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Abstract. Building robust network monitoring applications is hard given
the unpredictable nature of network traffic. Complex analysis on stream-
ing network data usually leads to overload situations when presented
with anomalous traffic, extreme traffic mixes or highly variable rates.
We present an on-line predictive load shedding scheme for monitoring
systems that quickly reacts to overload situations by gracefully degrad-
ing the accuracy of analysis methods. The main novelty of our approach
is that it does not require any knowledge of the monitoring applications.
This way we preserve a high degree of flexibility, increasing the potential
uses of these systems. We implemented our scheme in an existing net-
work monitoring system and deployed it in a research ISP network. Our
experiments show a 10-fold improvement in the accuracy of the results
during long-lived executions with several concurrent monitoring applica-
tions. The system efficiently handles extreme load situations, while being
always responsive and without undesired packet losses.

Keywords: Network monitoring, load shedding, resource management,
traffic sampling, resource usage monitoring, resource usage prediction.

1 Introduction

The processing requirements imposed on network monitoring systems have
greatly increased in recent years. Continuous and fine-grained analysis of net-
work traffic is now a basic requirement for this class of systems. For example,
there is a growing demand for monitoring applications that require tracking and
inspection of a large number of concurrent network connections for intrusion and
anomaly detection purposes. These systems must also handle ever-increasing link
speeds and highly variable data rates, and be robust to anomalous or extreme
traffic mixes.

Within the networking research community, several initiatives have been ad-
vanced to provision monitoring infrastructures that allow a large number of
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users to submit arbitrary traffic queries on live network streams [II2]. Recent
research proposals have also introduced system designs that provide developers
with sufficient flexibility in the definition of the monitoring applications and
with the ability to distribute their computations efficiently across the measure-
ment infrastructure [3/4]. However, proposed designs do not directly address the
increasingly serious problem of efficiently handling overload situations, when
resource demands clearly exceed the system capacity.

The alternative of over-provisioning the system to handle peak rates or any
possible traffic mix has two major drawbacks. First, it would be prohibitively
expensive and result in a highly underutilized system based on an extremely
pessimistic estimation of workload [5]. Second, it would necessarily lead to reduce
its flexibility and possible applications [6].

We have designed a load shedding scheme that allows current network moni-
toring systems to sustain the rapidly increasing data rates, number of users and
complexity of analysis methods, with minimum impact on the accuracy of the
results. The main novelty of our approach is that it does not require any explicit
knowledge of the queries or the type of computations they perform (e.g., flow
classification, maintaining aggregate counters, pattern search).

In a previous work [7], we proposed a method to predict the resource usage of
arbitrary and continuous network traffic queries. Our method (briefly reviewed in
Section [3)) automatically identifies, from small sequences of the incoming packet
streams, the traffic feature(s) that best model the cost of each query (e.g., the
number of packets, bytes, unique source IP addresses, etc.) and uses them to
accurately predict the CPU usage.

In this paper, we extend that work by defining how this short-term prediction
can be used to guide the system on deciding when, where and how much load to
shed in the presence of overload (Section ). We present long-lived experiments
on a research ISP network, where the traffic load and query requirements exceed
by far the capacity of the monitoring system (Section [{).

Our results indicate that, with the load shedding mechanism in place, (4)
the system efficiently handles extreme overload situations, while being always
responsive and without introducing undesired packet losses, and (i7) the queries
can always complete and return results within acceptable error bounds.

2 Related Work

Most of the existing proposals to handle overload situations in network monitor-
ing are based on data reduction techniques, such as packet filtering, aggregation
and sampling. The most representative example is arguably Cisco’s NetFlow [g],
which aggregates incoming packets into flow records. Sampled NetFlow also re-
sorts to packet sampling to deal with overload situations, while Adaptive Net-
Flow [9 dynamically adapts the sampling rate to the memory consumption.
Keys et al. [6] developed a monitoring system robust to extreme traffic mixes
that combines aggregation, adaptive sampling and the use of memory-efficient
counting algorithms to extract a set of 12 pre-defined traffic summaries.
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Several works have also addressed similar problems in the intrusion detection
space. For example, Dreger et al. discuss in [10] several modifications to the Bro
NIDS [11], such as dynamically selecting the restrictiveness of the packet filters,
to allow Bro to operate in high-speed environments. Gonzalez et al. [12] also
propose the inclusion of a secondary path into Bro that implements sampling
and filtering to reduce the cost of those analysis tasks that do not require stream
reassembly and stateful inspection.

