
Load Shedding in Network Monitoring Applications

Pere Barlet-Ros?, Gianluca Iannaccone†, Josep Sanjuàs-Cuxart?,

Diego Amores-López?, Josep Solé-Pareta?

? Technical University of Catalonia (UPC)

Barcelona, Spain

† Intel Research

Berkeley, CA

Abstract

Monitoring and mining real-time network data streams is

crucial for managing and operating data networks. The

information that network operators desire to extract from

the network traffic is of different size, granularity and

accuracy depending on the measurement task (e.g., rel-

evant data for capacity planning and intrusion detection

are very different). To satisfy these different demands, a

new class of monitoring systems is emerging to handle

multiple arbitrary and continuous traffic queries. Such

systems must cope with the effects of overload situations

due to the large volumes, high data rates and bursty na-

ture of the network traffic.

In this paper, we present the design and evaluation of

a system that can shed excess load in the presence of

extreme traffic conditions, while maintaining the accu-

racy of the traffic queries within acceptable levels. The

main novelty of our approach is that it is able to oper-

ate without explicit knowledge of the traffic queries. In-

stead, it extracts a set of features from the traffic streams

to build an on-line predictionmodel of the query resource

requirements. This way the monitoring system preserves

a high degree of flexibility, increasing the range of appli-

cations and network scenarios where it can be used.

We implemented our scheme in an existing network

monitoring system and deployed it in a research ISP net-

work. Our results show that the system predicts the re-

sources required to run each traffic query with errors be-

low 5%, and that it can efficiently handle extreme load

situations, preventing uncontrolled packet losses, with

minimum impact on the accuracy of the queries’ results.

1 Introduction

Network monitoring applications that must extract a

large number of real-time metrics from many input

streams are becoming increasingly common. These in-

clude for example applications that correlate network

data from multiple sources (e.g., end-systems, access

points, switches) to identify anomalous behaviors, en-

able traffic engineering and capacity planning or manage

and troubleshoot the network infrastructure.

The main challenge in these systems is to keep up with

ever increasing input data rates and processing require-

ments. Data rates are driven by the increase in network

link speeds, application demands and the number of end-

hosts in the network. The processing requirements are

growing to satisfy the demands for fine grained and con-

tinuous analysis, tracking and inspection of network traf-

fic. This challenge is made even harder as network op-

erators expect the queries to return accurate enough re-

sults in the presence of extreme or anomalous traffic pat-

terns, when the system is under additional stress (and

the query results are most valuable!). The alternative of

over-provisioning the system to handle peak rates or any

possible traffic mix would be prohibitively expensive and

result in a highly underutilized system based on an ex-

tremely pessimistic estimation of workload.

Recently, several research proposals have addressed

this challenge [18, 22, 23, 8, 14]. The solutions intro-

duced belong to two broad categories. The first includes

approaches that consider a pre-defined set of metrics and

can report approximate results (within given accuracy

bounds) in the case of overload [18, 14]. The second cat-

egory includes solutions that define a declarative query

language with a small set of operators for which the re-

source usage is assumed to be known [22, 23, 8]. In

the presence of overload, operator-specific load shedding

techniques are implemented (e.g., selectively discard-

ing some records, computing approximate summaries) so

that the accuracy of the entire query is preserved within

certain bounds. These solutions present two common

limitations: (i) they restrict the types of metrics that can
be extracted from the traffic streams, limiting therefore

the possible uses and applications of these systems, and

(ii) they assume explicit knowledge of the cost and se-
lectivity of each operator, requiring a very careful and

2007 USENIX Annual Technical ConferenceUSENIX Association 59



time-consuming design and implementation phase for

each of them.

In this paper, we present a system that supports mul-

tiple arbitrary and continuous traffic queries on the in-

put streams. The system can handle overload situations

due to anomalous or extreme traffic mixes by gracefully

degrading the accuracy of the queries. The core of our

load shedding scheme consists of the real-time modeling

and prediction of the system resource usage that allows

the system to anticipate future bursts in the resource re-

quirements. The main novelty of our approach is that it

does not require explicit knowledge of the query or of

the types of computations it performs (e.g., flow classi-

fication, maintaining aggregate counters, string search).

This way we preserve the flexibility of the monitoring

system, enabling fast implementation and deployment of

new network monitoring applications.

Without any knowledge of the computations per-

formed on the packet streams, we infer their cost from

the relation between a large set of pre-defined “features”

of the input stream and the actual resource usage. A fea-

ture is a counter that describes a specific property of a

sequence of packets (e.g., number of unique source IP

addresses). The features we compute on the input stream

have the advantage of being lightweight with a determin-

istic worst case computational cost. Then, we automati-

cally identify those features that best model the resource

usage of each query and use them to predict the overall

load of the system. This short-term prediction is used to

guide the system on decidingwhen, where and howmuch

load to shed. In the presence of overload, the system can

apply several load shedding techniques, such as packet

sampling, flow sampling or computing summaries of the

data streams to reduce the amount of resources required

by the queries to run.

For simplicity, in this paper we focus only on one re-

source: the CPU cycles. Other system resources are also

critical (e.g., memory, disk bandwidth and disk space)

and we believe that approaches similar to what we pro-

pose here could be applied as well.

We have integrated our load shedding scheme into the

CoMo monitoring system [16] and deployed it on a re-

search ISP network, where the traffic load and query re-

quirements exceed by far the system capacity. We ran a

set of seven concurrent queries that range from maintain-

ing simple counters (e.g., number of packets, application

breakdown) to more complex data structures (e.g., per-

flow classification, ranking of most popular destinations

or pattern search).

Our results show that, with the load shedding mech-

anism in place, the system effectively handles extreme

load situations, while being always responsive and pre-

venting uncontrolled packet losses. The results also in-

dicate that a predictive approach can quickly adapt to

overload situations and keep the queries’ results within

acceptable error bounds, as compared to a reactive load

shedding strategy.

The remainder of this paper is structured as follows.

Section 2 presents in greater detail some related work.

Section 3 introduces the monitoring system and the set

of queries we use for our study. We describe our pre-

diction method in Section 4 and validate its performance

using real-world packet traces in Section 5. Section 6

presents a load shedding scheme based on our prediction

method. Finally, in Section 7 we evaluate our load shed-

ding scheme in a research ISP network, while Section 8

concludes the paper and introduces ideas for future work.

2 Related Work

The design of mechanisms to handle overload situations

is a classical problem in any real-time system design and

several previous works have proposed solutions in differ-

ent environments.

In the network monitoring space, NetFlow [9] is con-

sidered the state-of-the-art. In order to handle the large

volumes of data exported and to reduce the load on the

router it resorts to packet sampling. The sampling rate

must be defined at configuration time and network op-

erators tend to set it to a low “safe” value (e.g., 1/100

or 1/1000 packets) to handle unexpected traffic scenar-

ios. Adaptive NetFlow [14] allows routers to dynami-

cally tune the sampling rate to the memory consumption

in order to maximize the accuracy given a specific in-

coming traffic mix. Keys et al. [18] extend the approach

used in NetFlow by extracting and exporting a set of 12
traffic summaries that allow the system to answer a fixed

number of common questions asked by network oper-

ators. They deal with extreme traffic conditions using

adaptive sampling and memory-efficient counting algo-

rithms. Our work differs from these approaches in that

we are not limited to a fixed set of known traffic re-

ports, but instead we can handle arbitrary network traffic

queries, increasing the range of applications and network

scenarios where the monitoring system can be used.

