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Abstract—In this paper, we deal with the physical layer impair-
ments (PLIs) in optical burst switching (OBS). In particular we
present a formulation of the routing and regenerator placement
and dimensioning (RRPD) problem for a feasible translucent
OBS (T-OBS) network architecture. Since addressing the joint
RRPD problem results in an extremely complex undertaking,
we decouple the problem, and hence, we eventually provide
formal models to solve routing and RPD separately in the so-
called R+RPD problem. Thus, making use of mixed integer linear
programming (MILP) formulations, we first address the routing
problem with the aim of minimizing congestion in bottleneck
network links, and second, we tackle the issue of performing
a sparse placement of electrical regenerators in the network.
Since the RPD formulation requires high computational effort for
large problem instances, we also propose two alternative heuristic
strategies that provide good near-optimal solutions within reason-
able time limits. To be precise, we evaluate the trade-off between
optimality and complexity provided by these methods. Finally, we
conduct a series of simulation experiments on the T-OBS network
that prove that the R+RPD strategies effectively deal with burst
losses caused by the impact of PLIs, and therefore, ensure that
the overall T-OBS network performance remains unaffected.

I. INTRODUCTION

Research effort on optical burst switching (OBS) has been
mainly geared towards evaluating two particular optical net-
work architectures, namely the opaque (i.e, using electrical 3R
regeneration at each node) and the transparent (i.e., optical
3R regeneration). In an opaque or a transparent network
scenario, the existence, and therefore, the impact of physical
layer impairments (PLIs) can be neglected. Indeed, as long as
realistic core node parameters (e.g., node degree and the link
and wavelength capacity) are considered, the optical signal
degradation between two neighbouring core nodes is not an
issue [1]. Unfortunately, however, the high cost of optical-
electrical-optical (O/E/O) devices on the one hand, and the
lack of mature optical technology able to perform fully optical
3R regeneration on the other, prevent the deployment of these
architectures. Therefore, there is no way to neglect the severe
impact that PLIs have on the performance of optical transport
networks (OTNs)[2].

For this very reason, the consideration of translucent archi-
tectures [3] as a feasible intermediate step in the migration
towards fully transparent OTNs, has gained huge momentum.
Indeed, the fact that in translucent networks O/E/O regen-
erators are only available at selected nodes makes of this
architecture the ideal yet feasible candidate for bridging the
gap between the transparent and opaque solutions. Among
the optical switching paradigms, OBS has emerged as a
competitive choice for the transmission of highly dynamic data

traffic in the near future. Accordingly, in [4], we presented a
novel translucent OBS (T-OBS) network architecture in which
core nodes switch incoming data bursts to their output ports
either in an all-optical fashion or through O/E/O regenerators
when signal regeneration is required. Indeed, O/E/O regen-
erators are sparsely deployed across the network according
to the decision of routing and regenerator placement and
dimensioning (RRPD) heuristics which take into account the
optical signal to noise ratio (OSNR) at the receiving end as
the signal quality performance indicator.

In this paper, we present a formal model for the RRPD
problem which is based on a mixed integer linear program-
ming (MILP) formulation. We begin by stressing the novelty
of our solution which incorporates the dimensioning phase
that clearly distinguishes it from the RRP problem applied
in wavelength switched optical networks (WSONs)[5]. After-
wards, the quality of the MILP method developed is compared
against that of two different heuristic algorithms. To be precise,
we analyze the trade-off between optimality and complexity
provided by these methods. Finally, we prove the effectiveness
of these methods when applied to the T-OBS network.

The rest of this paper is organized as follows. In Section II,
we briefly survey some relevant works on PLI-aware OTNs.
Moreover, we explain the T-OBS network architecture and the
model we use to capture the impact of PLIs. In Section III, first
we define the RRPD problem, and then, we present a MILP
model to solve it. An heuristic algorithm to solve the RRPD
problem is proposed in Section IV. All strategies presented are
compared and evaluated in Section V. Finally, the conclusions
of this study are given in Section VI.