The design of mechanisms to handle overload situations is a classical prob-
lem in any real-time system and several works have proposed solutions in other
environments. For example, in the database community, the Aurora system [13]
sheds excess load by inserting additional drop operators in the query data flow,
while TelegraphCQ [I4] uses approximate query processing techniques to pro-
vide delay-bounded answers in the presence of overload. Unfortunately, proposed
solutions require the use of declarative query languages with a restricted set of
operators, of which cost and selectivity are assumed to be known, hindering the
use of those techniques in our context.

In the Internet services space, SEDA [I5] proposes an architecture to develop
highly concurrent server applications, built as networks of stages interconnected
by queues. In SEDA, load shedding is achieved by applying admission control
on the event queues when an overload situation is detected.

3 Architecture

3.1 Monitoring Platform

We chose the CoMo platform [4] to develop and evaluate our load shedding
scheme. The platform allows users to define traffic queries as plug-in modules
written in C that contain stateful computations. The user is also required to
specify a simple stateless filter to be applied to the incoming packet stream, as
well as the granularity of the measurements, hereafter called measurement inter-
val (i.e., the time interval that will be used to report continuous query results). In
order to provide the user with maximum flexibility when writing queries, CoMo
does not restrict the type of computations that a plug-in module can perform.
As a consequence, the platform does not have any explicit knowledge of the data
structures used by the plug-in modules or the cost of maintaining them.

3.2 Prediction and Load Shedding Overview

Figure[Il shows the components and data flow in the system. The prediction and
load shedding subsystem (in gray) intercepts the packets from the filter before
they are sent to the plug-in module implementing the traffic query.

The system operates in four phases. First, it groups each 100ms of traffic in
a “batch” of packetsEl Each batch is then processed to extract a large set of

! The choice of 100ms is somewhat arbitrary, but our experimental results indicate
that it represents a good trade-off between prediction accuracy and overhead, as we
will show in Section [5.21
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Fig. 1. System overview

pre-defined traffic features. A feature is a counter that describes a specific prop-
erty of the batch. For example, the number of packets, bytes, unique destination
IP addresses, 5-tuple flows, etc. The features we compute have the advantage
of being lightweight with a deterministic worst case computational cost. An ex-
haustive description of the 42 traffic features currently supported by our system
can be found in [7].

The feature selection subsystem is in charge of selecting the most relevant
features according to the recent history of the query’s CPU usage. This phase is
important to reduce the overhead of the prediction algorithm, because it allows
the system to discard beforehand the features regarded as useless for prediction
purposes. This subset of relevant features is then given as input to the multiple
linear regression (MLR) subsystem to predict the CPU cycles required by the
query to process the entire batch. When the prediction exceeds the available
cycles, the load shedding subsystem pre-processes the batch to discard a portion
of the packets. Finally, the actual CPU usage is computed and fed back to the
prediction subsystem to close the loop.

The feature extraction, feature selection and multiple linear regression phases
were already described and evaluated in [7]. In the following sections we focus
on the load shedding component of the system.

4 Load Shedding

In this section, we provide the answers to the three fundamental questions any
load shedding scheme needs to address: (i) when to shed load (i.e., which batch),
(#i) where to shed load (i.e., which query) and (ii¢) how much load to shed (e.g.,
the sampling rate to apply). Algorithm [1 presents our load shedding scheme in
detail, which uses the output of the prediction subsystem described in Section [3

4.1 When to Shed Load

To decide when to shed load the system maintains a threshold (avail cycles) that
accounts for the amount of cycles available in a time bin to process queries. Since
batch arrivals are periodic (e.g., every 0.1s in our implementation), this thresh-
old can be dynamically computed as (timebin x CPU freq.) — overhead, where
overhead stands for the cycles needed by our prediction subsystem (ps cycles),
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Algorithm 1. Load shedding algorithm

Input: @Q: Set of ¢; queries
b;: Batch to be processed by ¢; after filtering
como cycles: CoMo overhead cycles
rtthresh, delay: Buffer discovery parameters

srate = 1;

pred cycles = 0;

foreach ¢; in @ do
fi = feature extraction(b;);
si = feature selection(f;, h;);
pred cycles += mlx (fi, si, hi);

N 0 A W

avail cycles = (time bin x CPU frequency) - (como cycles + ps cycles) +
(rtthresh - delay);
8 if avail cycles < pred cycles x (1 + error) then

avail cyclesfls?yﬁes .