Several research proposals in the stream database liter-

ature are also very relevant to our work. The Aurora sys-

tem [5] can process a large number of concurrent queries

that are built out of a small set of operators. In Aurora,

load shedding is achieved by inserting additional drop

operators in the data flow of each query [23]. In order to

find the proper location to insert the drop operators, [23]

assumes explicit knowledge of the cost and selectivity of

each operator in the data flow. In [7, 22], the authors pro-

pose a system that applies approximate query process-

ing techniques, instead of dropping records, to provide

approximate and delay-bounded answers in presence of

overload. On the contrary, in our context we have no ex-

2007 USENIX Annual Technical Conference USENIX Association60



plicit knowledge of the query and therefore we cannot

make any assumption on its cost or selectivity to know

when it is the right time to drop records. Regarding the

records to be dropped, we apply packet or flow sampling

to reduce the load on the system, but other summariza-

tion techniques are an important piece of future work.

In the Internet services space, SEDA [24] proposes an

architecture to develop highly concurrent server appli-

cations, built as networks of stages interconnected by

queues. SEDA implements a reactive load shedding

scheme by dropping incoming requests when an over-

load situation is detected (e.g., the response time of the

system exceeds a given threshold). In this work we use

instead a predictive approach to anticipate overload situ-

ations. We will show later how a predictive approach can

significantly reduce the impact of overload as compared

to a reactive one.

Finally, our system is based on extracting features

from the traffic streams with deterministic worst case

time bounds. Several solutions have been proposed in

the literature to this end. For example, counting the

number of distinct items in a stream has been addressed

in the past in [15, 1]. In this work we implement the

multi-resolution bitmap algorithms for counting flows

proposed in [15].

3 System Overview

The basic thesis behind this work is that the cost of main-

taining the data structures needed to execute a query can

be modeled by looking at a set of traffic features that

characterizes the input data. The intuition behind this

thesis comes from the empirical observation that each

query incurs a different overhead when performing basic

operations on the state it maintains while processing the

input packet stream (e.g., creating new entries, updating

existing ones or looking for a valid match). We observed

that the time spent by a query is mostly dominated by the

overhead of some of these operations and therefore can

be modeled by considering the right set of simple traffic

features.

A traffic feature is a counter that describes a property

of a sequence of packets. For example, potential features

could be the number of packets or bytes in the sequence,

the number of unique source IP addresses, etc. In this

paper we will select a large set of simple features that

have the same underlying property: deterministic worst

case computational complexity.

Once a large number of features is efficiently extracted

from the traffic stream, the challenge is in identifying the

right ones that can be used to accurately model and pre-

dict the query’s CPU usage. Figure 1 illustrates a very

simple example. The figure shows the time series of

the CPU cycles consumed by an “unknown” query (top

0 10 20 30 40 50 60 70 80 90 100
0

2

4

x 10
6

C
P

U
c
y
c
le

s

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

P
a
c
k
e
ts

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

x 10
5

B
y
te

s

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

Time (s)

5
−

tu
p
le

fl
o
w

s

Figure 1: CPU usage of an “unknown” query in the pres-

ence of an artificially generated anomaly compared to the

number of packets, bytes and flows

graph) when running over a 100s snapshot of our dataset

(described in Section 5.1), where we inserted an artifi-

cially generated anomaly. The three bottom plots show

three possible features over time: the number of pack-

ets, bytes and flows (defined by the classical 5-tuple:

source and destination addresses, source and destination

port numbers and protocol number). It is clear from the

figure that the bottom plot would give us more useful in-

formation to predict the CPU usage over time for this

query. It is also easy to infer that the query is performing

some sort of per-flow classification, hence the higher cost

when the number of flows increases, despite the volume

of packets and bytes remains fairly stable.

We designed a method that automatically selects the

most relevant feature(s) from small sequences of packets

and uses them to accurately predict the CPU usage of ar-

bitrary queries. This fine-grained and short-term predic-

tion is then used to quickly adapt to overload situations

by sampling the input streams.

3.1 Monitoring Platform

We chose the CoMo platform [16] to develop and eval-

uate our resource usage prediction and load shedding

methods. CoMo is an open-source passive monitoring

system that allows for fast implementation and deploy-

ment of network monitoring applications. CoMo follows

a modular approach where users can easily define traffic

queries as plug-in modules written in C, making use of

a feature-rich API provided by the core platform. Users

are also required to specify a simple stateless filter to be

applied on the incoming packet stream (it could be all the

packets) as well as the granularity of the measurements,

hereafter called measurement interval (i.e., the time in-

terval that will be used to report continuous query re-

sults). All complex stateful computations are contained

2007 USENIX Annual Technical ConferenceUSENIX Association 61



Figure 2: Prediction and load shedding subsystem

within the plug-in module code. This approach allows

users to define traffic queries that otherwise could not

be easily expressed using common declarative languages

(e.g., SQL). More details about the CoMo platform can

be found in [16].

In order to provide the user with maximum flexibility

when writing queries, CoMo does not restrict the type

of computations that a plug-in module can perform. As

a consequence, the platform does not have any explicit

knowledge of the data structures used by the plug-in

modules or the cost of maintaining them. Therefore, any

load sheddingmechanism for such a systemmust operate

only with external observations of the CPU requirements

of the modules – and these are not known in advance but

only after a packet has been processed.

Figure 2 shows the components and the data flow in

the system. The prediction and load shedding subsys-

tem (in gray) intercepts the packets from the filter be-

fore they are sent to the plug-in module implementing the

traffic query. The system operates in four phases. First,

it groups each 100ms of traffic in a “batch” of pack-

ets1. Each batch is then processed to extract a large pre-

defined set of traffic features (Section 4.1). The feature

selection subsystem is in charge of selecting the most

relevant features according to the recent history of the

query’s CPU usage (Section 4.3). This phase is impor-

tant to reduce the cost of the prediction algorithm, be-

cause it allows the system to discard beforehand the fea-

tures regarded as useless for prediction purposes. This

subset of relevant features is then given as input to the

multiple linear regression subsystem to predict the CPU

cycles required by the query to process the entire batch

(Section 4.2). If the prediction exceeds the system capac-

ity, the load shedding subsystem pre-processes the batch

to discard (via packet or flow sampling) a portion of the

packets (Section 6). Finally, the actual CPU usage is

computed and fed back to the prediction subsystem to

close the loop (Section 4.4).

3.2 Queries

Despite the fact that the actual metric computed by the

query is not relevant for our work – our system considers

all queries as black boxes – we are interested in consid-

ering a wide range of queries when performing the eval-

Name Description

application Port-based application classification

flows Per-flow counters

high-watermark High watermark of link utilization

link-count Traffic load

pattern search Identifies sequences of bytes in the payload

top destinations Per-flow counters for the top-10 destination IPs

trace Full-payload collection

Table 1: Queries used in the experimental evaluation

uation. We have selected the set of queries that are part

of the standard distribution of CoMo2. Table 1 provides

a brief summary of the queries. We believe that these

queries form a representative set of typical uses of a real-

time network monitoring system. They present different

CPU usage profiles for the same input traffic and use dif-

ferent data structures to maintain their state (e.g., aggre-

gated counters, arrays, hash tables, linked lists).

4 Prediction Methodology

In this section we describe in detail the three phases that

our system executes to perform the prediction (i.e., fea-

ture extraction, feature selection and multiple linear re-

gression) and how the resource usage is monitored. The

only informationwe require from the continuous query is

the measurement interval of the results. Avoiding the use

of additional information increases the range of applica-

tions where this approach can be used and also reduces

the likelihood of compromising the system by providing

incorrect information about a query.

