
The Prediction Approach in QoS Routing

Eva Marín-Tordera, Xavier Masip-Bruin,
Sergio Sánchez-López, Jordi Domingo-Pascual

Advanced Broadband Communications Center
Universitat Politècnica de Catalunya, UPC

Vilanova i la Geltrú, Barcelona, Catalunya, Spain
{eva, xmasip, sergio, jordid}@ac.upc.edu

Ariel Orda

Department of Electrical Engineering
 Technion I.I.T., Haifa, Israel

ariel@ee.technion.ac.il

Abstract— Usual QoS routing algorithms involve the periodic update
of network state information in all the network nodes. Based on this
knowledge the QoS routing algorithms select the ‘best’ route. It has
been shown in the literature that the performance of these QoS
routing algorithms strongly depends on the frequency of updating.
We propose a new QoS routing mechanism called Prediction-Based
Routing based on predicting the availability of links and routes
regardless from the network state information. Consequently, update
messages are not required, hence reducing signalling overhead and
providing a major enhancement in terms of scalability. We show that
the PBR is a viable option compared with usual QoS routing
algorithms from the point of view of performance, complexity ad
signalling overhead.

Keywords-component; QoS Routing, Prediction-Based Routing,
Routing Inaccuracy.

I. INTRODUCTION
Scalability is one of the main challenges in QoS routing.

There are many issues impacting on the scalability problem,
such as the signaling overhead and the route computation
schemes.

Concerning to the signaling overhead, a significant amount
of the existing signaling messages is because the update
procedure required to keep the network state databases
correctly updated. Assuming source routing, QoS routing
algorithms seek for the “optimal” route between source-
destination node pairs based on the network state information
obtained from the network state databases on such source
nodes. The signaling overhead may be reduced by limiting the
amount of updating messages. Unfortunately, reducing such
updating messages leads to have inaccurate network state
information. As a consequence routing is done according to
outdated network state information, so increasing the blocking
probability. There are many contributions in the literature
proposing routing mechanisms that take into the unavoidable
presence of such inaccuracies [1][2][3][4][5][6]. Closely
related to the inaccuracy problem [7] and [8] propose a new
algorithm named ‘proportional routing’, aiming to removing
the update messages.

Concerning to the routing computation schemes, a major
tool that has been explored in several previous studies to
address the scalability problem is that of precomputation [9].
For example, the well-known hot potato routing scheme [10]
predicts the best route to a destination node based on the delay
information coming from that node. In [11] it is proposed to
predict the future traffic load in a link through past measured

samples of the traffic load in that link. In [12], a dynamic
variant of hot potato routing is presented. All these
contributions target to predict the incoming traffic load.

In this paper we propose the Prediction-Based Routing
(PBR) mechanism. Despite we named our mechanism with the
same name used in a previous work [19], it is worth to notice
that they address a very different problem, proposing a cost
function to predict the average queuing delay. Our PBR
addresses the scalability problem by both, proposing a new
computation scheme and reducing the signaling overhead. In
short, unlike the previously mentioned precomputation
schemes, they all predicting the incoming traffic load, the PBR
focuses on predicting link and route availability. Moreover,
the PBR mechanism also significantly reduces the signaling
overhead because update messages are not required. Similar to
the ‘proportional routing’, proposed in [7][8], in the PBR the
routes are selected without taking into account network state
information. However, in ‘proportional routing’ the route
selection is based on flow blocking statistics collected locally,
whereas in the PBR the route is predicted to be blocked or not
based on both new tables, named Prediction Tables, and local
information. The Prediction-Based Routing (PBR) mechanism
has been already presented in [13] as a Routing and
Wavelength Assignment (RWA) mechanism in the context of
optical transport networks. The positioning papers in [14] [20]
briefly introduce the PBR in the context of IP/MPLS
networks.

