist of a chain of query operators that can be located at

different processing nodes. The main problem in this scenario is that traditional load

shedding schemes designed for centralized DSMS are not appropriate in a distributed

setting, since local load shedding decisions made in a particular node can have a signifi-

cant impact on the descendant nodes in the query path, as illustrated in [127]. Therefore,

a load shedding scheme for such a system must consider the requirements of the rest of

the nodes in the query path in the decision-making process.

Tatbul et al. [127] model the load shedding problem as a linear optimization problem,

with the objective of maximizing the overall weighted throughput of the system given

the available resources. Although bottlenecks in a distributed DSMS can also be due to

bandwidth limitations, [127] focuses only on the CPU as the limited resource.

The proposed solution consists of generating load shedding plans in advance using

explicit information about the cost and selectivity of each query operator. In order to

compute the load shedding plans, [127] presents two different approaches: a centralized

and a distributed solution. In the centralized approach, a central node receives statis-

tics about the operator costs and selectivities of all nodes. For multiple combinations

116 CHAPTER 7. RELATED WORK

of unfeasible input data rates, the coordinator node computes offline the optimal load

shedding plans that maximize the total system throughput using a solver tool. In or-

der to reduce the number of possible combinations, several optimizations are proposed,

which allow the system to reduce the overhead of computing the optimal solutions, while

introducing a given error in the results. Finally, the coordinator node continuously mon-

itors the input data rates and estimates the load of the system at runtime. When an

overload situation is detected, the best load shedding plan from those computed offline

is selected according to the current input data rates.

In the distributed solution, the information about the load constraints of the nodes

is aggregated and sent to parent nodes using a special-purpose data structure called FIT

(Feasible Input Table). The FIT data structure of a node basically contains an entry

for each combination of feasible input data rates together with its associated score (i.e.,

weighted throughput). In order to reduce the number of entries, similar techniques to

those proposed for the centralized case are used. When a node receives FITs from its

children, it merges them with its own FIT and propagates it to its parents, until the root

node is reached. With this information, parent nodes can make load shedding decisions

on behalf of child nodes in the query path. At runtime, each node monitors its input

data rates and, if an overload situation is detected, the FIT entry with the highest score

(i.e., weighted throughput) given the incoming data rates is selected, and the input data

rates are scaled by inserting drop operators in order to match those in the FIT entry.

Apart from requiring explicit information about the query operators, the main draw-

back of this solution is the time required to compute the (near) optimal solution in the

centralized case, and the volume of data to be exchanged among nodes in the distributed

case, which must be done after any change in the query network. This renders this so-

lution inappropriate for dynamic scenarios, such as those described in this thesis, with

highly variable processing costs and number of queries.

Although our load shedding scheme is currently limited to centralized network mon-

itoring systems, we are very interested in studying the feasibility of using similar tech-

niques to the one proposed in this thesis in order to address the resource management

problem in distributed and highly dynamic scenarios, with limitations on both CPU and

bandwidth among nodes.

7.2.5 Control-based Load Shedding

Load shedding designs in Aurora [128] and STREAM [10] are based on an open-loop

model that ignores the current status of the system (e.g., occupation of the queues)

7.3. OTHER REAL-TIME SYSTEMS 117

when making load shedding decisions, which can result in over- or under-shedding under

certain fluctuations in the input data rates, as shown in [131]. To solve this limitation,

Tu et al. [131] present the design of a load shedding solution based on feedback control

techniques that is able to operate with unpredictable and highly variable data rates.

The load shedding problem in [131] is modeled using control theory, with the aim

of satisfying a given target delay with minimum data loss. They present the design

of a closed-loop control system that can effectively control the average tuple delay in

DSMS using feedback information about their current output delay. The variations in

the incoming data rates and processing costs are considered as model disturbances. With

this information, the controller can dynamically adjust the amount of load shedding to

keep the average tuple delay within the target value given by the system administrator.

In order to decide the drop locations in the query network, [131] relies on an existing

load shedder in the DSMS or, alternatively, it randomly drops tuples from the queues.

However, the design of the control system requires a model of the system under

control (i.e., the DSMS), which describes the response of the system to changes in the

inputs. In particular, [131] experimentally derives a model for the Borealis DSMS [1],

though it could be easily adapted to other DSMS. The main problem however is that

this model relies on a constant parameter that denotes the cost per tuple of the DSMS,

which somewhat limits its applicability in scenarios with highly variable processing costs.

In addition, this parameter refers to the average cost of the entire query network and

therefore should be recomputed on the arrival of any new query.

Although [131] shares similar motivation with our work, the proposed control-based

methodology does not solve the problem of highly variable (and unknown) processing

costs, typically found in arbitrary monitoring applications. Our load shedding scheme,

instead of using a pre-defined model of the entire system, builds an online prediction

model of the processing cost of each query based on its relation with a set of features of

the input streams. In addition, the advantage of having separate models for each query

is that the load shedding scheme can make different load shedding decisions for different

queries. On the other hand, [131] addresses only the problem of when and how much to

shed load, while in this thesis we focus also on the questions of where and how to shed

it.

7.3 Other Real-Time Systems

In this section, we review the design of two interesting load shedding solutions proposed

in other real-time system areas that we consider of special interest to the problems

118 CHAPTER 7. RELATED WORK

addressed in this thesis.

7.3.1 SEDA

In the Internet services space, SEDA [133] proposes an event-driven architecture to

develop highly concurrent server applications, such as HTTP servers. In SEDA, appli-

cations are built as networks of stages interconnected by queues of events. Each stage

implements an event handler that processes a batch of events from its input queue and

enqueues resulting events on the input queues of other stages. One of the advantages

of this architecture is that it isolates stages from each other and allows them to apply

different resource management techniques.

SEDA implements two different resource management approaches as an alternative

to standard overprovisioning techniques, such as service replication. On the one hand,

the SEDA framework provides generic resource controllers that dynamically adapt some

parameters of each stage based on its observed performance, such as the number of

threads associated to the stage or the batching factor applied to its input queue [133].

These generic methods are somehow analogous to the sampling techniques provided by

our core monitoring platform.