4.1 Feature Extraction

We are interested in finding a set of traffic features that

are simple and inexpensive to compute, while helpful to

characterize the CPU usage of a wide range of queries. A

feature that is too specific may allow us to predict a given

query with great accuracy, but could have a cost compa-

rable to directly answering the query (e.g., counting the

packets that contain a given pattern to predict the cost

of signature-based IDS-like queries). Our goal is there-

fore to find features that may not explain in detail the en-

tire cost of a query, but can provide enough information

about the aspects that dominate the processing cost. For

instance, in the previous example of a signature-based

IDS query, the cost of matching a string will mainly de-

pend on the number of collected bytes.

In addition to the number of packets and bytes, we

maintain four counters per traffic aggregate that are up-

dated every time a batch is received. A traffic aggre-

gate considers one or more of the TCP/IP header fields:

source and destination IP addresses, source and destina-

tion port numbers and protocol number. The four coun-

2007 USENIX Annual Technical Conference USENIX Association62



No. Traffic aggregate

1 src-ip

2 dst-ip

3 protocol

4 <src-ip, dst-ip>

5 <src-port, proto>

6 <dst-port, proto>

7 <src-ip, src-port, proto>

8 <dst-ip, dst-port, proto>

9 <src-port, dst-port, proto>

10 <src-ip, dst-ip, src-port, dst-port, proto>

Table 2: Set of traffic aggregates (built from combina-

tions of TCP/IP header fields) used by the prediction

ters we monitor per aggregate are: (i) the number of
unique items in the batch; (ii) the number of new items
compared to all items seen in a measurement interval;

(iii) the number of repeated items in the batch (i.e., items
in the batch minus unique) and (iv) the number of re-
peated items compared to all items in a measurement in-

terval (i.e., items in the batch minus new).

For example, we may aggregate packets based on the

source IP address and source port number, and then count

the number of unique, new and repeated source IP ad-

dress and source port pairs. Table 2 shows the combi-

nations of the five header fields considered in this work.

Although we do not evaluate other choices here, we note

that other aggregates may also be useful (e.g., source IP

prefixes or other combinations of the 5 header fields).

Adding new traffic features (e.g., payload-related fea-

tures) as well as considering other combinations of the

existing ones is an important part of our future work.

This large set of features (four counters per traffic ag-

gregate plus the total packet and byte counts, i.e., 42 in

our experiments) helps narrow down which basic opera-

tions performed by the queries dominate their processing

costs (e.g., creating a new entry, updating an existing one

or looking up entries). For example, the new items are

relevant to predict the CPU requirements of those queries

that spend most time creating entries in the data struc-

tures, while the repeated items feature may be relevant to

queries where the cost of updating the data structures is

much higher than the cost of creating entries.

In order to extract the features with minimum over-

head, we implement the multi-resolution bitmap algo-

rithms proposed in [15]. The advantage of the multi-

resolution bitmaps is that they bound the number of

memory accesses per packet as compared to classical

hash tables and they can handle a large number of items

with good accuracy and smaller memory footprint than

linear counting [25] or bloom filters [4]. We dimension

the multi-resolution bitmaps to obtain counting errors

around 1% given the link speeds in our testbed.

1800 2000 2200 2400 2600 2800 3000
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

6

packets/batch

C
P

U
c
y
c
le

s

new_5tuple_flows < 500

500 ≤ new_5tuple_flows < 700

700 ≤ new_5tuple_flows < 1000

new_5tuple_flows ≥ 1000

Figure 3: Scatter plot of the CPU usage versus the num-

ber of packets in the batch (flows query)

4.2 Multiple Linear Regression

Regression analysis is a widely applied technique to

study the relationship between a response variable Y and

one or more predictor variables X1, X2, . . . , Xp. The

linear regression model assumes that the response vari-

able Y is a linear function of the p Xi predictor vari-

ables3. The fact that this relationship exists can be ex-

ploited for predicting the expected value of Y (i.e., the

CPU usage) when the values of the p predictor variables

(i.e., the individual features) are known.

When only one predictor variable is used, the regres-

sion model is often referred to as simple linear regres-

sion (SLR). Using just one predictor has two major draw-

backs. First, there is no single predictor that yields good

performance for all queries. For example, the CPU usage

of the link-count query can be well modeled by looking

at the number of packets in the batch, while the trace

query would be better modeled by the number of bytes.

Second, the CPU usage of more complex queries may

depend on more than a single feature. To illustrate this

latter point, we plot in Figure 3 the CPU usage for the

flows query versus the number of packets in the batch.

As we can observe, there are several underlying trends

that depend both on the number of packets and on the

number of new 5-tuples in the batch. This behavior is

due to the particular implementation of the flows query

that maintains a hash table to keep track of the flows and

expires them at the end of each measurement interval.

Multiple linear regression (MLR) extends the simple

linear regression model to several predictor variables.

The general form of a linear regression model for p pre-

dictor variables can be written as follows [10]:

Yi = β0 + β1X1i + β2X2i + . . .

· · · + βpXpi + εi, i = 1, 2, . . . , n.
(1)

In fact, Equation 1 corresponds to a system of equations

2007 USENIX Annual Technical ConferenceUSENIX Association 63



that in matrix notation can be written as:

Y = Xβ + ε (2)

where Y is a n × 1 column vector of the response vari-
able observations (i.e., the CPU usage of the previous

n batches processed by the query); X is a n × (p + 1)
matrix resulting from n observations of the p predictor

variables X1, . . . , Xp (i.e., the values of the p features

extracted from the previous n batches) with a first col-

umn of 1’s that represents the intercept term β0; β is

a (p + 1) × 1 column vector of unknown parameters
β0, β1, . . . , βp (β1, . . . , βp are referred to as the regres-

sion coefficients or weights); and ε is a n × 1 column
vector of n residuals εi.

The estimators b of the regression coefficients β are

obtained by the Ordinary Least Squares (OLS) proce-

dure, which consists of choosing the values of the un-

known parameters b0, . . . , bp in such a way that the sum

of squares of the residuals is minimized. In our im-

plementation, we use the singular value decomposition

(SVD) method [21] to compute the OLS. Although SVD

is more expensive than other methods, it is able to obtain

the best approximation, in the least-squares sense, in the

case of an over- or underdetermined system.

The statistical properties of the OLS estimators lie on

some assumptions that must be fulfilled [10, pp. 216]:

(i) the rank ofX is p+1 and is less than n, i.e., there are

no exact linear relationships among the X variables (no

multicollinearity); (ii) the variable εi is normally dis-

tributed and the expected value of the vector ε is zero;

(iii) there is no correlation between the residuals and
they exhibit constant variance; (iv) the covariance be-
tween the predictors and the residuals is zero. In Sec-

tion 4.3 we present a technique that makes sure the first

assumption is valid. We have also verified experimen-

tally using the packet traces of our dataset that the other

assumptions hold but in the interest of space we will not

show the results here.

4.3 Feature Selection

Since we assume arbitrary queries, we cannot know in

advance which features should be used as predictors in

the MLR for each query. Including all the extracted traf-

fic features in the regression has several drawbacks: (i)
the cost of the linear regression increases quadratically

with the number of predictors, much faster than the gain

in terms of accuracy (irrelevant predictors); (ii) even in-
cluding all possible predictors, there would still be a cer-

tain amount of randomness that cannot be explained by

any predictor; (iii) predictors that are linear functions of
other predictors (redundant predictors) invalidate the no

multicollinearity assumption4.