The main objective of this paper is to describe in depth the
behavior of the PBR mechanism. Based on the obtained
results we justify how a heuristic mechanism such as the PBR
correctly assigns the routes based on both the training of the
Prediction Tables (PT), and the local network state
information. We propose to apply the PBR mechanism for
both, off demand and on demand route computation. In the
first case, off demand computation, the routes are computed
previously to the connection request. However, in the second
case the routes are dynamically computed when a connection
request reaches the source node. Inferred from the application
of the PBR mechanism, off demand and on demand
respectively, we propose two QoS routing algorithms, the
Predictive Selection of Route Fixed Alternate (k-PSR_FA) and
the Predictive Selection of Route On demand (k-PSR_R).
While in the k-PSR_FA, the algorithm selects the route
between a set of precomputed routes (we name these routes

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

1020

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on July 12,2010 at 14:46:44 UTC from IEEE Xplore. Restrictions apply.

fixed alternate), in the k-PSR_R, the algorithm dynamically
calculates and selects the routes.

We also study in this paper the impact of the number of
feasible routes on the PBR performance. In [15] and [16] it
was described the problem involved when increasing the
routes to be selected, since more feasible routes does not
always imply better performance. This is due to the cost
involved in using longer alternate routes.

This paper is organized as follows. In Section II the PBR
mechanism and the algorithms inferred from the PBR
mechanism are deeply described. In Section III we present a
performance evaluation and, finally, in Section IV we
conclude the paper.

II. PREDICTION-BASED ROUTING IN IP/MPLS NETWORKS
The Prediction-Based Routing is based on the well-known

ideas of branch prediction developed in the context of
computer architectures [17]. In this area, the main target boils
down to find out whether a branch instruction will be taken or
not before being processed. This is done to speed up the
processor. The concepts used in branch prediction can be
applied to a network scenario whenever substantial changes
are included. The main components of our proposal are: the
routing register, the prediction tables and the PSR algorithms.

A. PBR off demand: the k-PSR_FA algorithm.
The PBR mechanism presented in [14] is based on choosing

the possible routes between different fixed alternate routes.
That is, in the work done so far the route is chosen between 2
(k in general) static (fixed) and previously computed
(precomputed) routes. The main reason motivating the use of
fixed precomputed routes is to limit the number of Prediction
Tables in the sources nodes; using fixed alternate routes we
are limiting the number of Prediction Tables.

Unlike branch prediction where the history of prediction
outcomes is stored in a register, in a network scenario it is
necessary to keep the network state from the point of view of
the source node. In order to achieve it, the PBR mechanism
registers the amount of bandwidth that every source node
allocates to every route originated on such a source node. For
simplicity of exposition, we assume that the information about
both available and used bandwidth is expressed in terms of a
percentage of the total capacity of the end-to-end route. There
is one register per route on every source node. These route
registers are updated with information about assigned
bandwidth from the point of view of these source nodes. One
of the main characteristics of the PBR mechanism is that the
register’s updating process is achieved without distributing
update messages. Because of the removal of these update
messages, the bandwidth allocated in the route registers of the
source nodes does not reflect the precise bandwidth assignment
values.

The information about assigned bandwidth is used to access
some tables (termed prediction tables, or PTs); hence it should
be digitalized in order to constitute a proper table index. As an
example, if we employ a single bit for digitalizing the
bandwidth information, we can assign ‘0’ to the index when
the used bandwidth in the route is bigger than or equal to 50%,

otherwise we assign ‘1’. Table in Fig.1 shows the index values
for two bits.

Source nodes include one prediction table for every
feasible route. Every route register has its corresponding PT.
The PTs have different entries, each keeping the information
about a different pattern by means of a two-bit counter. The
use of two values to account for the availability or the
unavailability has been widely studied in the area of branch
prediction in computer architecture. As shown in [17] a two-
bit counter provides significantly better accuracy than a one-
bit counter. It is also shown that counters of more than two
bits do not provide significantly better results; this is due to
the “inertia” that can be built up with a large counter. A two-
bit counter admits four values, namely 0, 1, 2 and 3. The
prediction is done by reading the value of the two-bit counter,
as follows. If the value is 0 or 1, the prediction result is to
select the route associated with this counter; otherwise the
prediction outcome is that this route is unavailable and should
not be selected.