On the other hand, SEDA allows stages to implement their own overload management

mechanisms (e.g., load shedding) by giving them direct access to their input queues [132].

This allows stages to make informed resource management decisions tailored for each

particular service, which could not otherwise be made by the SEDA framework or the

operating system. This solution (and the motivation behind it) is very similar to our

custom load shedding approach. However, in SEDA it is implicitly assumed that a

server executes a single service (i.e., application) that consists of multiple concurrent

stages. Therefore, strict enforcement polices are not needed, since stages always belong

to the same application. In contrast, our monitoring system is open to several competing

monitoring applications and, thus, the system must ensure that each application sheds

the correct amount of load in order to guarantee fairness of service.

SEDA stages implement a reactive load shedding scheme that usually consists of

applying admission control to the input queues (e.g., dropping incoming requests) when

an overload situation is detected (e.g., the response time of the system exceeds a given

threshold). Other solutions are also possible, such as applying different polices to differ-

ent classes of requests or degrading the quality of the delivered service in the presence

of overload. In this thesis, we presented instead a predictive approach that anticipates

overload situations. We showed that in network monitoring a predictive approach can

7.3. OTHER REAL-TIME SYSTEMS 119

significantly reduce the impact of overload compared to a reactive one, given the ex-

tremely high data rates typically involved in network monitoring.

7.3.2 VuSystem

Compton and Tennenhouse propose in [39] an interesting collaborative load shedding

approach for media-based applications that resembles our idea of custom load shedding.

In particular, [39] focuses on the problem of how to dynamically adapt, based on user’s

priorities, the resource consumption of multiple concurrent video applications that run

on a general-purpose operating system without explicit real-time support.

They suggest that it is preferable to let video applications to shed excess load by

themselves than relying on the operating system for this task. The main rationale behind

this idea is that applications can always shed load in a much more graceful manner than

the operating system, which does not have any knowledge of the task carried out by the

application. For example, in the presence of overload, a video application could reduce

its resolution, window size, color depth or frame rate, while the operating system can

only reduce the amount of resources allocated to the application. This is exactly the

same intuition behind our custom load shedding approach presented in Chapter 6.

Nevertheless, the load shedding solution proposed in [39] requires applications to

behave in a collaborative fashion and to use information about the priorities and number

of other applications running on the same system in order to decide when and how much

load to shed. In addition, [39] does not provide a concrete enforcement policy and relies

on a social welfare assumption that is not met in our scenario. In order to avoid this

issue, [39] argues that applications that do not shed load properly will not be successful

in the market, but this solution fails to address the short-term problem.

In this thesis, we proposed instead a simple and lightweight enforcement policy that

makes sure that users implement their custom load shedding methods correctly, even

in a non-cooperative environment with untrusted applications. In our load shedding

scheme, the core system is in charge of providing the application with the information

about when and how much load to shed. This way, the application can shed excess load

without knowledge of the current system status nor the rest of applications running on

the system.

120 CHAPTER 7. RELATED WORK

Chapter 8

Conclusions

This thesis has demonstrated effective methods for handling overload situations that

allow network monitoring systems to sustain the rapidly increasing link speeds, data

rates, number of users and complexity of traffic analysis tasks, and to achieve robustness

against traffic anomalies and network attacks.

We presented the challenges involved in the management of overload situations in

network monitoring systems and discussed why this is an interesting and difficult prob-

lem. We also argued the increasing interest of network operators and researchers for

open network monitoring infrastructures that allow multiple users to execute arbitrary

monitoring applications on the traffic streams, which further complicates the resource

management problem.

With this basic motivation, we presented the design, implementation and evaluation

of a predictive load shedding scheme that can anticipate overload situations and minimize

their impact on the accuracy of the monitoring applications by sampling the input traffic

streams. The main intuition behind our prediction method comes from the empirical

observation that, when dealing with arbitrary applications, for which resource demands

are unknown in advance, their cost can be modeled with a set of simple features of the

input traffic.

Although predictive schemes are more complex to implement and incur larger over-

heads, the results presented in this thesis show that it is crucial to anticipate overload

situations, as compared to the alternative strategy of reacting to them. Anticipating

overload situations allows avoiding uncontrolled packet losses in the system buffers,

which can occur at very small time scales and cause a severe and unpredictable impact

on the accuracy of the monitoring applications. Our experimental results in a research

ISP network showed a reduction of more than one order of magnitude in the error of the

121

122 CHAPTER 8. CONCLUSIONS

monitoring applications when using our predictive approach.

Another novel feature of the proposed load shedding scheme is that it is suitable for

open network monitoring systems, given that it assures that a single Nash Equilibrium

exists when applications do not demand more resources than those strictly needed to

obtain results with acceptable accuracy. This way, the monitoring system can sustain

high levels of fairness and accuracy during overload situations, even when dealing with

non-cooperative and competing applications. In particular, the results presented in

this thesis showed that our monitoring system was able to maintain an overall accuracy

greater than 95% under extreme overload conditions in long-lived executions with several

concurrent monitoring applications.

Finally, we discussed that not all network monitoring applications are robust against

traffic sampling and, therefore, a load shedding scheme based only on sampling tech-

niques can be unfair to these applications. For this reason, we extended our scheme

to support custom load shedding methods provided by end users. A key aspect of our

solution is that, without further modifications to the core of our load shedding scheme, it

inherently penalizes those monitoring applications that fail to shed excess load in order

to preserve the robustness of the monitoring system in the presence of non-cooperative

applications.

In summary, the main contribution of this thesis is a generic load shedding framework

for network monitoring systems with the following novel features:

• It is able to operate without explicit knowledge of the cost and implementation

details of network monitoring applications.

• It is based on an online prediction model that can anticipate overload situations

and avoid uncontrolled packet losses in order to minimize their impact on the

accuracy of monitoring applications.

• It does not rely on a specific model for the incoming traffic and can dynamically

adapt to highly variable traffic conditions and changing resource consumption pat-

terns.

• It is lightweight enough to operate in real-time in high-speed networks since it

is based on efficient feature extraction algorithms with a deterministic worst case

computational cost.

• It only requires minimal information about the accuracy requirements of the mon-

itoring applications (i.e., the minimum sampling rate) to guide the load shedding

procedure, avoiding the use of complex utility functions employed by other systems.