It is therefore important to identify a small subset of

features to be used as predictors. In order to support ar-

bitrary queries, we need to define a generic feature selec-

tion algorithm. We would also like our method to be ca-

pable of dynamically selecting different sets of features

if the traffic conditions change during the execution, and

the current prediction model becomes obsolete.

Most of the algorithms proposed in the literature are

based on a sequential variable selection procedure [10].

However, they are usually too expensive to be used in a

real-time system. For this reason, we decided to use a

variant of the Fast Correlation-Based Filter (FCBF) [26],

which can effectively remove both irrelevant and redun-

dant features and is computationally very efficient. Our

variant differs from the original FCBF algorithm in that

we use the linear correlation coefficient as a predictor

goodness measure, instead of the symmetrical uncer-

tainty measure used in [26].

The algorithm consists of two main phases. First, the

linear correlation coefficient between each predictor and

the response variable is computed and the predictorswith

a coefficient below a pre-definedFCBF threshold are dis-

carded as not relevant. In Section 5.2 we will address

the problem of choosing the appropriate FCBF thresh-

old. Second, the predictors that are left after the first

phase are ranked according to their coefficient values and

processed iteratively to discard redundant predictors (i.e.,

predictors that have a mutual strong correlation), as de-

scribed in [3]. The overall complexity of the FCBF is

O(np log p), where n is the number of observations and
p the number of predictors [26].

4.4 Measurement of System Resources

Fine grained measurement of CPU usage is not an easy

task. The mechanisms provided by the operating sys-

tem do not offer enough resolution for our purposes,

while processor performance profiling tools [17] impose

a large overhead and are not a viable permanent solution.

In this work, we use instead the time-stamp counter

(TSC) to measure the CPU usage, which is a 64-bit

counter incremented by the processor every clock cy-

cle [17]. In particular, we read the TSC before and after

a batch is processed by a query. The difference between

these two values corresponds to the number of CPU cy-

cles used by the query to process the batch.

The CPU usage measurements that are fed back to the

prediction system should be accurate and free of external

noise to reduce the errors in the prediction. However, we

empirically detected that measuring CPU usage at very

small timescales incurs in several sources of noise:

Instruction reordering. The processor can reorder in-

structions at run time in order to improve performance.

2007 USENIX Annual Technical Conference USENIX Association64



In practice, the rdtsc instruction used to read the TSC

counter is often reordered, since it simply consists of

reading a register and it has no dependencies with other

instructions. To avoid the effects of reordering, we ex-

ecute a serializing instruction (e.g., cpuid) before and

after our measurements [17]. Since the use of serializ-

ing instructions can have a severe impact on the system

performance, we only take two TSC readings per query

and batch, and we do not take any partial measurements

during the execution of the query.

Context switches. The operating system may decide to

schedule out the query process between two consecutive

readings of the TSC. In that case, we would be measuring

not only cycles belonging to the query, but also cycles of

the process (or processes) that are preempting the query.

In order to avoid degrading the accuracy of future pre-

dictions when a context switch happens during a mea-

surement, we discard those observations from the history

and replace them with our prediction. To measure con-

text switches, we monitor the rusage process structure in

the Linux kernel.

Disk accesses. Disk accesses can interfere with the CPU

cycles needed to process a query. In CoMo, a separate

process is responsible for scheduling disk accesses to

read and write query results. In practice, since disk trans-

fers are done asynchronously by DMA,memory accesses

of queries have to compete for the system bus with disk

transfers. For the interested reader we show the limited

impact of disk accesses on the prediction accuracy in [3].

It is important to note that all the sources of noise we

detected so far are independent from the input traffic.

Therefore, they cannot be exploited by a malicious user

trying to introduce errors in our CPU measurements to

attack the monitoring system.

5 Validation

In this section we show the performance of our predic-

tion method on real-world traffic traces. In order to un-

derstand the impact of each parameter, we study the pre-

diction subsystem in isolation from the sources of mea-

surement noise identified in Section 4.4. We disabled the

disk accesses in the CoMo process responsible for stor-

age operations to avoid competition for the system bus.

In Section 7, we will evaluate our method in a fully op-

erational system.

To measure the performance of our method we con-

sider the relative error in the CPU usage prediction while

executing the seven queries defined in Table 1 over the

traces in our dataset. The relative error is defined as the

absolute value of one minus the ratio of the prediction

and the actual number of CPU cycles spent by the queries

Trace name Date Time
Pkts Link load (Mbps)

(M) mean/max/min

w/o payloads 02/Nov/05 4:30pm-5pm 103.7 360.5/483.3/197.3
with payloads 11/Apr/06 8am-8:30am 49.4 133.0/212.2/096.1

Table 3: Traces used in the validation

over each batch. A more detailed performance analysis

can be found in [3].

5.1 Dataset

We collected two 30-minute traces from one direction of

the Gigabit Ethernet link that connects the Catalan Re-

search and Education Network (Scientific Ring) to the

global Internet via its Spanish counterpart (RedIRIS).

The Scientific Ring is managed by the Supercomput-

ing Center of Catalonia (CESCA) and connects more

than fifty Catalan universities and research centers us-

ing many different technologies that range from ADSL

to Gigabit Ethernet [19]. A trace collected at this capture

point is publicly available in the NLANR repository [20].

The first trace contains only packet headers, while the

second one includes the entire packet payloads instead.

Details of the traces are presented in Table 3.

5.2 Prediction Parameters

In our system, two configuration parameters impact the

cost and accuracy of the predictions: the number of ob-

servations (i.e., n or the “history” of the system) and the

FCBF threshold used to select the relevant features.

Number of observations. Figure 4 shows the average

cost of computing the MLR versus the prediction ac-

curacy over multiple executions, with values of history

ranging from 1s to 100s (i.e., 10 to 1000 batches). As

we can see, the cost grows linearly with the amount of

history, since every additional observation translates into

a new equation in the system in (2). The relative error

between the prediction and the actual number of CPU

cycles spent by the queries stabilizes around 1.2% for
histories longer than 6 seconds. Larger errors for very
small amounts of history (e.g., 1s) are due to the fact that

the number of predictors (i.e., p = 42) is larger than the
amount of history (i.e., n = 10 batches) and thus the no
multicollinearity assumption is not met. We also checked

that histories longer than 100s do not improve the accu-

racy, because events that are not modeled by the traffic

features are probably contributing to the error. Moreover,

a longer history makes the prediction model less respon-

sive to sudden changes in the traffic that may change the

behavior of a query. In the rest of the paper we use a

number of observations equal to 60 batches (i.e., 6s).

2007 USENIX Annual Technical ConferenceUSENIX Association 65



0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

R
e

la
ti
v
e

e
rr

o
r

History (s)

MLR error vs. cost (100 executions)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
x 10

8

C
o

s
t

(C
P

U
c
y
c
le

s
)

average error

average cost

Figure 4: Prediction error versus cost as a function of the

amount of history used to compute the MLR

FCBF threshold. The FCBF threshold determines

which traffic features are relevant and not redundant in

modeling the response variable. Figure 5 presents the

prediction cost and accuracy as functions of the FCBF

threshold over multiple executions in our testbed, with

threshold values ranging from 0 (i.e., all features are con-
sidered relevant but the redundant ones are not selected)

to 0.9 (i.e., most features are not selected). The predic-
tion cost includes both the cost of the selection algorithm

and the cost of computing theMLRwith the selected fea-

tures. Comparing this graph with Figure 4, we can see

that using FCBF reduces the overall cost of the predic-

tion by more than an order of magnitude while maintain-

ing similar accuracy.

