
Robust Resource Allocation for Online
Network Monitoring

Pere Barlet-Ros#, Josep Sanjuàs-Cuxart#, Josep Solé-Pareta#, Gianluca Iannaccone*
#Computer Architecture Dept., Technical University of Catalonia (UPC), Spain

{pbarlet, jsanjuas, pareta}@ac.upc.edu
*Intel Research Berkeley, United States

gianluca.iannaccone@intel.com

Abstract— Building robust network monitoring applications is
hard given the unpredictable nature of network traffic and
continuous growth of link speeds, data rates and complexity of
traffic analysis tasks. Effective resource management techniques
are now a basic requirement for this class of applications, which
have to deal inevitably with the effects of extreme overload
situations during their normal operation. In this paper, we
present in detail the problems involved in the management of
system resources in network monitoring and describe the design
of a load shedding scheme that can efficiently handle extreme
overload situations by gracefully degrading the accuracy of
monitoring applications. Our method controls the resources
allocated to each application by dynamically adjusting the
sampling rate based on an online prediction model of the system
resource requirements. We present experimental evidence of the
robustness and performance of our system using real traffic
traces and injecting synthetic traffic anomalies.

I. INTRODUCTION
Passive network monitoring systems are commonly used to

collect the traffic from operational networks and compute a
set of relevant metrics in real time. The information they
provide is crucial for managing and operating data networks,
and it is used to aid network operators in the tasks of traffic
engineering, capacity planning, network troubleshooting or
anomaly detection, among others.

The information that network operators desire to extract
from the network traffic is of different size, granularity and
accuracy depending on the measurement task. For example,
the relevant data for capacity planning and intrusion detection
are very different. To satisfy these different demands, a new
class of network monitoring systems is emerging to handle
multiple arbitrary network traffic queries. These systems
allow users to easily define monitoring applications by
providing them with an abstraction layer of the underlying
network technology and hardware details.

The main challenge in network monitoring is to achieve
robustness against overload situations due to the continuous
growth of link speeds, data rates and complexity of traffic
analysis methods. This problem is even harder considering
that these systems have to handle a large number of competing
traffic queries in a resource constrained environment.
Unfortunately, over-provisioning the system for worst case

This work was funded by a University Research Grant awarded by the Intel
Research Council, and by the Spanish Ministry of Education under contracts
TSI2005-07520-C03-02 (CEPOS) and TEC2005-08051-C03-01 (CATARO).

scenarios is prohibitively expensive, because it is unviable to
dimension system buffers to absorb sustained peaks in the
case of anomalies or extreme traffic mixes. However, it is
right under these situations when network operators most
value the results of their queries. Therefore, it is essential to
prevent uncontrolled packet losses during overload situations
to minimize their impact on the accuracy of the results.

In this paper, we introduce the problem of resource
management in the context of network monitoring and discuss
why this is an interesting and challenging problem (Section II).
We review the design of an online predictive resource
management system, firstly presented in [1], which allows
network monitoring systems to efficiently handle extreme
overload situations (Sections III-V). Finally, we evaluate the
robustness and performance of our solution in the presence of
overload situations due to anomalous traffic patterns, and
show their impact on the accuracy of the results (Section VI).

II. BACKGROUND
In a distributed network monitoring infrastructure, there are

two possible resource management actions to address
overload situations. The first consists of trying to solve the
problem locally (e.g. to apply sampling where an overload
situation is detected). The second option is to take a global
action (e.g. to distribute excess load among the monitors of
the infrastructure). If no actions are taken in a timely manner,
queues will form increasing response delays and, eventually,
the platform will experience uncontrolled packet losses,
leading to a severe impact on the accuracy of the results.

Local resource management techniques are needed to
manage the available system resources in a single monitor,
according to a given policy. For example, such a policy might
reduce query response times, while minimizing the impact of
overload situations on the accuracy of the results. Simply
rejecting incoming queries is not an option, since queries
already running in the system may also exceed the system
capacity. We refer to this problem as the local resource
management problem.