123

• It is able to operate in an open environment with non-cooperative (competing)

applications, given that it guarantees that a single Nash Equilibrium exists when

users provides correct information about their accuracy requirements.

• It is based on a packet scheduler that ensures fair access to the packet stream,

instead of the classical policy of assuring fair access to the CPU used by typical

Operating System task schedulers, resulting in increased accuracy and fairness

during overload situations.

• It allows non-cooperative users to safely define custom load shedding methods for

those monitoring applications that are not robust against traffic sampling or those

that can obtain better accuracy using other load shedding mechanisms not directly

provided by the core platform.

• Experimental results show a high degree of robustness against extreme overload sit-

uations, traffic anomalies, attacks, previously unseen applications, selfish or buggy

monitoring applications, and applications that fail to shed excess load properly for

any other reason.

Throughout this document we already pointed out some limitations of our load shed-

ding scheme that open interesting opportunities for future research. We briefly summa-

rize them here.

First, the load shedding scheme presented in this thesis focuses on the CPU as the

main resource in network monitoring. However, other system resources, such as memory,

disk bandwidth or storage space can also be critical. For example, a network monitoring

application performing flow classification can become very greedy in terms of memory

consumption during anomalous traffic patterns, such as SYN-flood attacks, massive port

scans or DDoS attacks. Although the results presented in this thesis show that a CPU-

based load shedding scheme can also prevent overload of other system resources, the

design of multi-dimensional load shedding schemes that can consider multiple resources

at the same time constitutes an important topic for future research. We believe that

similar approaches to the one presented in this thesis could be applied to other system

resources as well. In particular, we are currently working on similar predictive techniques

to handle overload situations in the intermediate CoMo queues used to export the results

of the monitoring applications at each measurement interval.

Second, our predictive scheme assumes a linear dependency between the CPU us-

age and the selected features. Non-linear relationships in stream processing are unusual

given the high performance requirements imposed on this class of applications, which

124 CHAPTER 8. CONCLUSIONS

must be able to operate with a single pass on the incoming stream and implement very

efficient algorithms with very low cost per packet. In fact, none of the queries in the

standard distribution of CoMo nor any of the more complex applications developed in

the framework of this thesis exhibited a non-linear relationship with the traffic features.

However, as future work, we intend to study specific network monitoring applications

that exhibit non-linear relationships with the set of features we have identified so far.

A solution in this case may be to still use linear regression, but define new features

computed as non-linear combinations of the existing ones. We are also interested in

extending the set of features used in this work to payload-related ones, which may in-

crease the prediction accuracy for those applications that analyze the packet payloads,

and with entropy-based features that can capture relevant properties of traffic distribu-

tions for prediction purposes. For example, the sample entropy was successfully used in

the past for anomaly detection [90]. Fortunately, the recent literature provides us with

efficient algorithms to approximate entropies in data streams [31, 91] that could be used

in our feature extraction phase.

Finally, our load shedding scheme addresses the problem of how to locally handle

(i.e., in a single network monitoring system) rapid and difficult-to-react overload situ-

ations. This is an important problem given that some critical computations have very

tight real-time constraints and must be performed in the same monitor where the traffic

is collected in order to avoid packet losses. However, after shedding excess load, some

computations with less time constraints could be distributed across a distributed mon-

itoring infrastructure. In this context, we are currently working on extending our load

shedding scheme with effective load balancing and load distribution techniques specifi-

cally designed for network monitoring that can efficiently distribute the system load in a

distributed network monitoring infrastructure. In this particular problem, other system

resources, such as bandwidth between nodes, and other performance metrics, such as

query delays, become also critical.

Availability

The source code of the prediction and load shedding system presented in this thesis is

publicly available at http://loadshedding.ccaba.upc.edu under a BSD open source

license. The CoMo system is also available at http://como.sourceforge.net.

http://loadshedding.ccaba.upc.edu
http://como.sourceforge.net

Bibliography

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H.

Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,

and S. Zdonik. The design of the Borealis stream processing engine. In Proc. of

Conf. on Innovative Data Systems Research (CIDR), Jan. 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-

braker, N. Tatbul, and S. Zdonik. Aurora: A new model and architecture for data

stream management. VLDB J., 12(2), May 2003.

[3] R. K. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A perfor-

mance evaluation. ACM Trans. Database Syst., 17(3), Sept. 1992.

[4] D. Agarwal, J. M. González, G. Jin, and B. Tierney. An infrastructure for passive

network monitoring of application data streams. In Proc. of Passive and Active

Measurement Conf. (PAM), Apr. 2003.

[5] K. G. Anagnostakis, M. Greenwald, S. Ioannidis, and S. Miltchev. Open packet

monitoring on FLAME: Safety, performance, and applications. In Proc. of IFIP-

TC6 Intl. Working Conf. on Active Networks (IWAN), Dec. 2002.

[6] J. Apisdorf, K. C. Claffy, K. Thompson, and R. Wilder. OC3MON: Flexible,

affordable, high performance staistics collection. In Proc. of USENIX Large In-

stallation System Administration Conf. (LISA), Sept. 1996.

[7] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic

foundations and query execution. Technical Report 2003-67, Stanford University,

Oct. 2003.

[8] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas. Operator scheduling

in data stream systems. VLDB J., 13(4), Dec. 2004.

125

126 BIBLIOGRAPHY

[9] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues

in data stream systems. In Proc. of ACM SIGMOD-SIGACT-SIGART Symp. on

Principles of Database Systems (PODS), June 2002.

[10] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries

over data streams. In Proc. of IEEE Intl. Conf. on Data Engineering (ICDE),

Mar. 2004.

[11] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting

distinct elements in a data stream. In Proc. of Intl. Workshop on Randomization

and Approximation Techniques (RANDOM), Sept. 2002.

[12] C. Barakat, G. Iannaccone, and C. Diot. Ranking flows from sampled traffic. In

Proc. of ACM Intl. Conf. on Emerging Networking Experiments and Technologies

(CoNEXT), Oct. 2005.