II. RELATED WORK AND CONTRIBUTIONS

Owing to the natural evolution of OTNs towards transparent
architectures, the consideration of PLIs has become unavoid-
able. Indeed, due to the cumulative impact that PLIs have
on the optical signal transmission, the deployment of a fully
transparent long-haul network is not a viable option, at least in
the short-medium term [2]. Translucent WSON architectures
have been the first to receive the attention from the research
community due to the maturity of the technology they require.
Protocol extensions and requirements to take into account the
presence of PLIs in WSONs are currently under development
within IETF [5], and in [6], a translucent-oriented routing
strategy for a WSON is experimentally validated. Moreover,
in [7]-[9], different RRP strategies are proposed to cope with
the requirements of PLI-aware WSONs. However, the off-
line/static RRP problem has a substantial difference when



applied to OBS networks. Note that due to the switching
granularity of WSONs, such a problem does not require a
dimensioning of the regenerator pools since there exists a
one-to-one correspondence between optical path/connection
and electrical regenerator. In OBS, by contrast, the access to
regenerators is, like any other resource, subject to statistical
multiplexing and so the introduction of an additional dimen-
sioning phase which eventually extends the problem to RRPD.

In [4], we presented a novel T-OBS network which consists
of all-optical core switching nodes built according to the well-
known tune-and-select (TAS) [1] architecture. These nodes
may also be equipped with electrical regenerators according
to the decision of the RRPD strategies considered. In order to
capture the impact of the main PLIs, we provided an OSNR
model which takes into account the contributions that both
nodes and links in an optical path have on the OSNR figure.
Furthermore, we illustrated a method to compute a power
budget and to perform a noise analysis taking into consid-
eration network components which are already commercially
available or that are, at most, lab trial devices (see. e.g.,
[10]). Finally, we presented two distinct RRPD heuristics, that
is, the link congestion reduction (LCR) and the regenerator
grouping (RG) algorithms, and evaluated their performance
when applied to the T-OBS network. Among them, the LCR
algorithm stood out as the best method since it relies on
optimal MILP routing formulations.

The study here presented is aimed at providing the best
possible network performance whilst at the same time mini-
mizing the cost and power consumption of the T-OBS network.
Note that both issues are related to the number of electrical
regenerators deployed. For this purpose, we introduce a formal
definition of the RRPD problem. Since the joint problem of
RRPD is computationally impractical, we decouple it into
the routing and the regenerator placement and dimensioning
(RPD) subproblems, and hence, we eventually provide a
formal model to solve the R+RPD problem. However, the
RPD problem also becomes difficult if large problem instances
are considered. Thus, we consider two different heuristics to
solve the RPD problem and evaluate them by considering the
trade-off between optimality and computational complexity
they provide. These strategies are based on either MILP or
heuristic algorithms. Finally, we analyze the performance of
the proposed T-OBS network under the considered RRPD
methods by means of network simulation.

III. MILP FORMULATION OF THE R+RPD PROBLEM

A. RRPD Problem definition

We address the RRPD problem by uncoupling the routing
formulation from that of the RPD issue, and therefore, we
provide a model to tackle the problem of R+RPD. Two main
reasons support this modeling decision. First, treating both
problems together and at once would definitely make of the
problem an extremely complex undertaking, particularly in
terms of computation times or even of solving feasibility.
Second, and most compelling, is the fact that in OBS networks,
routing must be carefully engineered since the main source of

performance degradation are the contentions between bursts
that arise due to both the lack of optical buffering and the
generally considered one-way resource reservation scheme.

Hence, given a set of traffic demands, we first find a
proper routing that minimizes burst losses due to congestion
in bottleneck network links. Then, this routing solution is used
as input information to solve the RPD problem. Since in the
T-OBS network the access to the regenerator pools is based on
statistical multiplexing, the RPD method must deal with both
the selection of regeneration nodes and the dimensioning of
regenerator pools so that a given target burst loss rate due to
OSNR non-compliant bursts is satisfied. The aim of the RPD
formulation here proposed is hence the minimization of the
number of O/E/O regenerators deployed in the network.