As the threshold increases, less predictors are selected,

and this turns into a decrease in the CPU cycles needed

to run the MLR. However, the error remains fairly close

to the minimum value obtained when all features are se-

lected, and starts to ramp up only for relatively large val-

ues of the threshold (around 0.6). Very large values of
the threshold (above 0.8) experience a much faster in-
crease in the error compared to the decrease in the cost.

In the rest of the paper we use a value of 0.6 for the FCBF
threshold that achieves a good trade-off between predic-

tion cost and accuracy.

5.3 Prediction Accuracy

In order to evaluate the performance of our method we

ran the seven queries of Table 1 over the two traces in

our dataset. Figures 6 and 7 show the time series of the

average and maximum error over five executions when

running on the packet trace with and without payloads,

respectively.

The average error in both cases is consistently below

2%, while the maximum error peaks around 10%. These
larger errors are due to external system events unrelated

to the traffic that cause a spike in the CPU usage (e.g.,

cache misses) or due to a sudden change in the traffic

patterns that is not appropriately modeled by the features

that the prediction is using at that time. However, the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.005

0.01

0.015

0.02

0.025

0.03

R
e

la
ti
v
e

e
rr

o
r

FCBF threshold

FCBF error vs. cost (100 executions)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

x 10
5

C
o

s
t

(C
P

U
c
y
c
le

s
)

average error

average cost

Figure 5: Prediction error versus cost as a function of the

Fast Correlation-Based Filter threshold

time series shows that our method is able to converge

very quickly. The trace without payloads (Figure 7) ex-

hibits better performance, with average errors that drop

well below 1%.
In Table 4, we show the breakdown of the prediction

errors by query. The average error is very low for each

query, with a relatively small standard deviation indicat-

ing compact distributions for the prediction errors. As

expected, queries that make use of more complex data

structures (e.g., flows, pattern search and top destina-

tions) incur in the larger errors, but still at most around

3% on average.

It is also very interesting to look at the features that the

selection algorithm identifies as most relevant for each

query. Remember that the selection algorithm has no in-

formation about what computations the queries perform

nor what type of packet traces they are processing. The

selected features give hints on what a query is actually

doing and how it is implemented. For example, the num-

ber of bytes is the predominant traffic feature for the pat-

tern search and trace queries when running on the trace

with payloads. However, when processing the trace with

just packet headers, the number of packets becomes the

most relevant feature for these queries, as expected.

5.4 Prediction Cost

To understand the cost of running the prediction, we

compare the CPU cycles of the prediction subsystem to

those spent by the entire CoMo system over 5 execu-

tions. The feature extraction phase constitutes the bulk

of the processing cost, with an overhead of 9.07%. The

overhead introduced by the feature selection algorithm is

only around 1.70% and the MLR imposes an even lower
overhead (0.20%), mainly due to the fact that, when us-
ing the FCBF, the number of predictors is significantly

reduced and thus there is a smaller number of variables

to estimate. The use of the FCBF allows to increase

the number of features without affecting the cost of the

MLR. Finally, the total overhead imposed by our predic-

tion method is 10.97%

2007 USENIX Annual Technical Conference USENIX Association66



0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

0.15

0.2

Time (s)

R
e

la
ti
v
e

e
rr

o
r

Prediction error (5 executions − 7 queries)

average error: 0.012364
max error: 0.13867

average

max

Figure 6: Prediction error over time (trace with payloads)

Trace with payloads

Query Mean Stdev Selected features

application 0.0110 0.0095 packets, bytes

flows 0.0319 0.0302 new dst-ip, dst-port, proto

high-watermark 0.0064 0.0077 packets

link-count 0.0048 0.0066 packets

pattern search 0.0198 0.0169 bytes

top destinations 0.0169 0.0267 packets

trace 0.0090 0.0137 bytes, packets

Trace without payloads

Query Mean Stdev Selected features

application 0.0068 0.0060 repeated 5-tuple, packets

flows 0.0252 0.0203 new dst-ip, dst-port, proto

high-watermark 0.0059 0.0063 packets

link-count 0.0046 0.0053 packets

pattern search 0.0098 0.0093 packets

top destinations 0.0136 0.0183 new 5-tuple, packets

trace 0.0092 0.0132 packets

Table 4: Breakdown of prediction error and selected fea-

tures by query (5 executions)

6 Load Shedding

In this section, we provide the answers to the three fun-

damental questions any load shedding scheme needs to

address: (i) when to shed load (i.e., which batch), (ii)
where to shed load (i.e., which query) and (iii) how
much load to shed (e.g., the sampling rate to apply).

Algorithm 1 presents our load shedding scheme in de-

tail, which controls the Prediction and Load Shedding

subsystem of Figure 2. It is executed at each time bin

(i.e., 0.1s in our current implementation) right after ev-

ery batch arrival, as described in Section 3.1. This way,

the system can quickly adapt to changes in the traffic pat-

terns by selecting a different set of features if the current

prediction model becomes obsolete.

6.1 When to Shed Load

To decide when to shed load the system maintains a

threshold (avail cycles) that accounts for the amount

of cycles available in a time bin to process the

queries. Since batch arrivals are periodic, this thresh-

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.05

0.1

0.15

0.2

Time (s)

R
e

la
ti
v
e

e
rr

o
r

Prediction error (5 executions − 7 queries)

average error: 0.0065407
max error: 0.19061

average

max

Figure 7: Prediction error over time (trace w/o payloads)

old can be dynamically computed as (time bin ×
CPUfrequency)− overhead, where overhead stands

for the cycles needed by our prediction subsystem

(ps cycles), plus those spent by other CoMo tasks

(como cycles), but not directly related to query process-

ing (e.g., packet collection, disk and memory manage-

ment). The overhead is measured using the TSC, as de-

scribed in Section 4.4. When the predicted cycles for all

queries (pred cycles) exceed the avail cycles threshold,

excess load needs to be shed.

We observed that, for certain time bins, como cycles

is greater than the available cycles, due to CoMo imple-

mentation issues (i.e., other CoMo tasks can occasionally

consume all available cycles). This would force the sys-

tem to discard entire batches, impacting on the accuracy

of the prediction and query results. However, this situ-

ation can be minimized due to the presence of buffers

(e.g., in the capture devices) that allow the system to

use more cycles than those available in a single time bin.

That is, the system can be delayed in respect to real-time

operation as long as it is stable in the steady state.

We use an algorithm, inspired by TCP slow-start, to

dynamically discover by howmuch the system can safely

(i.e., without loss) exceed the avail cycles threshold.

The algorithm continuously monitors the system delay

(delay), defined as the difference between the cycles ac-

tually used and those available in a time bin, and main-

tains a threshold (rtthresh) that controls the amount of

cycles the system can be delayed without loss. rtthresh

is initially set to zero and increases whenever queries use

less cycles than available. If at some point the occupation

of the buffers exceeds a predefined value (i.e., the sys-

tem is turning unstable), rtthresh is reset to zero, and

a second threshold (initialized to ∞) is set to rtthresh
2 .

rtthresh grows exponentially while below this thresh-

old, and linearly once it is exceeded.

This technique has two main advantages. First, it is

able to operate without explicit knowledge of the max-

imum rate of the input streams. Second, it allows the

system to quickly react to changes in the traffic.

Algorithm 1 (line 7) shows how the avail cycles

threshold is modified to consider the presence of buffers.