[13] P. Barlet-Ros, D. Amores-López, G. Iannaccone, J. Sanjuàs-Cuxart, and J. Solé-

Pareta. On-line predictive load shedding for network monitoring. In Proc. of

IFIP-TC6 Networking, May 2007.

[14] P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart, D. Amores-López, and J. Solé-

Pareta. Load shedding in network monitoring applications. In Proc. of USENIX

Annual Technical Conf., June 2007.

[15] P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart, and J. Solé-Pareta. Custom load

shedding for non-cooperative monitoring applications. Technical Report UPC-

DAC-RR-2008-50, Technical University of Catalonia, Aug. 2008.

[16] P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart, and J. Solé-Pareta. Robust

network monitoring in the presence of non-cooperative traffic queries. Computer

Networks, Oct. 2008 (in press).

[17] P. Barlet-Ros, J. Sanjuàs-Cuxart, J. Solé-Pareta, and G. Iannaccone. Robust

resource allocation for online network monitoring. In Proc. of Intl. Telecommuni-

cations Network Workshop on QoS in Multiservice IP Networks (ITNEWS), Feb.

2008.

[18] Y. Bejerano and R. Rastogi. Robust monitoring of link delays and faults in IP

networks. In Proc. of IEEE Conf. on Computer Communications (INFOCOM),

Apr. 2003.

BIBLIOGRAPHY 127

[19] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 2nd edition, 1992.

[20] A. Bifet and R. Gavaldà. Kalman filters and adaptive windows for learning in data

streams. In Proc. of Intl. Conf. on Discovery Science (DS), Oct. 2006.

[21] A. Bifet and R. Gavaldà. Learning from time-changing data with adaptive win-

dowing. In Proc. of SIAM Intl. Conf. on Data Mining (SDM), Apr. 2007.

[22] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.

ACM, 13(7), July 1970.

[23] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM,

20(10), Oct. 1977.

[24] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina. Impact of

packet sampling on anomaly detection metrics. In Proc. of ACM SIGCOMM

Internet Measurement Conf. (IMC), Oct. 2006.

[25] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-

braker, N. Tatbul, and S. Zdonik. Monitoring streams: A new class of data man-

agement applications. In Proc. of Intl. Conf. on Very Large Data Bases (VLDB),

Aug. 2002.

[26] D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, and M. Stonebraker.

Operator scheduling in a data stream manager. In Proc. of Intl. Conf. on Very

Large Data Bases (VLDB), Sept. 2003.

[27] J. L. Carter and M. N. Wegman. Universal classes of hash functions. J. Comput.

Syst. Sci., 18(2), Apr. 1979.

[28] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in general-purpose

distributed computing systems. IEEE Trans. Softw. Eng., 14(2), Feb. 1988.

[29] J. D. Case, M. Fedor, M. L. Schoffstall, and J. R. Davin. A simple network

management protocol (SNMP). RFC 1157, May 1990.

[30] CESCA. L’Anella Cient́ıfica (The Scientific Ring). http://www.cesca.es/

en/comunicacions/anella.html.

[31] A. Chakrabarti, K. D. Ba, and S. Muthukrishnan. Estimating entropy and entropy

norm on data streams. In Proc. of Intl. Symp. on Theoretical Aspects of Computer

Science (STACS), Feb. 2006.

128 BIBLIOGRAPHY

[32] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,

W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. Tele-

graphCQ: Continuous dataflow processing of an uncertain world. In Proc. of Conf.

on Innovative Data Systems Research (CIDR), Jan. 2003.

[33] Cisco Systems. NetFlow Input filters. http://www.cisco.com/en/US/docs/ios/

12 3t/12 3t4/feature/guide/gtnfinpf.html.

[34] Cisco Systems. Sampled NetFlow. http://www.cisco.com/en/US/docs/ios/12 0s/

feature/guide/12s sanf.html.

[35] Cisco Systems. NetFlow services and applications. White Paper, 2000.

[36] K. C. Claffy, M. Crovella, T. Friedman, C. Shannon, and N. Spring. Community-

oriented network measurement infrastructure (CONMI) workshop report. ACM

SIGCOMM Comput. Commun. Rev., 36(2), Apr. 2006.

[37] E. Cohen, N. Duffield, H. Kaplan, C. Lund, and M. Thorup. Sketching unaggre-

gated data streams for subpopulation-size queries. In Proc. of ACM SIGMOD-

SIGACT-SIGART Symp. on Principles of Database Systems (PODS), June 2007.

[38] E. Cohen, N. Grossaug, and H. Kaplan. Processing top-k queries from samples. In

Proc. of ACM Intl. Conf. on Emerging Networking Experiments and Technologies

(CoNEXT), Dec. 2006.

[39] C. L. Compton and D. L. Tennenhouse. Collaborative load shedding for media-

based applications. In Proc. of Intl. Conf. on Multimedia Computing and Systems

(ICMCS), May 1994.

[40] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: A stream

database for network applications. In Proc. of ACM SIGMOD, June 2003.

[41] W. R. Dillon and M. Goldstein. Multivariate Analysis: Methods and Applications.

John Wiley and Sons, 1984.

[42] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational experiences with

high-volume network intrusion detection. In Proc. of ACM Conf. on Computer and

Communications Security (CCS), Oct. 2004.

[43] N. Duffield. Sampling for passive internet measurement: A review. Statistical

Science, 19(3), Aug. 2004.

BIBLIOGRAPHY 129

[44] N. Duffield and C. Lund. Predicting resource usage and estimation accuracy in

an IP flow measurement collection infrastructure. In Proc. of ACM SIGCOMM

Internet Measurement Conf. (IMC), Oct. 2003.

[45] N. Duffield, C. Lund, and M. Thorup. Charging from sampled network usage. In

Proc. of ACM SIGCOMM Internet Measurement Workshop (IMW), Nov. 2001.

[46] N. Duffield, C. Lund, and M. Thorup. Properties and prediction of flow statistics

from sampled packet streams. In Proc. of ACM SIGCOMM Internet Measurement

Workshop (IMW), Nov. 2002.

[47] N. Duffield, C. Lund, and M. Thorup. Estimating flow distributions from sampled

flow statistics. In Proc. of ACM SIGCOMM, Aug. 2003.