The number of entries of the prediction tables depends on
the number of bits of the route registers. For example, if the
route registers keep information about the used bandwidth in
the route within two bits, then the number of entries of the
prediction tables is 4.

Based on the PBR off demand mechanism, we propose the
k-PSR_FA (Predictive Selection of Route Fixed Alternate)
algorithm, being k the number of feasible routes. Fig.1
illustrates an execution of the algorithm. We assume that there
are two precomputed shortest routes between every source-
destination nodes pair, and that the assigned bandwidth is
codified by two bits. In Fig.1 we depict the handling of a new
request that demands 40% of bandwidth. We also assume that
these shortest routes are link disjoint, if possible. Otherwise
the shortest routes should share the minimum number of links.
This is done because if the first route is predicted to be
blocked, then the prediction is effectively to use a completely
different route, since the source node does not know the
identity of the link blocking the first route. Generally, the k-
PSR_FA algorithm checks the k shortest routes in a computed
order, according to the availability of their links. The
information about the availability of the links does not
represent the current picture of the network. Indeed, without
updating, every node only knows how routes and links have

Route 1
Prediction Table

40%

Route 1 register

Incoming traffic
request demanding
40% of bandwidth

25%

Route 2 register

1) (40+40)% PT1 index= 00
 bandwidth

200
01
10
11

Check
route 2

2) (25+40)% PT2 index= 01
 bandwidth 1

Route 2
Prediction Table

00
01
10
11

Select
route 2

Bandwidth (B) Index

 75%<=B 0

 50%<=B<75% 1

 25<=B<50 2

B<25% 3

Figure 1. 2-PSR_FA performance, bandwidth codified with 2 bits.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1021

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on July 12,2010 at 14:46:44 UTC from IEEE Xplore. Restrictions apply.

been used in the past. This information dictates the order by
which the PTs are checked. Getting back to Fig. 1, the last
information upon the first route is a used bandwidth of 40%.
This used bandwidth is incremented by the requested
bandwidth, i.e. 40%+40%. If the resulting figure is lower than
100 %, then the PT of the first route is checked, that is the
counter of the corresponding entry is read; otherwise the next
PT would be checked. In our example, the total bandwidth is
80% (>75%), so that the index used to access the first PT is
00. With this index, the PT of the first route is accessed and
the counter is read. According to Fig.1, the value obtained
after accessing the PT is 2, hence the decision made by the
prediction process is to avoid the first route. Hence, the second
route is examined. In this second route, the used bandwidth is
25%, so that the resulting figure is 40%+25%=65%. This
means an index of 01. The PT of the second route is accessed
with this index, obtaining a value of 1. According to this
counter value, the algorithm selects this second route. We
point out that the algorithm checks both the counter value of
the PT and the availability of the node’s output links towards
each of the two routes, because the nodes always have updated
information on the availability of their output links.

In Fig. 2 we present a short summary of the k-PSR_FA
algorithm, for k=2. We call the functions that check the
availability of route 1 and route 2 as Check(Route1), and
Check(Route2), respectively. In the example, after checking
the PTs of both routes, if the algorithm still has not selected
any route according to the prediction, the algorithm will select
the route by only checking the availability of the node’s output
links. These functions are termed CheckF(Route1) and
CheckF(Route2), respectively.

The route registers at the source node are updated with the
information about the used bandwidth for the source node in
every route. In the example above, when the algorithm selects
the second route, the new bandwidth used by this node in this
second route will be 65%. It is important to note that this used
bandwidth is just the value known by the node, which might
be substantially different from the real bandwidth occupation.
This is because, due to the lack of update messages,
bandwidth changes produced by other source nodes allocating
bandwidth on links of the same route are not reported

An important issue to be considered is that only the PT of
the selected route is actually updated (or trained). Hence, if the
connection is established, the corresponding counter on the PT
is decreased, otherwise (i.e., the connection is blocked) the
counter is increased. In our example, if the connection is
successfully established, the counter of the entry 01 in the PT
of route 2 will be 0, but if the connection is finally blocked the
counter will be 2. The attempt of selecting the route by just
checking the output availability when no route is assigned is
done to unblock the PT counters. Indeed, if the route is
selected and the connection can be established, then the
corresponding PT counter of route 1 or route 2 is decreased,
hence unblocking it.