B. Global notation
We use G = (V, E) to denote the graph of an OBS network;

the set of nodes is denoted as V , and the set of unidirectional
links is denoted as E . Let P denote the set of predefined
candidate paths between source s and termination t nodes,
where s, t ∈ V , and s ̸= t. Let sp and tp denote the source
and termination nodes of path p ∈ P . Let D denote the
set of demands, where each demand corresponds to a pair
of source-termination nodes. For each demand d ∈ D, let
hd ∈ R+ denote the average offered burst traffic rate; let
Pd ⊆ P denote the set of candidate paths supporting demand
d; P =

∪
d∈D Pd. Each subset Pd comprises a (small) number

of paths, for example, k shortest paths. Let Np be the set of
all nodes constituting path p. Finally, let Vp denote the set of
intermediate nodes on path p such that Vp = Np \ {sp, tp}.

C. Routing problem
The routing model that we consider is based on a Linear

Programming (LP) algorithm presented in [11]. To be precise,
the authors consider a multi-path routing (MPR) approach (i.e.,
splittable routing) to solve the routing problem. The objective
of this method is to select, for each pair of nodes, paths
that lead to the minimization of the congestion in bottleneck
network links. For this purpose, the network is assumed to
apply source based routing, and hence, the source node is able
to determine the path that a burst entering the network must
follow. In the study here presented, by contrast, we consider
unsplittable (non-bifurcated) routing by forcing routing vari-
ables to be binary, and hence, we eventually solve the resulting
MILP problem. However, due to space limitations, we do not
include the formulation of the routing algorithm and refer the
reader to Section 4.2 in [11] for more details.

Once the routing problem is solved, the path p that will be in
charge of carrying the traffic for each demand d is determined.
Hence, only one path pd ∈ Pd is selected as the valid path to
be followed by all bursts belonging to demand d. Thus, we can
now denote Q as the set of valid paths, Q = {pd : d ∈ D} , to
be used as input information to solve the RPD problem.

D. RPD problem
1) Model assumptions: Let Po ⊆ Q denote the subset

of paths for which the OSNR level at receiver t is non-



Fig. 1. Two different valid options to perform the regeneration for a particular
source-termination pair.

compliant with the quality of signal requirements, and thus,
paths p ∈ Q requiring regeneration at some node v ∈ Vp.
For each p ∈ Po there may exist many different options on
how to build an end-to-end OSNR compliant path, composed
by its transparent segments, since the node or group of nodes
where the regeneration has to be performed might not be a
unique solution. Thus, let Sp = {s1, . . . , s|Sp|} denote the set
of different options to establish an OSNR compliant path for
each path p ∈ Po, where si ⊆ V , i = 1 . . . |Sp| and size |Sp|
depends on the length of the transparent segments in path p.
Figure 1 illustrates this concept by means of an optical path
between a source-termination pair (s − t) with two different
options to establish an OSNR compliant path. To be precise, if
s1 is selected, the optical signal only undergoes 3R electrical
regeneration at node vy, whereas if s2 is the choice, it is
converted to the electrical domain two times (i.e., at nodes
vx and vz). Hence, s1 = {vy} and s2 = {vx, vz}. In this
particular case, the transparent segments that make it possible
to use both regeneration solutions are segments [s−vy]-[vy−t]
and [s − vx]-[vx − vz]-[vz − t]. Notice that we could also
consider other cases like s3 = {vx, vy, vz}, however, we have
not depicted all of the options for the sake of clarity. Here it is
worth pointing out that we obtain Sp, p ∈ Po by means of a
precomputation phase where all possible regeneration options
are obtained using the OSNR model presented in [4].