9 srate = pred cyclesx (1+error)’
10 foreach ¢; in QQ do
11 b; = sampling(b;, qi, srate);
12 fi = feature extraction(b;);
13 ls?yges =axy s cycles; + (1 —a) x ls?yﬁes;

14 foreach ¢; in @ do
15 query cycles; = run query(b;, q;, srate);
16 h; = update mlr history(h;, fi, query cycles;);

pred cycles

—_—
5 ruery cyeles: + (1 —«) x error;

—_—
17 error=a X ‘1 —

plus those spent by other CoMo tasks (como cycles) not directly related to query
processing (e.g., packet collection, disk and memory management). The CPU
usage is measured using the time-stamp counter, as described in [7]. When the
predicted cycles for all queries (pred cycles) exceed the avail cycles threshold,
excess load needs to be shed.

We observed that, for certain time bins, como cycles is greater than avail cy-
cles, due to CoMo implementation issues (i.e., other CoMo tasks can occasionally
consume all available cycles). This would force the system to discard entire
batches, having a negative impact on the accuracy of the prediction and query
results. However, this situation can be minimized considering the presence of
buffers (e.g., in the capture devices) that allow the system to use more cycles
than those available in a single time bin. That is, the system can be delayed in
respect to real-time operation as long as it is stable in the steady state.

We use an algorithm, inspired in the way TCP determines the size of the
congestion window [16], to dynamically discover by how much the system can
safely (i.e., without loss) exceed the avail cycles threshold. The algorithm contin-
uously monitors the system delay (delay), defined as the difference between the
cycles actually used and those available in a time bin, and maintains a threshold
(rtthresh) that controls the amount of cycles the system can be delayed without
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loss. rtthresh is initially set to zero and gets increased whenever queries use less
cycles than available. If at some point, the occupation of the buffers exceeds
a predefined value (i.e., the system is turning unstable), rtthresh is reset to
zero, and a second threshold (initialized to o) is set to ”thges". rithresh grows
exponentially while below this threshold, and linearly once it is exceeded.

This technique has two main advantages. First, it is able to operate without
explicit knowledge of the maximum rate of the input streams. Second, it allows
the system to quickly react to changes in the traffic.

Algorithm [ (line [7) shows how the avail cycles threshold is modified to con-
sider the presence of buffers. Note that, at this point, delay is never less than
zero, because if the system used less cycles than the available in a previous time
bin, they would be lost waiting for the next batch to become available.

Finally, as we further discuss in Section B3] we multiply the pred cycles by
1 + error in line B as a safeguard against prediction errors, where error is an
Ezxponential Weighted Moving Average (EWMA) of the actual prediction error
measured in previous time bins (computed as shown in line [[7).

4.2 Where and How to Shed Load

Our approach to shed excess load consists of adaptively reducing the volume
of data to be processed by the queries (i.e., the size of the batch). We already
discussed in Section [2 several data reduction techniques that can be used for
this purpose (e.g., filtering, aggregation and sampling).

In our current implementation, we support uniform packet and flow sampling,
and let each query select at configuration time the option that yields the best
results. When an overload situation is detected, the same sampling rate is applied
to all queries (line IIII)E

In order to efficiently implement flow sampling, we use a hash-based tech-
nique called Flowwise sampling [I7]. This technique randomly samples entire
flows without caching the flow keys, which reduces significantly the processing
and memory requirements during the sampling process. To avoid bias in the
selection and deliberate sampling evasion, we randomly generate a new HS3 hash
function [I§] per query every measurement interval, which distributes the flows
uniformingly and unpredictably.

4.3 How Much Load to Shed

The magnitude of load shedding is determined by the maximum sampling rate
that keeps the CPU usage below the avail cycles threshold. Since the system
does not differentiate among queries, the sampling rate could be simply set to the
ratio ZZZZZ g;’cpllg; in all queries. This assumes that their CPU usage is proportional
to the size of the batch (in packets or flows, depending on whether packet or

flow sampling is used). However, the cost of a query can actually depend on

2 Note that using the same sampling rate for all queries does not differentiate among
them. See Section [A] for further discussion.
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several traffic features, or even on a feature different from the number of packets
or flows. In addition, there is no guarantee of keeping the CPU usage below the
avail cycles threshold, due to the error introduced by the prediction subsystem.