B. PBR on demand: the k-PSR_R algorithm
As it was exposed earlier the potential problem of a PBR on

demand mechanism is the amount of memory required by both

the number of PTs and the size of the PTs. Remember that in
the source nodes there is a PT for every possible route to every
possible destination. In addition a large number of PTs
negatively impacts on the computational cost.

We address the problem of the memory requirements by
means of both, reducing the PT size, and reducing the number
of PTs. First, the PT size is reduced so that there is only one
entry of two bit counter in every PT. As a consequence, it is
not necessary to codify the requested bandwidth in a certain
number of bits, since the algorithm does not consider it in the
route selection (because there is only one entry on each PT).
For every new connection request the corresponding PTs of
the possible routes are accessed and read, independently of the
requested bandwidth. This is done to both, limit the necessary
amount of memory required, and simplify the execution of the
algorithm. Second, the algorithm is able to calculate all the
possible routes and then check all the possible PTs. However,
to reduce even more the memory requirements we add a new
parameter, R. R is the number of statically precomputed
shortest routes. Then, in the source nodes, there is R PTs for
every source-destination pair of nodes.

Despite the fact that the number of PTs has been reduced as
well as their size, we are aware that a significant
computational cost is needed to access all the feasible PTs.
Hence, to reduce this computational cost we propose to limit
the number of routes to be compared, varying the parameter k;
being k the dynamically k-shortest routes with two-bit counter
lower than 2 and with output link availability. We name the
routing algorithm inferred from the PBR on demand
mechanism, Predictive Selection of Route On Demand (k-
PSR_R). In short, the k-PSR_R algorithm checks the k-

New request demanding an X% of bandwidth.
Check(Route 1):

The new bandwidth is added to the bandwidth kept in the route1 register (Y%).
The total bandwidth is X+Y%.

If (X+Y)% <=100% the PT of the first route is checked
If(PT counter<2) and there is availability in the output link the
algorithm selects the route1

 Else Check(Route 2).
Else Check(Route 2)

Check(Route 2)
The new bandwidth is added to the bandwidth kept in the route2 register (Z%).
The total bandwidth is X+Z%.

If (X+Z)% <=100% the PT of the second route is checked
If (PTcounter<2)) and there is availability in the output link the
algorithm selects the route2

 Else CheckF(Route 1)
 Else CheckF(Route 1)
CheckF (Route 1):

The new bandwidth is added to the bandwidth kept in the route1 register (Y%).
The total bandwidth will be X+Y%.

If (X+Y)% <=100%
If there is availability in the output link the algorithm selects the
route1

 Else CheckF(Route 2).
Else CheckF(Route 2)

CheckF (Route 2):
The new bandwidth is added to the bandwidth kept in the route1 register (Z%).
The total bandwidth will be X+Z%.

If (X+Z)% <=100%
If there is availability in the output link the algorithm selects the
route2

 Else No route is assigned
Else No route is assigned

Figure 2. Summarizing the 2-PSR_FA algorithm

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1022

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on July 12,2010 at 14:46:44 UTC from IEEE Xplore. Restrictions apply.

shortest routes with two-bit counters lower than 2 and with
output link availability between the first R shortest routes.