We assume that for each path p ∈ Po, the selection of the
regeneration option s from set Sp is performed according to a
decision variable zps, which later is referred to as regenerator
placement variable, such that the following constraints are
fulfilled: ∑

s∈Sp

zps = 1, ∀p ∈ Po, (1a)

zps ∈ {0, 1}, ∀s ∈ Sp,∀p ∈ Po. (1b)

Let ρov denote the offered traffic load requiring regeneration
at node v. To estimate ρov (approximately) we add up the traffic
load ρp offered to each path p ∈ Po that both crosses and
undergoes regeneration at node v:

ρov =
∑

p∈Po:Vp∋v

∑
s∈Sp:s∋v

zpsρp. (2)

Similarly, ρv =
∑

p∈Po:Vp∋v
ρp, denotes an estimation of

the maximal traffic load that is subject to regeneration at node
v ∈ V . Eventually, we define a regenerator pool dimensioning
function Fv(·), which for a given traffic load ρov , determines

the minimum number of regenerators to be allocated in node
v. This number must ensure that a given target burst blocking
probability (Bosnr) for bursts competing for regeneration
resources is met. Assuming Poisson arrivals and fairness in
the access to regenerator pools among bursts (see subsection
IV-B) such a function is given by the following discontinuous,
step-increasing function,

Fv(ρ
o
v) =

⌈
B−1(ρov, B

osnr)
⌉
, (3)

where B corresponds to the Erlang B-loss formula which for
a given number of regenerators r ∈ N available at node v can
be calculated as,

B(ρov, r) =
(ρov)

r/r!∑r
k=0(ρ

o
v)

k/k!
, (4)

and where B−1(ρov, B
osnr) is the inverse function of (4)

extended to the real domain [12], and ⌈·⌉ is the ceiling
function. It is worth noticing that the Poisson arrivals which
lead to an Erlang formula for the dimensioning of regenerator
pools can be replaced with another distribution for which
the blocking probability is attainable. Because Bosnr is a
predetermined parameter, for simplicity of presentation we
skipped it from the list of arguments of function Fv(·). Note
that B−1(·) is a real-valued concave function.

For the purpose of problem formulation, it is convenient
to define ar as the maximal load supported by r regenerators
given a Bosnr, i.e., ar = B−1(r,Bosnr). Note that the inverse
function B−1(r,Bosnr) is expressed with respect to r and
Bosnr, which is not the same as in function (3).

Although there is no close formula to compute the inverse
of (4), we can make use of a line search method (see e.g., [13])
to find the root ρ∗ of the function f(ρ) = Bosnr −B(ρ, r) so
that the value of ar is approximated by ar = ρ∗ for any index
r. Finally, let R denote the number of regenerators required
in the most loaded node, that is, R = max{Fv(ρv) : v ∈ V}.

Vector a = (a1, ..., aR) will also be used in subsection
IV-B to determine Fv(ρ

o
v) according to Procedure 1. Note that

Procedure 1 is a polynomial time algorithm of complexity
O(R).

Procedure 1 Regenerator Pool Dimensioning
1: r ← 0
2: while ρov > ar do
3: r ← r + 1
4: end while
5: Fv ← r

2) Problem formulation: The RPD problem can be formu-
lated as a non-convex optimization problem:

minimize
z

F =
∑

v
Fv(ρ

o
v(z)) (NLP1)

subject to (1a) and (1b) (5a)

where Fv(·) is the step-increasing regenerator pool dimen-
sioning function defined by (3) and ρov(z) is the function



representing the traffic load offered to a regenerator node
defined by (2). The optimization objective of NLP1 is to
minimize the sum of regenerators installed in network nodes.
Constraints (5a) represent the selection of an OSNR compli-
ant path from the provided options for each path requiring
regeneration. Eventually, the RP decision vector z is defined
as z = (z11 . . . z1|Sp|, . . . , z|Po|1 . . . z|Po||S|Po||).

The difficulty of formulation NLP1 lays in the fact that there
is no close formula to express Fv(·) since no such formula
exists for the inverse of the Erlang function B−1(·). A way to
solve the problem is to substitute function Fv(·), v ∈ V with
its piecewise linear approximation and reformulate NLP1 as a
MILP problem.