2007 USENIX Annual Technical ConferenceUSENIX Association 67



Algorithm 1: Load shedding algorithm

Input: Q: Set of qi queries

bi: Batch to be processed by qi after filtering

como cycles: CoMo overhead cycles

rtthresh, delay: Buffer discovery parameters

srate = 1;1

pred cycles = 0;2

foreach qi in Q do3

fi = feature extraction(bi);4

si = feature selection(fi, hi);5

pred cycles += mlr(fi, si, hi);6

avail cycles = (time bin × CPU frequency) -7

(como cycles + ps cycles) + (rtthresh - delay);

if avail cycles < pred cycles× (1 + êrror) then8

srate = max(0, avail cycles− ̂ls cycles)
pred cycles×(1+êrror)

;9

foreach qi in Q do10

bi = sampling(bi, qi, srate);11

fi = feature extraction(bi);12

̂ls cycles=α×
∑

i ls cyclesi+(1−α)× ̂ls cycles;13

foreach qi in Q do14

query cyclesi = run query(bi, qi, srate);15

hi = update mlr history(hi, fi,16

query cyclesi);

êrror=α×
∣

∣

∣
1− pred cycles

P

i
query cyclesi

∣

∣

∣
+(1−α)× êrror;17

Note that, at this point, delay is never less than zero, be-

cause if the system used less cycles than the available in

a previous time bin, they would be lost anyway waiting

for the next batch to become available.

Finally, as we further discuss in Section 6.3, we multi-

ply the pred cycles by 1+ êrror in line 8, as a safeguard

against prediction errors, where êrror is an Exponential

Weighted Moving Average (EWMA) of the actual pre-

diction error measured in previous time bins (computed

as shown in line 17).

6.2 Where and How to Shed Load

Our approach to shed excess load consists of adaptively

reducing the volume of data to be processed by the

queries (i.e., the size of the batch).

There are several data reduction techniques that can

be used for this purpose (e.g., filtering, aggregation and

sampling). In our current implementation, we support

uniform packet and flow sampling, and let each query

select at configuration time the option that yields the best

results. In case of overload, the same sampling rate is

applied to all queries (line 11).

In order to efficiently implement flow sampling,

we use a hash-based technique called Flowwise sam-

pling [11]. This technique randomly samples entire flows

without caching the flow keys, which reduces signifi-

cantly the processing and memory requirements during

the sampling process. To avoid bias in the selection

and deliberate sampling evasion, we randomly generate

a new H3 hash function [6] per query every measure-

ment interval, which distributes the flows uniformingly

and unpredictably. The hash function is applied on a

packet basis and maps the 5-tuple flow ID to a value dis-

tributed in the range [0, 1). A packet is then selected only

if its hash value is less or equal to the sampling rate.

Note that our current implementation based on traf-

fic sampling has two main limitations. First, using an

overall sampling rate for all queries does not differenti-

ate among them. Hence, we are currently investigating

the use of different sampling rates for different queries

according to per-query utility functions in order to maxi-

mize the overall utility of the system, as proposed in [23].

Second, there is a large set of imaginable queries that

are not able to correctly estimate their unsampled out-

put from sampled streams. For those queries, we plan

to support many different load shedding mechanisms,

such as computing lightweight summaries of the input

data streams [22] and more robust flow sampling tech-

niques [12].

6.3 How Much Load to Shed

The amount of load to be shed is determined by the max-

imum sampling rate that keeps the CPU usage below the

avail cycles threshold.

Since the system does not differentiate among queries,

the sampling rate could be simply set to the ratio
avail cycles

pred cycles
in all queries. This assumes that their CPU

usage is proportional to the size of the batch (in packets

or flows, depending on whether packet or flow sampling

is used). However, the cost of a query can actually de-

pend on several traffic features, or even on a feature dif-

ferent from the number of packets or flows. In addition,

there is no guarantee of keeping the CPU usage below

the avail cycles threshold, due to the error introduced

by the prediction subsystem.

We deal with these limitations by maintaining an

EWMA of the prediction error (line 17) and correct-

ing the sampling rate accordingly (line 9). Moreover,

we have to take into account the extra cycles that will

be needed by the load shedding subsystem (ls cycles),

namely the sampling procedure (line 11) and the fea-

ture extraction (line 12), which must be repeated after

sampling in order to correctly update the MLR history.

Hence, we also maintain an EWMA of the cycles spent

in previous time bins by the load shedding subsystem

(line 13) and subtract this value from avail cycles.

After applying the mentioned changes, the sampling

2007 USENIX Annual Technical Conference USENIX Association68



Execution Date Time
Link load (Mbps)

mean/max/min

predictive 24/Oct/06 9am:5pm 750.4/973.6/129.0
original 25/Oct/06 9am:5pm 719.9/967.5/218.0
reactive 05/Dec/06 9am:5pm 403.3/771.6/131.0

Table 5: Characteristics of the network traffic during the

evaluation of each load shedding method

rate is computed as shown in Algorithm 1 (line 9). The

EWMA weight α is set to 0.9 in order to quickly react to

changes. It is also important to note that if the prediction

error had a zero mean, we could remove it from lines 8

and 9, because buffers should be able to absorb such er-

ror. However, there is no guarantee of having a mean of

zero in the short term.

7 Evaluation and Operational Results

We evaluate our load shedding system in a research ISP

network, where the traffic load and query requirements

exceed by far the capacity of the monitoring system. We

also assess the impact of sampling on the accuracy of the

queries, and compare the results of our predictive scheme

to two alternative systems. Finally, we present the over-

head introduced by the load shedding procedure and dis-

cuss possible alternatives to reduce it further.

7.1 Testbed Scenario

Our testbed equipment consists of two PCs with an In-

tel® Pentium™ 4 running at 3 GHz, both equipped with

an Endace® DAG 4.3GE card [13]. Through a pair of

optical splitters, both computers receive an exact copy

of the link described in Section 5.1, which connects the

Catalan Research and Education Network to the Inter-

net. The first PC is used to run the CoMo monitoring

system on-line, while the second one collects a packet-

level trace (without loss), which is used as our reference

to verify the accuracy of the results.

Throughout the evaluation, we present the results of

three 8 hours-long executions (see Table 5 for details).

In the first one (predictive), we run a modified version

of CoMo that implements our load shedding scheme5,

while in the other two executions we repeat the same ex-

periment, but using a version of CoMo that implements

two alternative load shedding approaches described be-

low. The duration of the executions was constrained

by the amount of storage space available to collect the

packet-level traces (600 GB) and the size of the DAG

buffer was configured to 256 MB.

0 2 4 6 8 10 12 14 16

x 10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU usage [cycles/batch]

F
(C

P
U

u
s
a

g
e

)

CPU cycles per batch

Predictive

Original

Reactive

Figure 8: Cumulative Distribution Function of the CPU

usage per batch

7.2 Alternative Approaches

The first alternative (original) consists of the current

version of CoMo, which discards packets from the input

buffers in the presence of overload. In our case, over-

load situations are detected when the occupation of the

capture buffers exceeds a pre-defined threshold.

For the second alternative (reactive), we imple-

mented a more complex reactive method that makes use

of packet and flow sampling. This system is equivalent

to a predictive one, where the prediction for a time bin

is always equal to the cycles used to process the previ-

ous batch. This strategy is similar to the one used in

SEDA [24]. In particular, we measure the cycles avail-

able in each time bin, as described in Section 6.1, and

when the cycles actually used to process a batch exceed

this limit, sampling is applied to the next time bin. The

sampling rate for the time bin t is computed as:

sratet=min
“

1, max
“

α, sratet−1×
avail cyclest−delay

consumed cyclest−1

””

(3)

where consumed cyclest−1 stands for the cycles used

in the previous time bin, delay is the amount of cycles

by which avail cyclest−1 was exceeded, and α is the

minimum sampling rate we want to apply.