[48] N. Duffield, C. Lund, and M. Thorup. Flow sampling under hard resource con-

straints. In Proc. of ACM Intl. Conf. on Measurement and Modeling of Computer

Systems (SIGMETRICS), June 2004.

[49] N. Duffield, C. Lund, and M. Thorup. Learn more, sample less: Control of volume

and variance in network measurement. IEEE Trans. Information Theory, 51(5),

May 2005.

[50] N. Duffield, C. Lund, and M. Thorup. Priority sampling for estimation of arbitrary

subset sums. J. ACM, 54(6), Dec. 2007.

[51] N. G. Duffield and M. Grossglauser. Trajectory sampling for direct traffic obser-

vation. IEEE/ACM Trans. Netw., 9(3), June 2001.

[52] M. Durand and P. Flajolet. Loglog counting of large cardinalities. In Proc. of

Annual European Symp. on Algorithms (ESA), Sept. 2003.

[53] Endace. DAG network monitoring cards. http://www.endace.com.

[54] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a better NetFlow. In

Proc. of ACM SIGCOMM, Aug. 2004.

[55] C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns of resource

consumption in network traffic. In Proc. of ACM SIGCOMM, Aug. 2003.

[56] C. Estan and G. Varghese. New directions in traffic measurement and accounting:

Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst., 21(3),

Aug. 2003.

130 BIBLIOGRAPHY

[57] C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for counting active flows

on high speed links. In Proc. of ACM SIGCOMM Internet Measurement Conf.

(IMC), Oct. 2003.

[58] A. Feldmann, J. Rexford, and R. Cáceres. Efficient policies for carrying web traffic

over flow-switched networks. IEEE/ACM Trans. Netw., 6(6), Dec. 1998.

[59] D. Ficara, S. Giordano, F. Oppedisano, G. Procissi, and F. Vitucci. A cooperative

PC/network-processor architecture for multi gigabit traffic analysis. In Proc. of

Intl. Telecommunications Network Workshop on QoS in Multiservice IP Networks

(ITNEWS), Feb. 2008.

[60] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base

applications. J. Comput. Syst. Sci., 31(2), Oct. 1985.

[61] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely,

and C. Diot. Packet-level traffic measurements from the Sprint IP backbone. IEEE

Network, 17(6), Nov. 2003.

[62] L. Golab and T. M. Özsu. Issues in data stream management. SIGMOD Record,

32(2), June 2003.

[63] J. M. González and V. Paxson. Enhancing network intrusion detection with in-

tegrated sampling and filtering. In Proc. of Intl. Symp. on Recent Advances in

Intrusion Detection (RAID), Sept. 2006.

[64] S. Guha, J. Chandrashekar, N. Taft, and K. Papagiannaki. How healthy are today’s

enterprise networks? In Proc. of ACM SIGCOMM Internet Measurement Conf.

(IMC), Oct. 2008.

[65] G. Hardin. The tragedy of the commons. Science, 162(3859), Dec. 1968.

[66] N. Hohn and D. Veitch. Inverting sampled traffic. In Proc. of ACM SIGCOMM

Internet Measurement Conf. (IMC), Oct. 2003.

[67] M. Huneault and F. D. Galiana. A survey of the optimal power flow literature.

IEEE Trans. Power Systems, 6(2), May 1991.

[68] G. Iannaccone. CoMo: An open infrastructure for network monitoring – research

agenda. Technical report, Intel Research, Feb. 2005.

BIBLIOGRAPHY 131

[69] G. Iannaccone. Fast prototyping of network data mining applications. In Proc. of

Passive and Active Measurement Conf. (PAM), Mar. 2006.

[70] G. Iannaccone, C. Diot, I. Graham, and N. McKeown. Monitoring very high speed

links. In Proc. of ACM SIGCOMM Internet Measurement Workshop (IMW), Nov.

2001.

[71] G. Iannaccone, C. Diot, D. McAuley, A. Moore, I. Pratt, and L. Rizzo. The CoMo

white paper. Technical report, Intel Research, Sept. 2004.

[72] IETF PSAMP Working Group. http://www.ietf.org/html.charters/psamp-

charter.html.

[73] Intel Corporation. The IA-32 Intel Architecture Software Developer’s Manual,

Volume 3B: System Programming Guide, Part 2. Intel Corporation, 2006.

[74] IST LOBSTER sensor at the Technical University of Catalonia (UPC).

http://loadshedding.ccaba.upc.edu/appmon.

[75] IST OneLab project. http://www.fp6-ist-onelab.eu.

[76] IST SCAMPI project. http://www.ist-scampi.org.

[77] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. On the placement of

internet instrumentation. In Proc. of IEEE Conf. on Computer Communications

(INFOCOM), Mar. 2000.

[78] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone:

A safe dialect of C. In Proc. of USENIX Annual Technical Conf., June 2002.

[79] S. H. S. John A. Stankovic, Chenyang Lu and G. Tao. The case for feedback

control real-time scheduling. In Proc. of Euromicro Conf. on Real-Time Systems

(ECRTS), June 1999.

[80] M. B. Jones, D. Roşu, and M.-C. Roşu. CPU reservations and time constraints:

Efficient, predictable scheduling of independent activities. ACM SIGOPS Oper.

Syst. Rev., 31(5), Dec. 1997.

[81] Juniper Networks. Monitoring Services PIC. http://www.juniper.net/products/

modules/monitoring pic.html.

[82] S. Kalidindi and M. J. Zekauskas. Surveyor: An infrastructure for internet perfor-

mance measurements. In Proc. of Internet Global Summit (INET), June 1999.

132 BIBLIOGRAPHY

[83] T. Karagiannis, A. Broido, N. Brownlee, K. C. Claffy, and M. Faloutsos. Is P2P

dying or just hiding? In IEEE Global Communications Conf. (GLOBECOM),

Nov. 2004.

[84] T. Karagiannis, D. Papagiannaki, and M. Faloutsos. BLINC: Multilevel traffic

classification in the dark. In Proc. of ACM SIGCOMM, Aug. 2005.