For a single node v ∈ V , the piecewise linear approximation
of Fv(·) can be expressed as Fv(ρ

o
v) = min{r : ar > ρov}, or

by means of a 0-1 integer programming (IP) formulation:

minimize
u

Fv =
∑

r
ur
vr (IP1)

subject to ur
v(ar − ρov) ≥ 0, ∀r ∈ [1, R], (6a)∑

r
ur
v = 1, (6b)

ur
v ∈ {0, 1}, ∀r ∈ [1, R]. (6c)

In IP1, decision variables ur
v have been introduced in order

to represent the number of regenerators required in node v.
Due to constraint (6b), in each node only one variable ur

v

is active (i.e., equal to 1), and the one with minimum r
satisfying ar ≥ ρov is found when solving the problem. Notice
that formulation IP1, when solved, gives the same solution
as Procedure 1. The shortcoming of IP1 is that since ρov is
dependent on vector z (i.e., ρov is a function of z), constraints
(6a) have quadratic form. To overcome this difficulty, we can
reformulate IP1 simply by adding up constraints (6a) over r

and simplify ρov
∑

r
ur
v in ρov using (6b).

Eventually, taking into account all network nodes and intro-
ducing the regenerator placement decision variables, problem
NLP1 can be reformulated as a MILP problem:

minimize
u,ρo,z

F =
∑

v

∑
r
ur
vr (MILP1)

subject to∑
r
ur
var − ρov ≥ 0, ∀v ∈ V, (7a)∑

r
ur
v = 1, ∀v ∈ V, (7b)∑

s∈Sp

zps = 1, ∀p ∈ Po, (7c)∑
p∈Po:Vp∋v

∑
s∈Sp:s∋v

zpsρp − ρov = 0, ∀v ∈ V, (7d)

ur
v ∈ {0, 1}, ∀r ∈ [1, R],∀v ∈ V, (7e)

zps ∈ {0, 1}, ∀p ∈ Po,∀s ∈ Sp, (7f)

ρov ∈ R+, ∀v ∈ V. (7g)

where we consider ρov to be an auxiliary variable representing
the traffic load requiring regeneration offered to node v ∈ V .

The objective of the optimization problem MILP1 is to
minimize the total number of regenerators that have to be
placed in the network. Constraints (7a) and (7b) result from

the 0-1 representation of the dimensioning function and from
the reformulation of IP1 as mentioned before. In particular,
the number of regenerators in node v ∈ V should be such
that the maximum traffic load (given a Bosnr) is greater
or equal to offered traffic load ρov . Constraints (7c) are the
OSNR compliant path selection constraints. Constraints (7d)
are the traffic load offered to a regenerator node calculation
constraints. Eventually, (7e), (7f), and (7g) are the variable
range constraints.

MILP1 is a well-known Discrete Cost Multicommodity
Flow (DCMCF) problem [14]. DCMCF was shown to be an
extremely difficult combinatorial problem for which only fairly
small instances (in our case, situations where Po has a rather
small size) can be solved exactly with currently available
techniques. In the next Section, we propose a less complex
heuristic method to solve the RPD problem.

IV. RPD HEURISTIC RESOLUTION METHODS

To overcome the difficulty imposed by the resolution of
MILP1, in this Section, we split the RPD formulation so that
the problem becomes RP+D. To address the RP problem, we
propose a new MILP-based algorithm that is detailed in the
next subsection. Then, in subsection IV-B, we describe the
dimensioning method employed.

A. Load-based MILP formulation

The MILP formulation here proposed is focused on the
distribution of the traffic load requiring regeneration (i.e., ρov ,
∀v ∈ V). Hence, this load must be aggregated in such a way
that the number of regenerators to be deployed is minimized.
After a ρov solution is obtained for each node v ∈ V , we
take advantage of the regenerator pool dimensioning function
detailed in Section IV-B to obtain the number of regenerators
required.

Owing to the concave character of the dimensioning func-
tion (3), it must be noted that it is of our interest to aggregate
the traffic requiring regeneration in as few nodes as possible
rather than spreading out such load in little amounts over
a large number of nodes. Hence, we propose to solve the
problem by making use of two MILP models, namely MILP2
and MILP3. These models can be sequentially solved to obtain
a sub-optimal solution of MILP1.