Once we have fixed the problem of the memory
requirements we explain the k-PSR_R algorithm. The k-
PSR_R algorithm looks, for every new connection request, the
possible routes and reads the two-bit counter values as
follows. Once the routes are calculated they are checked
according to their length in number of hops. The first, shortest
route, is checked. If its corresponding two-bit counter is lower
than 2 and the corresponding output link has enough available
bandwidth the route is provisionally selected. In any case, if
the first route is selected or if it is not selected, the next,
second route, is checked. If the second route has its two-bit
counter lower than 2, the same hop length than the first, and
output link availability, this second route is compared with the
first. If the second route has more available bandwidth, this
second route is now provisionally selected. This process
finishes when k possible routes are considered (k shortest
routes with two-bit counter lower than 2 and output link
availability) or when R routes are checked. See in Fig. 3 a
summary of this k-PSR_R algorithm. In order to make
understanding easier we compare the k-PSR_R algorithm with
the Widest Shortest Path (WSP) [18]. The k-PSR_R algorithm
runs similar than the WSP but with two differences. The first
is that the algorithm selects the widest shortest route between
the routes with counter lower than 2 and output link
availability. That is, it selects the widest shortest route in a
graph where the routes with two-bit counters larger than 1 or
no output link availability are pruned. The second difference is
that k-PSR_R uses the local information on the source node
about the link availability of the routes. This local information
stands for the amount of bandwidth allocated by those
connections originated by such a source node.

 As in the k-PSR_FA algorithm, if the k-PSR_R algorithm
does not select any route, the routes are checked as explained
above but eliminating the restriction of two-bit counters lower
than 2. See also summary in Fig. 3.

The k-PSR_R algorithm updates (or trains) the two-bit
counters of the PTs according to the following. If the
connection can be established the two-bit counter

corresponding to that route is decreased, otherwise, the
connection is blocked, the two-bit counter is increased.

III. PERFORMANCE EVALUATION
In order to evaluate our proposal we compare the

performance of the PBR mechanism with a well-known QoS
routing algorithm the WSP. For every new incoming request,
the WSP dynamically selects the route with the largest amount
of available bandwidth among the shortest (i.e., minimum-hop)
ones. All the performed simulations are obtained by applying
both PSR algorithms and the WSP algorithm on the NSF
topology, depicted in Fig. 4. We assume that in our simulations
nodes 1, 2, 11, 12, 14 and 15 in Fig. 4 are source and
destinations nodes. Connection arrivals are assumed to be
Poisson, and all the links have the same available bandwidth,
which is normalized to 100%. Each arriving connection
requires a certain percentage of the total bandwidth. The
holding and arrival times of the incoming requests are
measured in units of time. All the connection requests have a
averages holding time of 10 units and an average arrival time
of 10 units. In order to change the traffic load, we change the
average requested bandwidth (that is, the average value of all
the requested bandwidths) demanded by the incoming requests
from 10% to 25 %. We carry out three set of simulations. The
first targets to find out the optimal number of bits needed to
codify the bandwidth requirements in the k-PSR_FA algorithm.
The second targets to evaluate the PSR performance,
comparing it with the WSP algorithm. And finally we evaluate
the impact of the parameters R and k on the k-PSR_R
algorithm performance.

A. Number of bits to codify the requested bandwidth in the k-
PSR__FA algorithm

As it is exposed in section II.A, the k-PSR_FA algorithm
uses the bandwidth codification in the process of selection of
the route. In this set of simulations we want to evaluate the
impact on the k-PSR_FA performance when the number of
bits used to codify the bandwidth changes. Notice that the
length of the route registers and the number of PT entries
depend on the number of bits used to codify the bandwidth.
For example if the number of bits used to codify the
bandwidth is 3, the route registers will have a length of 3 bits,
and the PTs will have 8 entries each one, but if the number of
bits is 0 (bandwidth is not codified) there will not be route
registers and the PTs will have only one entry. We present in
Table I the percentage of blocked connection, for the 4-
PSR_FA algorithm for 0 (bandwidth is not codified), 1, 2 and

For(i=1 to R) (R can be=all possible routes){
While(CheckedRoutes<=k){
If(two-bit_counter(Route(i)<2) and there is output link availability{
CheckedRoutes++;
 If(Length(Route(i)<Length(AssignedRoute)) AssignedRoute=Route(i);
 If(Length(Route(i)==Length(AssignedRoute)){
 CheckLocalLinkAvailability:
 If(LocalLinkAvailability(Route(i))> LocalLinkAvailability(AssignedRoute))
 AssignedRoute=Route(i);
 }

If any route is assigned run the same algorithm without checking two-bit_counter
values:

For(i=1 to R) (R can be=all possible routes){

While(CheckedRoutes<=k){
If there is output link availability{
CheckedRoutes++;
 If(Length(Route(i)<Length(AssignedRoute)) AssignedRoute=Route(i);
 If(Length(Route(i)==Length(AssignedRoute)){
 CheckLocalLinkAvailability:
 If(LocalLinkAvailability(Route(i))> LocalLinkAvailability(AssignedRoute))
 AssignedRoute=Route(i);
 }

Figure 3. Summarizing the k-PSR_R algorithm

Figure 4. Topology used in the simulations

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1023

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on July 12,2010 at 14:46:44 UTC from IEEE Xplore. Restrictions apply.