[85] K. Keys, D. Moore, and C. Estan. A robust system for accurate real-time sum-

maries of internet traffic. In Proc. of ACM Intl. Conf. on Measurement and Mod-

eling of Computer Systems (SIGMETRICS), June 2005.

[86] H.-A. Kim and B. Karp. Autograph: Toward automated, distributed worm signa-

ture detection. In Proc. of USENIX Security Symp., Aug. 2004.

[87] R. R. Kompella and C. Estan. The power of slicing in internet flow measurement.

In Proc. of ACM SIGCOMM Internet Measurement Conf. (IMC), Oct. 2005.

[88] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of grid

resource management systems for distributed computing. Softw. Pract. Exper.,

32(2), Feb. 2002.

[89] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies.

In Proc. of ACM SIGCOMM, Aug. 2004.

[90] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature

distributions. In Proc. of ACM SIGCOMM, Aug. 2005.

[91] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang. Data streaming algorithms for

estimating entropy of network traffic. ACM SIGMETRICS Perform. Eval. Rev.,

34(1), June 2006.

[92] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar

nature of ethernet traffic (extended version). IEEE/ACM Trans. Netw., 2(1), Feb.

1994.

[93] C. D. Locke. Best-effort decision-making for real-time scheduling. PhD thesis,

Carnegie Mellon University, May 1986.

[94] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang. Is sampled data sufficient

for anomaly detection? In Proc. of ACM SIGCOMM Internet Measurement Conf.

(IMC), Oct. 2006.

BIBLIOGRAPHY 133

[95] J. Mai, A. Sridharan, C.-N. Chuah, H. Zang, and T. Ye. Impact of packet sampling

on portscan detection. IEEE J. Select. Areas Commun., 24(12), Dec. 2006.

[96] S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for

user-level packet capture. In Proc. of USENIX Annual Technical Conf., Jan. 1993.

[97] T. J. McGregor, H.-W. Braun, and J. Brown. The NLANR network analysis

infrastructure. IEEE Commun. Mag., 38(5), May 2000.

[98] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity reserves: Operating

system support for multimedia applications. In Proc. of Intl. Conf. on Multimedia

Computing and Systems (ICMCS), May 1994.

[99] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto. Identifying elephant

flows through periodically sampled packets. In Proc. of ACM SIGCOMM Internet

Measurement Conf. (IMC), Oct. 2004.

[100] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. S. Manku,

C. Olston, J. Rosenstein, and R. Varma. Query processing, approximation, and

resource management in a data stream management system. In Proc. of Conf. on

Innovative Data Systems Research (CIDR), Jan. 2003.

[101] K. Nahrstedt and R. Steinmetz. Resource management in networked multimedia

systems. IEEE Computer, 28(5), May 1995.

[102] J. Nieh and M. S. Lam. The design, implementation and evaluation of SMART:

A scheduler for multimedia applications. In Proc. of ACM Symp. on Operating

Systems Principles (SOSP), Oct. 1997.

[103] NLANR. National Laboratory for Applied Network Research.

http://www.nlanr.net.

[104] M. J. Osborne. An Introduction to Game Theory. Oxford University Press, 2004.

[105] G. Ozsoyoglu and R. T. Snodgrass. Temporal and real-time databases: A survey.

IEEE Trans. Knowledge and Data Eng., 7(4), Aug. 1995.

[106] V. Padmanabhan, S. Ramabhadran, S. Agarwal, and J. Padhye. A study of end-

to-end web access failures. In Proc. of ACM Intl. Conf. on Emerging Networking

Experiments and Technologies (CoNEXT), Dec. 2006.

134 BIBLIOGRAPHY

[107] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. A first look

at modern enterprise traffic. In Proc. of ACM SIGCOMM Internet Measurement

Conf. (IMC), Oct. 2005.

[108] V. Paxson. Bro: A system for detecting network intruders in real-time. Computer

Networks, 31(23-24), Dec. 1999.

[109] V. Paxson and S. Floyd. Wide area traffic: The failure of Poisson modeling.

IEEE/ACM Trans. Netw., 3(3), June 1995.

[110] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An architecture for large scale

internet measurement. IEEE Commun. Mag., 36(8), Aug. 1998.

[111] P. Phaal, S. Panchen, and N. McKee. InMon corporation’s sFlow: A method for

monitoring traffic in switched and routed networks. RFC 3176, Sept. 2001.

[112] T. Plagemann, V. Goebel, A. Bergamini, G. Tolu, G. Urvoy-Keller, and E. W.

Biersack. Using data stream management systems for traffic analysis - a case

study. In Proc. of Passive and Active Measurement Conf. (PAM), Apr. 2004.

[113] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press, 2nd

edition, 1992.

[114] K. Ramamritham. Real-time databases. Distrib. Parallel Databases, 1(2), Apr.

1993.

[115] K. Ramamritham and J. A. Stankovic. Scheduling algorithms and operating sys-

tems support for real-time systems. Proc. of the IEEE, 82(1), Jan. 1994.

[116] F. Raspall, S. Sallent, and J. Yufera. Shared-state sampling. In Proc. of ACM

SIGCOMM Internet Measurement Conf. (IMC), Oct. 2006.

[117] F. Reiss and J. M. Hellerstein. Data triage: An adaptive architecture for load

shedding in telegraphcq. In Proc. of IEEE Intl. Conf. on Data Engineering (ICDE),

Apr. 2005.

[118] F. Reiss and J. M. Hellerstein. Declarative network monitoring with an under-

provisioned query processor. In Proc. of IEEE Intl. Conf. on Data Engineering

(ICDE), Apr. 2006.

BIBLIOGRAPHY 135

[119] M. Roesch. Snort: Lightweight intrusion detection for networks. In Proc. of

USENIX Large Installation System Administration Conf. (LISA), Nov. 1999.

[120] F. Schneider, J. Wallerich, and A. Feldmann. Packet capture in 10-gigabit ethernet

environments using contemporary commodity hardware. In Proc. of Passive and

Active Measurement Conf. (PAM), Apr. 2007.

[121] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in-network identification

of P2P traffic using application signatures. In Proc. of Intl. World Wide Web

Conf. (WWW), May 2004.