First, MILP2 aims at minimizing the number of nodes where
the regenerators must be installed (i.e., nodes such that ρov >
0), and thus, groups as much as possible the load that requires
regeneration. Let y = (y1, ..., y|V|) denote a vector of binary
decision variables. Each value corresponds to one node and
determines if this node is used as regeneration point by some
path p ∈ Po (yv = 1) or not (yv = 0).
Then, we solve the following problem:

minimize
ρo,z,y

∑
v
yv (MILP2)

subject to ρvyv ≥ ρov, ∀v ∈ V, (8a)
yv ∈ {0, 1}, ∀v ∈ V. (8b)

and subject to constraints (1a), (1b), (7d) and (7g).



Although MILP2 minimizes the number of nodes where the
regenerations are performed, multiple solutions to this problem
may exist and some of them may exploit more regenerations
than required, increasing unnecessarily ρov at some nodes.
Therefore, a second MILP model, that is, MILP3, needs to be
formulated with the objective to minimize the total network
load requiring regeneration.

To this end, let k∗ denote an optimal solution of MILP2.
Second, we solve the following problem:

minimize
ρo,z,y

∑
v
ρov (MILP3)

subject to
∑

v
yv ≤ k∗, (9a)

and subject to constraints (1a), (1b), (7d), (7g), (8a) and (8b).
Due to the simplicity of both formulations, both models are

expected to be promptly solved even for large-sized problem
instances.

It is also important to notice that the sequential resolution
of both MILP2 and MILP3, which will hereinafter be cited
within the text as MILP2/3, provides an optimal solution in
terms of the distribution of the traffic and not with respect
to the number of regenerators (which is precisely the case of
MILP1). This being said, the last step in this method is the
dimensioning of regenerator pools as detailed in Section IV-B.

B. Regenerator dimensioning phase

The load of burst traffic requiring regeneration at node
v ∈ V is given by ρov after solving the RP problem (see
Section IV-A). In order to determine the number of regenera-
tors required in node v, we define a dimensioning function
f(ρov, B

osnr) : (R+, R+) 7→ Z+. Under the assumption
that any burst may access any regenerator in a node (as
shown in [4], the architecture proposed allows a fair access
to the regenerator pool), we make use of the inverse of the
Erlang B-loss function as the dimensioning function f . An
straightforward way to implement this dimensioning function
is to make use of vector a and Procedure 1, which have been
both detailed in Section III-D.

V. RESULTS AND DISCUSSION

In this Section, we first compare the performance of the
MILP1 and MILP2/3 problems with that of the LCR algorithm
which we proposed in [4]. Then, we study the performance
of the T-OBS network under the different RRPD strategies
to prove their effectiveness at keeping OSNR losses under
control.

A. Simulation scenario

Four network topologies are considered: (a) three Pan-
European networks known as: Large, Basic and Core [4] with
37, 28 and 16 nodes and 57, 41 and 23 links respectively; (b)
the NSFNET (a US network) [11] with 14 nodes and 21 links.
Traffic is uniformly distributed and each link has 32 channels
of 10Gbps each. In our context, an erlang corresponds to
the amount of traffic that occupies an entire channel (e.g.,
20 erlangs mean each edge node generates 200Gbps). Burst

Parameter NSFNET Core Basic Large

|Po| 35 18 349 746

Tosnr[dB] 18 20 20 20

TABLE I
NUMBER OF PATHS THAT REQUIRE REGENERATION AND OSNR

THRESHOLD VALUES

Method NSFNET Core Basic Large

MILP1 112 55 499 (> 6% gap) 971 (> 17% gap)

MILP2/3 113 56 500 866

LCR 112 55 607 1021

OPAQUE 1344 1472 2624 3648

TABLE II
RP RESULTS COMPARISON

arrivals follow a Poisson distribution, their mean duration is
100µs, and 99% confidence intervals have been considered.
Besides, Bosnr is set to 10−3. All MILP problems have been
solved using IBM ILOG CPLEX v.12.1 and simulations have
been conducted on the JAVOBS network simulator [15].