We deal with these limitations by maintaining an EWMA of the prediction
error (line 1) and correcting the sampling rate accordingly (line [@). Moreover,
we have to take into account the extra cycles that will be needed by the load
shedding subsystem (Is cycles), namely the sampling procedure (line [1]) and
the feature extraction (line [I2)), which must be repeated after sampling in order
to correctly update the MLR history. Thus, we also maintain an EWMA of the
cycles spent in previous time bins by the load shedding subsystem (line [[3)) and
subtract this value from avail cycles.

After applying the mentioned changes, the sampling rate is computed as
shown in Algorithm [ (line @). The EWMA weight « is set to 0.9 in order
to quickly react to changes. It is also important to note that if the prediction
error was zero in average, we could remove it from lines[§ and [@ because buffers
should be able to absorb such error. However, there is no guarantee of having a
mean of zero in the short term.

5 Evaluation and Operational Results

In this section we evaluate our load shedding system in a research ISP network.
We also assess the impact of sampling on the accuracy of the queries, and com-
pare the results of our predictive scheme to a system that uses instead a reactive
approach, discarding packets when the buffers become full. We do not present
here the accuracy of the prediction subsystem, which was already evaluated

in [7].

5.1 Testbed Scenario

Our testbed equipment consists of two single processor Pentium IV at 3 GH z,
both equipped with an Endace DAG 4.3GE card [I9]. Through a pair of optical
splitters, both computers receive an exact copy of one direction of a full-duplex
Gigabit Ethernet link that connects the Catalan RREN (Scientific Ring) to the
Spanish NREN (RedIRIS). The first PC is used to run the CoMo monitoring
system on-line, while the second one only collects a packet-level trace, which is
used as our reference to verify the accuracy of the results.

Throughout the evaluation, we present the results of two 8 hours-long execu-
tions (see Table [l and Figure [3(a)] for details). In the first one (load sheddingﬁ
we ran a modified version of CoMo that implements our load shedding scheme
while in the second execution (original como), we repeated the same experi-
ment, but using the original version of CoMo. The duration of the executions
was determined according to the amount of storage space available to collect the
packet-level traces (400 GB).

3 The source code of our load shedding system is publicly available at [http://
loadshedding.ccaba.upc.edu
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Table 1. Executions done in our experiments

Link load (Mbps)
mean/max,/min

load shedding 24/Oct /06 9:00-17:00 750.4/973.6/129.0

original como 25/0ct/06 9:00-17:00 719.9/967.5/218.0

Execution Date/Time

Table 2. Queries used in the experimental evaluation

Name Description

application Port-based application classification
counter Traffic load in packets and bytes
flows Per-flow counters

high-watermark High watermark of link utilization
pattern search  Finds sequences of bytes in the payload
top destinations List of the top-10 destination IPs

trace Full-payload collection

We have selected a set of seven queries that are part of the standard distri-
bution of CoMo (see Table IZI)H They present different resource usage profiles
(CPU, memory and disk bandwidth) for the same input traffic and use different
data structures to maintain their state (e.g., aggregated counters, hash tables,
sorted lists). Note that our method considers all queries as black boxes.

5.2 Performance Results

Figure @] presents the CPU usage during the load shedding execution, bro-
ken down by the three main tasks presented in Section H (i.e., como cycles,
query cycles and ps cycles + ls cycles). We also plot the cycles the system es-
timates as needed to process all incoming traffic (i.e., pred cycles). From the
figure, it is clear that the system is under severe stress because, during almost
all the execution, it needs more than twice the cycles available to run our seven
queries without loss. However, we can observe that our load shedding system is
able to keep the CPU usage consistently below the 3 GH z mark.

Figure confirms that, during the 8 hours, not a single packet was lost.
This indicates that predictions are accurate and the system is robust to overload.
In Figure[3(b)} we plot the Cumulative Distribution Function (CDF) of the CPU
usage per batch (i.e., the service time per batch). Recall that batches represent
100ms, resulting in 3 x 10® cycles available per batch. The figure shows that the
system is stable. As expected, sometimes the limit of available cycles is slightly
exceeded owing to the buffer discovery algorithm presented in Section Bl The
CDF also indicates good CPU usage, between 2.5 and 3 x 10® cycles, with a
probability around 90%.