[122] J. Søberg, K. H. Hernes, M. Siekkinen, V. Goebel, and T. Plagemann. A practi-

cal evaluation of load shedding in data stream management systems for network

monitoring. In Proc. of European Workshop on Data Stream Analysis (WDSA),

Mar. 2007.

[123] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A public internet measure-

ment facility. In Proc. of USENIX Symp. on Internet Technologies and Systems

(USITS), Mar. 2003.

[124] U. Srivastava and J. Widom. Memory-limited execution of windowed stream joins.

In Proc. of Intl. Conf. on Very Large Data Bases (VLDB), Aug. 2004.

[125] W. R. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and

Fast Recovery algorithms. RFC 2001, Jan. 1997.

[126] K. Suh, Y. Guo, J. Kurose, and D. Towsley. Locating network monitors: Complex-

ity, heuristics, and coverage. In Proc. of IEEE Conf. on Computer Communications

(INFOCOM), Mar. 2005.

[127] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying FIT: Efficient load shedding

techniques for distributed stream processing. In Proc. of Intl. Conf. on Very Large

Data Bases (VLDB), Sept. 2007.

[128] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker. Load

shedding in a data stream manager. In Proc. of Intl. Conf. on Very Large Data

Bases (VLDB), Sept. 2003.

[129] tcpdump/libpcap. http://www.tcpdump.org.

[130] The CoMo project. http://como.sourceforge.net.

136 BIBLIOGRAPHY

[131] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load shedding in stream databases: A

control-based approach. In Proc. of Intl. Conf. on Very Large Data Bases (VLDB),

Sept. 2006.

[132] M. Welsh and D. Culler. Adaptive overload control for busy internet servers. In

Proc. of USENIX Symp. on Internet Technologies and Systems (USITS), Mar.

2003.

[133] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An architecture for well-

conditioned, scalable internet services. In Proc. of ACM Symp. on Operating Sys-

tems Principles (SOSP), Oct. 2001.

[134] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. A linear-time probabilistic

counting algorithm for database applications. ACM Trans. Database Syst., 15(2),

June 1990.

[135] T. Wolf, R. Ramaswamy, S. Bunga, and N. Yang. An architecture for distributed

real-time passive network measurement. In Proc. of IEEE/ACM Intl. Symp. on

Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS), Sept. 2006.

[136] Y. Xing, S. Zdoni, and J.-H. Hwang. Dynamic load distribution in the Borealis

stream processor. In Proc. of IEEE Intl. Conf. on Data Engineering (ICDE), Apr.

2005.

[137] L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-

based filter solution. In Proc. of Intl. Conf. on Machine Learning (ICML), Aug.

2003.

[138] L. Yuan, C.-N. Chuah, and P. Mohapatra. ProgME: Towards programmable net-

work measurement. In Proc. of ACM SIGCOMM, Aug. 2007.

[139] Q. Zhao, J. Xu, and A. Kumar. Detection of super sources and destinations in

high-speed networks: Algorithms, analysis and evaluation. IEEE J. Select. Areas

Commun., 24(10), Oct. 2006.

[140] T. Zseby, T. Hirsch, and B. Claise. Packet sampling for flow accounting: Challenges

and limitations. In Proc. of Passive and Active Measurement Conf. (PAM), Apr.

2008.

Appendix A

Publications

A.1 Related Publications

• P. Barlet-Ros, D. Amores-López, G. Iannaccone, J. Sanjuàs-Cuxart, and J. Solé-

Pareta. On-line Predictive Load Shedding for Network Monitoring. In Proc. of

IFIP-TC6 Networking, Atlanta, USA, May 2007.

• P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart, D. Amores-López, and J. Solé-

Pareta. Load Shedding in Network Monitoring Applications. In Proc. of USENIX

Annual Technical Conf., Santa Clara, USA, June 2007.

• P. Barlet-Ros, J. Sanjuàs-Cuxart, J. Solé-Pareta, and G. Iannaccone. Robust

Resource Allocation for Online Network Monitoring. In Proc. of Intl. Telecom-

munications Network Workshop on QoS in Multiservice IP Networks (ITNEWS),

Venice, Italy, Feb. 2008.

• P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart, and J. Solé-Pareta. Robust

Network Monitoring in the presence of Non-Cooperative Traffic Queries. Computer

Networks, Oct. 2008 (in press).

Under Submission

• P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart, and J. Solé-Pareta. Custom

Load Shedding for Non-Cooperative Monitoring Applications. Submitted to IEEE

Conf. on Computer Communications (INFOCOM), Aug. 2008.

137

138 APPENDIX A. PUBLICATIONS

Technical Reports

• P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart, D. Amores-López, and J. Solé-

Pareta. Predicting Resource Usage of Arbitrary Network Traffic Queries. Technical

Report UPC-DAC-RR-2008-29, Technical University of Catalonia, Dec. 2006.

A.2 Other Publications

• R. Serral-Gracià, P. Barlet-Ros, and J. Domingo-Pascual. Distributed Sampling for

On-line SLA Assessment. In Proc. of IEEE Workshop on Local and Metropolitan

Area Networks (LANMAN), Cluj-Napoca, Romania, Sept. 2008.

• B. Otero, P. Barlet-Ros, S. Spadaro, and J. Solé-Pareta. Mapping Ecology to

Autonomic Communication Systems. In Proc. of Workshop on Autonomic Com-

munications and Component-ware (TACC), Budapest, Hungary, Jul. 2008.

• P. Barlet-Ros, V. Carela, E. Codina, and J. Solé-Pareta. Identification of Net-

work Applications based on Machine Learning Techniques. In Proc. of TERENA

Networking Conf., Bruges, Belgium, May 2008.

• P. Barlet-Ros, E. Codina, and J. Solé-Pareta. Network Application Identification

based on Machine Learning Techniques. Bolet́ın de RedIRIS, 1(82-83):40-43, Apr.

2008 (in Spanish).

• R. Serral-Gracià, P. Barlet-Ros, and J. Domingo-Pascual. Coping with Distributed

Monitoring of QoS-enabled Heterogeneous Networks. In Proc. of Intl. Telecom-

munications Network Workshop on QoS in Multiservice IP Networks (ITNEWS),

Venice, Italy, Feb. 2008.