B. Resolution methods comparison

For this experiment and hereinafter in this paper, we con-
sider the smallest K = 20 regeneration options (with respect
to the size of set |si|) to fill set Sp, p ∈ Po, and the Tosnr

values provided in Table I. Note that for the NSFNET network
topology, due to larger link distance values, we had to consider
a lower Tosnr. In particular, the highest Tosnr that guarantees
that any link of the network is feasible (in terms of the OSNR
signal quality) was selected. For the Pan-European networks
we consider a value that is in accordance with recent studies
(see e.g., [6]). Tosnr also determines the number of paths that
require regeneration (i.e., see in Table I sizes of Po sets), and
hence, the level of complexity that is given to the problem.

The results obtained are presented in Table II (number
of regenerators) and Table III (computation times). Table II
also provides the number of regenerators required when an
opaque network architecture is considered. In this study, each
node injects 20.8 erlangs into the network. One can note that
MILP1 is solved very effectively when small instances are
considered (i.e., NSFNET and Core). This is not, however,
the case with both the Basic and the Large networks, where
MILP1 struggles several hours to reach poor solutions. Among
the two heuristic algorithms proposed, the MILP2/3 method
provides the most satisfactory trade-off between complexity
and optimality. However, if computation resources are the
top priority, the LCR heuristic clearly outperforms the other
strategies.

C. Impact on the OBS network performance

To evaluate the effectiveness of both the MILP2/3 and the
LCR methods in the T-OBS network, we consider the overall
burst loss probability (BLP ) as the metric of interest. Figure



Method NSFNET Core Basic Large

MILP1 0.5 0.61 > 7 hours > 11 hours

MILP2/3 0.1836 0.254 3.97 15.71

LCR 0.086 0.116 0.37 0.55

TABLE III
RP EXECUTION TIMES (SECONDS) COMPARISON
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MILP2/3 (426) LCR (588)

OPAQUE (3648)

Fig. 2. MILP2/3 vs. LCR performance comparison in the Large topology.

2 presents the results obtained under both the MILP2/3 and
LCR methods in the Large topology when the number of
erlangs offered per node is equal to 6.4. In this experiment,
two different Bosnr targets are considered, namely 10−3 and
10−5. In addition, the opaque (i.e., O/E/O et every node)
and transparent (i.e., no regeneration) scenarios are plot and
used as benchmarking indicators. It is easy to observe that
the progressive and even placement of regenerators (i.e., the
amount of regenerators to be placed is fairly distributed
among all selected nodes) reduces the overall BLP until
both Bosnr targets are reached (i.e., the required number of
regenerators has been deployed). As it was to be expected,
MILP2/3 reaches both Bosnr targets well before than LCR.
In the Bosnr = 10−3 case the BLP is dominated by OSNR
losses, and consequently, when all the regenerators have been
deployed BLP ≈ Bosnr. On the other hand, if Bosnr is set to
10−5, contention losses become predominant, and therefore,
BLP ≈ BLPOPAQUE . Here it is worth pointing out the fact
that the BLP found slightly improves that of the opaque case.
This is due to the differences in node architectures between the
opaque and translucent networks: note that whilst the opaque
network relies on in-line regenerators as in [1], our translucent
architecture operates in the feed-back mode as proposed in [4].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the RRPD problem in a T-
OBS network. Since joint RRPD is a complex problem, we
have separately formulated the routing, which aims at reducing
congestion in bottleneck links, and RPD problems. Our RPD
strategy relies on the piecewise linear approximation of the
inverse of the Erlang-B dimensioning function. Since such

formulation corresponds to the complex DCMCF problem, we
have eventually provided a heuristic method to solve the RPD
problem. We have evaluated and compared these methods by
considering the trade-off between optimality and complexity
they provide. Among them, the MILP2/3 strategy stood out as
the best quality trade-off, and the LCR heuristic as the fastest
method. Finally, we proved the effectiveness of these methods
when applied to the T-OBS network. From the results obtained,
we can conclude that the T-OBS network performance, under
the RRPD strategies proposed in this paper, remains unaffected
since losses due to signal degradation are kept satisfactorily
under control. In our future work, we plan to extend our model
to consider the case of an on-line/dynamic scenario.
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