3 bits to codify the requested bandwidth, and for 10%, 15%,
20% and 25% of average requested bandwidth. We can see
that for 10%, 15% and 20% the best results are for 0 bits; only
for 25% the best results are for 2 bits. We obtain similar
results for 2-PSR_FA. On average, for our range of traffic load
the best results are usually for 0 and 2 bits. For simplicity and
taking into account that 0 bits implies that there are not route
registers, and only one PT of one two-bit counter per route is
required in the source nodes, in the rest of the performance
evaluation we only present results for 0 bits for the k-PSR_FA
algorithm.

TABLE I. 4-PSR _FA % OF BLOCKED CONNECTIONS VS THE NUMBER OF
BITS TO CODIFY THE REQUESTED BANDWIDTH.

Average Number of Bits
Requested
Bandwidth

0 1 2 3

10% 0.3314% 0.3314% 0.3321% 0.40262%
15% 1.2682% 1.5041% 1.3434% 1.6959%
20% 3.9550% 4.8036% 5.5262% 5.2469%
25% 12.1375% 11.8983% 11.2713% 12.9306%

B. PSR algorithms performance
We compare the two PSR algorithms, k-PSR_FA and k-

PSR_R, with the WSP algorithm. In the case of k-PSR_FA,
we assume that the shortest routes are link-disjoint.
Accordingly, for coherence when comparing the performance
of all the algorithms we simulate also two WSP versions, WSP
with off demand route calculation, named k-WSP_FA, with k
link-disjoint routes, and WSP with on demand route
calculation, named k-WSP_R.

In Fig. 5 we present results of the percentage of blocked
connections versus the time between updating (in units of
time) for 10%, 15%, 20% and 25% of average requested
bandwidth. In these simulations we assume k=2 and k=4 for
the k-WSP_FA and k-PSR_FA algorithms, and k=All and
R=All for the k-WSP_R and k-PSR_R algorithms. In the off
demand algorithms that use precomputed routes (k-WSP_FA
and k-PSR_FA) the routes have been manually selected. For
2-FA, the two routes are the two shortest link disjoint. For 4-
FA, the first 3 routes are the shortest link disjoint, while the
fourth shares the minimum number of links with the other 3,
because there are not 4 link disjoint routes in the topology
simulated. Remember that the PSR algorithms do not vary
their performance with the updating time because they do not
need update messages.

From the obtained results we can conclude that both PSR
algorithms outperform the WSP algorithms when the network
state updating time is bigger than 5-10 units of time.
Moreover, in some case the PSR outperforms the WSP even
when updating is every unit of time. Remember that updating
every unit of time, even every 5 or 10 units of time, is
unaffordable from the point of view of the signaling overhead.
On the other hand, the 4-PSR_FA algorithm outperforms in
almost all the cases the k-PSR_R algorithm, except for 25% of
requested bandwidth. This effect is also observable in the
WSP algorithms. This can be explained because more routes
to select does not always imply better performance [15]. The
4-PSR_FA algorithm only selects among 4 routes, but these

routes has been previously and manually selected, being link
disjoint the first three and sharing the minimum number of
links the fourth. From this observation we argue that the
selection of the fixed alternate routes is as important as the
routing algorithm as stated in [8].