• J. Sanjuàs-Cuxart and P. Barlet-Ros. Resource Usage Modeling for Network Mon-

itoring Applications. In Proc. of Workshop on Execution Environments for Dis-

tributed Computing (EEDC), Barcelona, Spain, June 2007.

• P. Barlet-Ros, J. Solé-Pareta, J. Barrantes, E. Codina, and J. Domingo-Pascual.

SMARTxAC: A Passive Monitoring and Analysis System for High-Speed Networks.

Campus-Wide Information Systems, 23(4):283-296, Dec. 2006.

• P. Barlet-Ros, J. Solé-Pareta, J. Barrantes, E. Codina, and J. Domingo-Pascual.

SMARTxAC: A Passive Monitoring and Analysis System for High-Speed Networks.

In Proc. of TERENA Networking Conf., Catania, Italy, May 2006.

A.2. OTHER PUBLICATIONS 139

• P. Barlet-Ros, H. Pujol, J. Barrantes, J. Solé-Pareta, and J. Domingo-Pascual. A

System for Detecting Network Anomalies based on Traffic Monitoring and Predic-

tion. Bolet́ın de RedIRIS, 1(74-75):23-27, Dec. 2005 (in Spanish).

• P. Barlet-Ros, J. Solé-Pareta, and J. Domingo-Pascual. SMARTxAC: A System for

Monitoring and Analysing the Traffic of the Anella Cient́ıfica. Bolet́ın de RedIRIS,

1(66-67):27-30, Dec. 2003 (in Spanish).

• B. Stiller, P. Barlet-Ros, J. Cushnie, J. Domingo-Pascual, D. Hutchison, R. J.

Lopes, A. Mauthe, M. Popa, J. Roberts, J. Solé-Pareta, D. Trcek, and C. Veciana-

Nogués. Pricing and QoS. Quality of Future Internet Services: COST Action 263

Final Report, Lecture Notes in Computer Science, 2856(1):263-291, Nov. 2003.

Technical Reports

• R. Serral-Gracià, P. Barlet-Ros, and J. Domingo-Pascual. Distributed Sampling

for On-line QoS Reporting. Technical Report UPC-DAC-RR-2007-17, Technical

University of Catalonia, May 2007.

• P. Barlet-Ros, H. Pujol, J. Barrantes, J. Solé-Pareta, and J. Domingo-Pascual. A

System for Detecting Network Anomalies based on Traffic Monitoring and Predic-

tion. Technical Report UPC-DAC-RR-2005-40, Technical University of Catalonia,

June 2005.

• C. Veciana-Nogués, P. Barlet-Ros, J. Solé-Pareta, J. Domingo-Pascual. Traffic

Accounting and Classification for Cost Sharing in National Research Networks.

Technical Report UPC-DAC-RR-2003-24, Technical University of Catalonia, May

2003.

	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivation and Challenges
	1.2 Problem Space
	1.3 Thesis Overview and Contributions
	1.4 Thesis Outline

	2 Background
	2.1 The CoMo System
	2.1.1 High-level Architecture
	2.1.2 Core Processes
	2.1.3 Plug-in Modules

	2.2 Description of the Queries
	2.2.1 Accuracy metrics

	2.3 Datasets
	2.3.1 Testbed scenarios
	2.3.2 Packet traces
	2.3.3 Online executions

	2.4 Definitions

	3 Prediction System
	3.1 System Overview
	3.2 Prediction Methodology
	3.2.1 Feature Extraction
	3.2.2 Multiple Linear Regression
	3.2.3 Feature Selection
	3.2.4 Measurement of System Resources

	3.3 Validation
	3.3.1 Prediction Parameters
	3.3.2 Prediction Accuracy

	3.4 Experimental Evaluation
	3.4.1 Alternative Approaches
	3.4.2 Performance under Normal Traffic
	3.4.3 Robustness against Traffic Anomalies
	3.4.4 Prediction Cost

	3.5 Chapter Summary

	4 Load Shedding System
	4.1 When to Shed Load
	4.2 Where and How to Shed Load
	4.3 How Much Load to Shed
	4.4 Correctness of the CPU Measurements
	4.5 Evaluation and Operational Results
	4.5.1 Alternative Approaches
	4.5.2 Performance
	4.5.3 Accuracy
	4.5.4 Overhead
	4.5.5 Robustness against Traffic Anomalies

	4.6 Chapter Summary

	5 Fairness of Service and Nash Equilibrium
	5.1 Objectives and Desirable Features
	5.2 Max-Min Fairness
	5.2.1 Fairness in terms of CPU Cycles
	5.2.2 Fairness in terms of Packet Access
	5.2.3 Online Algorithm

	5.3 System's Nash Equilibrium
	5.4 Simulation Results
	5.5 Experimental Evaluation
	5.5.1 Validation of the Simulation Results
	5.5.2 Analysis of the Minimum Sampling Rates
	5.5.3 Performance Evaluation with a Real Set of Queries
	5.5.4 Overhead

	5.6 Chapter Summary

	6 Custom Load Shedding
	6.1 Proposed Method
	6.1.1 Enforcement Policy
	6.1.2 Implementation
	6.1.3 Limitations

	6.2 Validation
	6.2.1 Validation Scenario
	6.2.2 System Accuracy

	6.3 Experimental Evaluation
	6.3.1 Performance under Normal Traffic
	6.3.2 Robustness against Traffic Anomalies
	6.3.3 Effects of Query Arrivals
	6.3.4 Robustness against Selfish Queries
	6.3.5 Robustness against Buggy Queries

	6.4 Operational Experiences
	6.4.1 Online Performance

	6.5 Chapter Summary

	7 Related Work
	7.1 Network Monitoring Systems
	7.2 Data Stream Management Systems
	7.2.1 Aurora
	7.2.2 STREAM
	7.2.3 TelegraphCQ
	7.2.4 Borealis
	7.2.5 Control-based Load Shedding

	7.3 Other Real-Time Systems
	7.3.1 SEDA
	7.3.2 VuSystem

	8 Conclusions
	Bibliography
	Appendices
	A Publications
	A.1 Related Publications
	A.2 Other Publications