7.3 Performance

In Figure 8, we plot the Cumulative Distribution Func-

tion (CDF) of the CPU cycles consumed to process a

single batch (i.e., the service time per batch). Recall that

batches represent 100ms resulting in 3×108 cycles avail-

able to process each batch.

The figure shows that the predictive system is sta-

ble. As expected, sometimes the limit of available cycles

is slightly exceeded owing to the buffer discovery algo-

rithm presented in Section 6.1. The CDF also indicates

good CPU usage between 2.5 and 3 × 108 cycles per

batch, i.e., the system is rarely under- or over-sampling.

2007 USENIX Annual Technical ConferenceUSENIX Association 69



09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

p
a

c
k
e

ts

Total

DAG drops

Unsampled

(a) Predictive load shedding

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

p
a

c
k
e

ts

Total

DAG drops

(b) Original CoMo

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

p
a

c
k
e

ts

Total

DAG drops

Unsampled

(c) Reactive load shedding

Figure 9: Link load and packet drops during the evaluation of each load shedding method

On the contrary, the service time per batch when us-

ing the original and reactive approaches is much more

variable. It is often significantly larger than the batch

interarrival time, with a probability of exceeding the

available cycles greater than 30% in both executions.

This leads to very unstable systems that introduce packet

drops without control, even of entire batches. Figure 8

shows that more than 20% of the batches in the original

execution, and around 5% in the reactive one, are com-

pletely lost (i.e., service time equal to zero).

Figure 9 illustrates the impact of exceeding the avail-

able cycles on the input stream. The line labeled ‘DAG

drops’ refers to the packets dropped on the network cap-

ture card due to full memory buffers (results are averaged

over one second). These drops are uncontrolled and con-

tribute most to the errors in the query results. The line

‘unsampled’ counts the packets that are not processed

due to packet or flow sampling.

Figure 9(a) confirms that, during the 8 hours, not a

single packet was lost by the capture card when using the

predictive approach. This result indicates that the system

is robust against overload.

Figures 9(b) and 9(c) show instead that the capture

card drops packets consistently during the entire execu-

tion6. The number of drops in the original approach is

expected given that the load shedding scheme is based

on dropping packets on the input interface. In the case

of the reactive approach instead, the drops are due to in-

correct estimation of the cycles needed to process each

batch. The reactive system bases its estimation on the

previous batch only. In addition, it must be noted that

traffic conditions in the reactive execution were much

less adverse, with almost half of traffic load, than in the

other two executions (see Table 5). It is also interesting to

note that when the traffic conditions are similar in all ex-

ecutions (from 9am to 10am), the number of unsampled

packets plus the packets dropped by the reactive system

is very similar to the number of unsampled packets by

the predictive one, in spite of that they incur different

processing overheads.

7.4 Accuracy

We modified the source code of five of the seven queries

presented in Table 1, in order to allow them to esti-

mate their unsampled output when load shedding is per-

formed. This modification was simply done by multiply-

ing the metrics they compute by the inverse of the sam-

pling rate being applied to each batch.

We did not modify the pattern search and trace

queries, because no standard procedure exists to recover

their unsampled output from sampled streams and to

measure their error. In this case, the error should be

measured in terms of the application that uses the out-

put of these two queries. As discussed in Section 6.2, we

also plan to support other load shedding mechanisms for

those queries that are not robust against sampling.

In the case of the link-count, flows and high-

watermark queries, we measure the relative error in the

number of packets and bytes, flows, and in the high-

watermark value, respectively. The error of the ap-

plication query is measured as a weighted average of

the relative error in the number of packets and bytes

across all applications. The relative error is defined

as |1 − estimated value
actual value

|, where the actual value is ob-
tained from the complete packet trace, and all queries

use packet sampling as load shedding mechanism, with

the exception of the flows query that uses flow sampling.

In order to measure the error of the top destinations

query, we use the detection performancemetric proposed

in [2], which is defined as the number of misranked flow

pairs, where the first element of a pair is in the top-10

list returned by the query and the second one is outside

the actual top-10 list. In this case, we selected packet

sampling as load shedding mechanism [2].

Table 6 presents the error in the results of these five

2007 USENIX Annual Technical Conference USENIX Association70



Query predictive original reactive

application (pkts) 1.03% ±0.65 55.38% ±11.80 10.61% ±7.78

application (bytes) 1.17% ±0.76 55.39% ±11.80 11.90% ±8.22

flows 2.88% ±3.34 38.48% ±902.13 12.46% ±7.28

high-watermark 2.19% ±2.30 8.68% ±8.13 8.94% ±9.46

link-count (pkts) 0.54% ±0.50 55.03% ±11.45 9.71% ±8.41

link-count (bytes) 0.66% ±0.60 55.06% ±11.45 10.24% ±8.39

top destinations 1.41 ±3.32 21.63 ±31.94 41.86 ±44.64

Table 6: Breakdown of the accuracy error of the different

load shedding methods by query (mean± stdev)

queries averaged across all the measurement intervals.

We can observe that, although our load shedding system

introduces a certain overhead, the error is kept signifi-

cantly low compared to the two reactive versions of the

CoMo system. Recall that the traffic load in the reactive

execution was almost half of that in the other two execu-

tions. Large standard deviation values are due to long pe-

riods of consecutive packet drops in the alternative sys-

tems. It is also worth noting that the error of the top

destinations query obtained in the predictive execution is

consistent with that of [2].

7.5 Overhead

Figure 10 presents the CPU usage during the predictive

execution, broken down by the three main tasks pre-

sented in Section 6 (i.e., como cycles, query cycles and

ps cycles + ls cycles). We also plot the cycles the sys-

tem estimates as needed to process all incoming traffic

(i.e., pred cycles). From the figure, it is clear that the

system is under severe stress because, during almost all

the execution, it needs more than twice the cycles avail-

able to run our seven queries without loss.

The overhead introduced by our load shedding system

(ps cycles + ls cycles) to the normal operation of the

entire CoMo system is reasonably low compared to the

advantages of keeping the CPU usage and the accuracy

of the results well under control. Note that in Section 5.4

the cost of the prediction subsystem is measured without

performing load shedding. This resulted in an overall

processing cost similar to the pred cycles in Figure 10

and therefore in a lower relative overhead.

While the overhead incurred by the load shedding

mechanism itself (ls cycles) is similar in any load shed-

ding approach, independently of whether it is predic-

tive or reactive, the overhead incurred by the predic-

tion subsystem (ps cycles) is particular to our predic-

tive approach. As discussed in Section 5.4, the bulk of

the prediction cost corresponds to the feature extraction

phase, which is entirely implemented using a family of

memory-efficient algorithms that could be directly built

in hardware [15]. Alternatively, this overhead could be

reduced significantly by applying sampling in this phase

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9
x 10

9

time

C
P

U
u

s
a

g
e

[c
y
c
le

s
/s

e
c
]

CoMo cycles

Load shedding cycles

Query cycles

Predicted cycles

CPU frequency

Figure 10: CPU usage after load shedding (stacked) and

estimated CPU usage (predictive execution)

or simply reducing the accuracy of the bitmap counters.

Finally, our current implementation incurs additional

overhead, since it is not completely integrated with the

rest of the CoMo system to minimize the number of mod-

ifications in the core platform. An alternative would be

to merge the filtering process with the prediction in or-

der to avoid scanning each packet twice (first to apply

the filter and then to extract the features) and to share

computations between queries that share the same filter

rule. Better integration of the prediction and load shed-

ding subsystem with the rest of the CoMo platform is

part of our on-going work.