C. Adjusting parameters of the k-PSR_R algorithm
As it is exposed in section II.B we introduced the parameter R
in the k-PSR_R algorithm to reduce the amount of required
memory. R is the number PTs of one two-bit counter per
source-destination pair in the source nodes. We also

10%

0

0,5

1

1,5

2

2,5

3

1 10 100

Time of Updating

%
 o

f B
lo

ck
ed

 C
on

ne
ct

io
ns

15%

0

2

4

6

8

10

1 10 100

Time of Updating

%
 o

f B
lo

ck
ed

 C
on

ne
ct

io
ns

20%

0

5

10

15

20

25

1 10 100

Time of Updating

%
 o

f B
lo

ck
ed

 C
on

ne
ct

io
ns

25 %

0

5

10

15

20

25

30

35

1 10 100

Time of Updating

%
 o

f B
lo

ck
ed

 C
on

ne
ct

io
ns

2-WSP_FA 4-WSP_FA All-WSP_All
2-PSR_FA 4-PSR_FA All-PSR_All

Figure 5. PSR versus WSP for traffic load of 10%, 15 %, 20%
and 25% of average requested bandwidth.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1024

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on July 12,2010 at 14:46:44 UTC from IEEE Xplore. Restrictions apply.

introduced the parameter k to reduce the computational cost.
The k-PSR_R algorithm selects the route between the k-
shortest with availability in their output link and the two-bit
counter lower than 2. In Table II we present results of the k-
PSR_R algorithm being the R parameter, either all the
possible routes, 100 routes, or 10 routes; and being the k
parameter either R, 4 or 2. We observe that the results are the
same if we consider all the possible routes, R=all, or if we
consider R=100. Even for 10% of average bandwidth we also
obtain the same results when considering only R=10 routes.
On the other hand, in general, reducing k from all the possible
routes to 4 and 2, the percentage of blocked connections
decreases (except for 25%). The two above observations mean
that we can reduce the number of PTs, R, without increasing
the blocked connections. In addition, the results are in general
better when reducing k. From these last observations together
with the good results of the off demand algorithm, k-PSR_FA,
we argue that it is possible, for every network topology and
traffic characteristics, to find an optimal combination of the R
and k parameters and also, as it is presented in [8], to find the
best fixed precomputed routes to be selected.
TABLE II: % OF BLOCKED CONNECTIONS OF THE K-PSR_R VARYING R AND K

 FOR 10% OF TRAFFIC LOAD
R/k All 4 2
All 0.7068% 0.1600% 0.1667%
100 0.7068% 0.1600% 0.1667%
10 0.7068% 0.1667% 0.1667%

FOR 15% OF TRAFFIC LOAD

R/k All 4 2
All 1.9201% 1.7468% 1.6201%
100 1.9201% 1.7468% 1.6201%
10 1.8934% 1.7468% 1.6201%

FOR 20% OF TRAFFIC LOAD

R/k All 4 2
All 5.5937% 4.6736% 3.8269%
100 5.5937% 4.7136% 3.8269%
10 4.8000% 4.5070% 4.3002%

FOR 25% OF TRAFFIC LOAD

R/k All 4 2
All 10.5140% 12.8875% 10.2940%
100 10.5140% 12.8875% 10.2940%
10 12.3408% 11.9008% 11.7074%

IV. CONCLUSIONS
We have presented the PBR mechanism, a precomputation

approach based on prediction, to address the scalability
problem of QoS routing. Our proposal is based on predicting
routes availability not according to the network state
information but according to its capacity of learning (training
of the PTs). One of the main characteristics of this approach is
that update messages are not needed, thus reducing
significantly the signaling overhead. Simulation results show
that the algorithms inferred from the PBR mechanism behave
better than a standard QoS routing algorithm.

Also we have shown the importance of finding and storing
the best precomputed routes when using off demand route

calculation, to improve the performance of the routing
algorithms. Our future work will be aimed to develop
algorithms that dynamically store the best routes depending on
the network and traffic characteristics.

ACKNOWLEDGMENTS
This work was partially funded by the MCyT (Spanish Ministry of Science
and Technology) under contract FEDER-TSI2005-07520-C03-C02, the IST
project E-Next under contract FP6-506869 and the CIRIT (Catalan Research
Council) under contract 2005-SGR00481.