4 The source code of the queries used in the evaluation is publicly available at
http://como.sourceforge.net
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Fig. 3. Performance of our load shedding system compared to the original CoMo

On the contrary, Figure shows that, for the original como execution,
the service time per batch is significantly larger than the arrival time of batches,
with a probability of exceeding the limit of available cycles greater than 30%.
Thus, this system is unstable and leads not only to drops of packets without
control, but even of entire batches. Figure shows the packets dropped by
the DAG cardE while Figurecertiﬁes that the probability of losing an entire
batch (i.e., service time of zero) is larger than 20%.

5.3 Accuracy Results

We modified the source code of the counter, flows and top destinations queries,
in order to allow them to estimate their unsampled output when load shedding

5 The values are a lower bound of the actual drops, because the loss counter present
in the DAG records is only 16-bit long.
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is performed. This modification was simply done multiplying the metrics they
compute by the inverse of the sampling rate applied to each batch.

We chose the counter and flows queries mainly to verify our implementation
of packet and flow sampling, respectively. In particular, we measured the relative
error in the number of packets, bytes and flows, defined as |1 — esﬁi’t’;‘iff);ﬁl&“e [,
where the actual value is obtained from the complete packet trace.

Conversely, the top destinations query was chosen to evaluate the impact
of our current load shedding mechanisms on a query that computes a metric
known to be statistically more complex and problematic [I7J20]. In this case, we
selected packet sampling as load shedding mechanism [20]. In order to objectively
measure the error, we used the detection performance metric proposed in [20],
which is defined as the number of misranked flow pairs, where the first element
of a pair is in the top-10 list returned by the query and the second one is outside
the actual top-10.

Table Bl presents the error in the results of these three queries averaged across
all the measurement intervals. We can observe that although our load shedding
system introduces a certain overhead, the error is kept significantly low compared
to the original version of CoMo. Large standard deviation values are due to long
periods of consecutive packet drops during the original como execution. It is
also worth noting that the error of the top destinations query obtained in the
load shedding execution is consistent with that of [20].

Table 3. Errors in the query results (mean %+ stdev)

Query original como load shedding
counter (packets) 55.03% +11.45 0.54% =£0.50
counter (bytes)  55.06% +11.45 0.66% +0.60
flows 38.48% +902.13 2.88% +3.34
top destinations  21.63 +31.94 1.41 £3.32

Figure shows the overhead introduced by our load shedding system
(ps cycles + s cycles) to the normal operation of the entire CoMo system. We
believe this overhead is reasonably low compared to the advantages of keeping
the CPU usage and the accuracy of the results well under control. The bulk of
the overhead, as discussed in [7], corresponds to the feature extraction phase,
which is entirely implemented using a family of memory-efficient algorithms that
could be directly built in hardware [2I]. Alternatively, this overhead could be
reduced significantly by applying sampling in this phase.

6 Conclusions and Future Work

In this paper, we presented a predictive load shedding scheme that operates
without explicit knowledge of the traffic queries and quickly reacts to overload
situations by gracefully degrading their accuracy via packet and flow sampling.



1118 P. Barlet-Ros et al.

We implemented our scheme in an existing monitoring system and evaluated its
performance and correctness in a research ISP network. We demonstrated the
robustness of our method through an 8 hours-long continuous execution, where
the system exhibited good CPU utilization without packet loss, even when it
was under severe stress. We also pointed out a significant gain in the accuracy
of the results compared to the original version of the same monitoring system.
We also identified several limitations of our current implementation that con-
stitute an important part of our immediate future work. First, our method does
not differentiate among queries. Hence, we are currently investigating the use of
different sampling rates for different queries according to per-query utility func-
tions, as proposed in [I3]. Second, there is a large set of imaginable queries that
are not able to correctly estimate their unsampled output from sampled streams.
For those queries, we plan to support many different load shedding mechanisms,
such as computing lightweight summaries of the input data streams [I4] and
more robust flow sampling techniques [22]. Declarative load shedding is also
part of our future work, which will allow the queries to specify their own load
shedding mechanisms. Finally, we are interested in applying similar techniques
to other system resources, such as memory, storage space and disk bandwidth.
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