8 Conclusions and Future work

Effective load shedding methods are now indispens-

able to allow network monitoring systems to sustain the

rapidly increasing data rates, number of users and com-

plexity of traffic analysis methods.

In this paper, we presented the design and evaluation

of a system that is able to predict the resource require-

ments of arbitrary and continuous traffic queries, with-

out having any explicit knowledge of the computations

they perform. Our method is based on extracting a set of

features from the traffic streams to build an on-line pre-

diction model of the query resource requirements, which

is used to anticipate overload situations and effectively

control the overall system CPU usage, with minimum

impact on the accuracy of the results.

We implemented our prediction and load shedding

scheme in an existing network monitoring system and

deployed it in a research ISP network. Our results show

that the system is able to predict the resources required

to run a representative set of queries with small errors.

As a consequence, our load shedding scheme can ef-

fectively handle overload situations, without packet loss,

even during long-lived executions where the monitoring

system is under severe stress. We also pointed out a sig-

2007 USENIX Annual Technical ConferenceUSENIX Association 71



nificant gain in the accuracy of the results compared to

two versions of the same monitoring system that use a

non-predictive load shedding approach instead.

In the paper, we have already identified several areas

of future work. In particular, we are currently working on

adding other load shedding mechanisms to our system

(e.g., lightweight summaries) for those queries that are

not robust against sampling. We also intend to develop

smarter load shedding strategies that allow the system to

maximize its overall utility according to utility functions

defined by each query. Finally, we are interested in ap-

plying similar techniques to other system resources such

as memory, disk bandwidth or storage space.

9 Acknowledgments

This work was funded by a University Research Grant

awarded by the Intel Research Council, and by the

Spanish Ministry of Education (MEC) under contract

TEC2005-08051-C03-01 (CATARO project). Authors

would also like to thank the Supercomputing Center

of Catalonia (CESCA) for allowing them to collect the

packet traces used in this work.

References

[1] BAR-YOSSEF, Z., JAYRAM, T. S., KUMAR, R., SIVAKUMAR,

D., AND TREVISAN, L. Counting distinct elements in a data

stream. In Proc. of Intl. Workshop on Randomization and Ap-

proximation Techniques (2002), pp. 1–10.

[2] BARAKAT, C., IANNACCONE, G., AND DIOT, C. Ranking flows

from sampled traffic. In Proc. of CoNEXT (2005), pp. 188–199.

[3] BARLET-ROS, P., IANNACCONE, G., SANJUÀS-CUXART, J.,

AMORES-LÓPEZ, D., AND SOLÉ-PARETA, J. Predicting re-

source usage of arbitrary network traffic queries. Tech. rep.,

Technical University of Catalonia, 2006. http://loadshedding.-

ccaba.upc.edu/prediction.pdf.

[4] BLOOM, B. H. Space/time trade-offs in hash coding with allow-

able errors. Commun. ACM 13, 7 (1970), 422–426.

[5] CARNEY, D., ET AL. Monitoring streams - a new class of data

management applications. In Proc. of Intl. Conf. on Very Large

Data Bases (2002), pp. 215–226.

[6] CARTER, J. L., AND WEGMAN, M. N. Universal classes of

hash functions. Journal of Computer and System Sciences 18, 2

(1979), 143–154.

[7] CHANDRASEKARAN, S., ET AL. TelegraphCQ: Continuous

dataflow processing of an uncertain world. In Proc. of Conf. on

Innovative Data Systems Research (2003).

[8] CHI, Y., YU, P. S., WANG, H., AND MUNTZ, R. R. Loadstar:

A load shedding scheme for classifying data streams. In Proc. of

SIAM Intl. Conf. on Data Mining (2005).

[9] CISCO SYSTEMS. NetFlow services and applications. White

Paper, 2000.

[10] DILLON, W. R., AND GOLDSTEIN, M. Multivariate Analysis:

Methods and Applications. John Wiley and Sons, 1984.

[11] DUFFIELD, N. Sampling for passive internet measurement: A

review. Statistical Science 19, 3 (2004), 472–498.

[12] DUFFIELD, N., LUND, C., AND THORUP, M. Flow sampling un-

der hard resource constraints. In Proc. of ACM Sigmetrics (2004),

pp. 85–96.

[13] ENDACE. http://www.endace.com.

[14] ESTAN, C., KEYS, K., MOORE, D., AND VARGHESE, G. Build-

ing a better NetFlow. In Proc. of ACM Sigcomm (2004), pp. 245–

256.

[15] ESTAN, C., VARGHESE, G., AND FISK, M. Bitmap algorithms

for counting active flows on high speed links. In Proc. of ACM

Sigcomm Conf. on Internet Measurement (2003), pp. 153–166.

[16] IANNACCONE, G. Fast prototyping of network data mining ap-

plications. In Proc. of Passive and Active Measurement (2006).

[17] INTEL CORPORATION. The IA-32 Intel Architecture Software

Developer’s Manual, Volume 3B: System Programming Guide,

Part 2. 2006.

[18] KEYS, K., MOORE, D., AND ESTAN, C. A robust system for

accurate real-time summaries of internet traffic. In Proc. of ACM

Sigmetrics (2005), pp. 85–96.

[19] L’ANELLA CIENTÍFICA (THE SCIENTIFIC RING).

http://www.cesca.es/en/comunicacions/anella.html.

[20] NLANR: NATIONAL LABORATORY FOR APPLIED NETWORK

RESEARCH. http://www.nlanr.net.

[21] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND

FLANNERY, B. P. Numerical Recipes in C: The Art of Scientific

Computing, 2nd ed. 1992.

[22] REISS, F., AND HELLERSTEIN, J. M. Declarative network mon-

itoring with an underprovisioned query processor. In Proc. of Intl.

Conf. on Data Engineering (2006), pp. 56–67.

[23] TATBUL, N., ET AL. Load shedding in a data stream manager.

In Proc. of Intl. Conf. on Very Large Data Bases (2003), pp. 309–

320.

[24] WELSH, M., CULLER, D. E., AND BREWER, E. A. SEDA:

An architecture for well-conditioned, scalable internet services.

In Proc. of ACM Symposium on Operating System Principles

(2001), pp. 230–243.

[25] WHANG, K.-Y., VANDER-ZANDEN, B. T., AND TAYLOR,

H. M. A linear-time probabilistic counting algorithm for

database applications. ACM Trans. Database Syst. 15, 2 (1990),

208–229.

[26] YU, L., AND LIU, H. Feature selection for high-dimensional

data: A fast correlation-based filter solution. In Proc. of Intl.

Conf. on Machine Learning (2003), pp. 856–863.

Notes

1The choice of 100ms is somewhat arbitrary. Our experimental re-
sults indicate that 100ms represents a good trade-off between accuracy
and delay with the traces of our dataset. We leave the investigation on

the proper batch duration for future work.
2A description of the queries used in our experiments can be found

in [3]. The actual source code of all queries is also publicly available

at http://como.sourceforge.net.
3It is possible that the CPU usage of other queries may exhibit a

non-linear relationship with the traffic features. A possible solution in

that case is to define new features computed as non-linear combinations

of simple features.
4Note that the values of some predictors may become very similar

under special traffic patterns. For example, the number of packets and

flows can be highly correlated under a SYN-flood attack.
5The source code of the prediction and load shedding system is

available at http://loadshedding.ccaba.upc.edu. The CoMo monitoring

system is also available at http://como.sourceforge.net.
6The values are a lower bound of the actual drops, because the loss

counter present in the DAG records is only 16-bit long.

2007 USENIX Annual Technical Conference USENIX Association72