REFERENCES
[1] R.A.Guerin, A.Orda, “QoS routing in networks with inaccurate

information: theory and algorithms”, IEEE/ACM Transactions on
Networking, Vol.7, nº.3, pp. 350-364, June 1999.

[2] D.H.Lorenz, A.Orda, “QoS routing in networks with uncertain
parameters”, IEEE/ACM Transactions on Networking, Vol.6, nº.6,
pp.768-778, December 1998.

[3] G.Apostolopoulos, R.Guerin, S.Kamat, S.K.Tripathi, “Improving QoS
routing performance under inaccurate link state information”, Proc.
ITC’16, 1999.

[4] S.Chen, K.Nahrstedt, “Distributed QoS routing with imprecise state
information”, Proc.7th IEEE International Conference of Computer,
Communications and Nettworks, 1998.

[5] X.Masip, S.Sánchez, J.Solé, J.Domingo, “QoS Routing Algorithms
under Inaccurate Routing Information for Bandwidth Constrained
Applications”, Proc. IEEE ICC 2003.

[6] T.Korkmaz, M.Krunz, "Bandwidth-Delay Constrained Path Selection
Under Inaccurate State Information", IEEE/ACM Transactions on
Networking, Vol.11, nº3, June 2003.

[7] Nelakuditi, Zhang, Tsang and Du, “Adaptative Proportional Routing: A
Localized Approach”, in IEEE/ACM Transactions on Networking (ToN)
december 2002.

[8] Nelakuditi, Zhang and Du,, “On selection of candidate paths for
proportional routing,” in Computer Networks 44, 2004.

[9] A. Orda and A. Sprintson: “Precomputation Schemes for QoS Routing”,
IEEE/ACM Transactions on Networking vol. 11(4), pp.578-591, 2003.

[10] P. Baran, “On Distributed Communications Networks”, IEEE
Transactions on Communications, pages 1-9, 1964.

[11] T.Anjali, C.Scoglio, J.de Oliveira, L.C. Chen, I.F. Akyldiz, J.A. Smith,
G.Uhl, A.Sciuto, “A New Path Selection Algorithm for MPLS Networks
Based on Available Bandwidth Estimation”, QofIS 2002.

[12] C. Busch, M. Herlihy, R.Wattenhofer, “Routing without Flow Control”,
ACM Symposium on Parallel Algorithms and Architectures, 2001.

[13] E. Marín-Tordera, X.Masip-Bruin, S.Sánchez-López, J.Solé-Pareta,
J.Domingo-Pascual, “The Prediction-Based Routing in Optical
Transport Networks”, accepted for publication in Computer
Communications Special Issue.

[14] E.Marín-Tordera, X.MasipBruin, S.Sánchez-López, “Prediction-Based
Routing in IP/MPLS Networks“,Infocom 2005 Student Workshop, 2005.

[15] Mitra and Seery, “Comparative Evaluations of Randomized and
Dynamic Routing Strategies for Circuit-Switched Networks”, IEEE
Trans. on Communications, pp. 102-116, 1991.

[16] Kelly, “Routing and Capacity Allocation in Networks with Trunk
Reservation”, Mathematics of Operation Research, Volume 15, Issue 4,
November 1990.

[17] J.E. Smith, “A study of branch prediction strategies”, In Proc. of 8th
International Symposium in Computer Architecture, Minneapolis 1981.

[18] R. Guerin, A.Orda and D. Williams, “QoS Routing Mechanism and
OSPF Extensions”, in Proceedings of 2nd Global Internet
Miniconference (joint with GLOBECOM’97) 1997.

[19] Y.G. Kim, A. Shivari and P.S. Min, “Predition-Based Routing through
Least Cost Dealy Constraint”, 18th IPDPS, IPDPS’04

[20] E.Marín-Tordera, X.MasipBruin, S.Sánchez-López, A.Orda, J.Domingo-
Pascual, “Prediction-Based Routing in IP/MPLS Networks”, IV
Workshop in GMPLS Networks, Girona Spain 2005.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1025

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on July 12,2010 at 14:46:44 UTC from IEEE Xplore. Restrictions apply.