Given that new network monitoring platforms are
distributed systems in nature, global decisions to overcome
overload situations can also be taken. Global resource
management techniques are used to distribute the queries
among the multiple monitoring systems in order to balance the
load of the infrastructure. However, traditional load-balancing
and load-sharing approaches used in other contexts are usually

978-1-4244-1845-9/08/$25.00 © 2008 IEEE IT-NEWS 2008129

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:45 from IEEE Xplore. Restrictions apply.

not suitable for network monitoring. The main reason is that
neither the incoming traffic nor most queries can be easily
migrated to other monitors, since the interesting traffic resides
on the network where the monitor is attached to. We refer to
this problem as the global resource management problem.

On the other hand, some resource management decisions
can be taken statically (i.e. at configuration time) or
dynamically (i.e. at run time). Therefore, we can divide the
resource management problem space in the context of network
monitoring systems into four dimensions (see Fig. 1),
according to whether decisions are taken offline or online, and
if they are local (i.e. in a single monitor) or global (i.e.
involving multiple monitors):
1. The local static resource management problem can be

divided into two different sub-problems: (i) provisioning
of system resources (i.e. CPU, memory, I/O bandwidth,
storage space, etc.) according to network properties (e.g.
network bandwidth, traffic characteristics, etc.) and (ii)
static planning of a fixed set of queries to be executed in
the network monitor.

2. The global static resource management problem refers to
the placement of both monitors over the network (i.e.
where to place the network monitors according to a given
budget and/or measurement goals [2]) and the static
distribution of queries over the available monitors.

3. The local dynamic resource management problem
consists of managing the local queries given the available
resources to ensure fairness of service and maximize the
utility of the system according to a given policy.

4. The global dynamic resource management problem
basically refers to how to distribute the load of the
platform among the multiple monitors in an effective and
efficient manner.

In the rest of this paper we focus on the local dynamic
resource management problem, although the feasibility of
using some of the proposals resulting from this work to
address the global resource management problem constitutes
an important part of our future work.

A. Traditional Systems vs. Network Monitoring Systems
Resource management techniques have been extensively

studied in other contexts, such as operating systems,
distributed systems or database management systems.
However, network monitoring systems have several
particularities that render solutions adopted in other contexts
unsuitable. These differences can be summarized as follows:
1. Arbitrary input. Traditional resource management

techniques have been designed for pull-based systems,
where data feed rates can be easily managed, given that
the relevant data reside on disk. On the contrary, in

network monitoring the input data is the network traffic,
which is generated by external sources that cannot be
controlled by the monitoring system. Network traffic is
highly variable and unpredictable in nature, and typically
peak rates are several orders of magnitude greater than
the average traffic. Thus, provisioning a network
monitoring system to handle peak rates is not possible.
However, it is usually during these bursts when the
monitoring system is mostly needed and results may be
more critical (e.g. to detect network attacks or anomalies).
For this reason, network operators are particularly
interested in capturing the properties of the traffic during
overload situations.

2. Data rates and volume. The input rates and volume of
data in an online network monitoring system are usually
extremely high (e.g. 10 Gbps). Traditional pull-based
systems do not target the high data rates involved in
network monitoring. This makes traditional approaches,
where data are firstly loaded into static databases,
unviable in this scenario.

3. Arbitrary computation. On the one hand, query loads
heavily depend on the incoming traffic, which is
unpredictable in nature. On the other hand, query loads
depend on its actual implementation, which is also
arbitrary. In particular, new network monitoring systems
allow users to express queries with arbitrary resource
requirements (e.g. written in imperative programming
languages). As a result, most queries do not have a fixed
cost per packet. For example, a worm detection query
may be idle for a long period of time until attack traffic
appears in the network.

4. Real-time results. Most pull-based resource management
techniques assume that applications do not have real-time
requirements. On the contrary, most network queries
require a timely response, whereas some of them may
even come with an explicit deadline the monitoring
system must assure. For those queries, late results may be
useless (e.g. virus and worm detection queries).

B. Related Work
Recently, several research proposals have addressed these

challenges in the context of network monitoring and data
stream management systems.

In the network monitoring space, existing solutions
consider only a pre-defined set of well-known traffic metrics.
To deal with overload situations, the accuracy of this fixed set
of metrics is degraded by means of traffic filtering, dynamic
sampling and/or aggregation techniques. Examples of
monitoring systems implementing these methods include
Adaptive NetFlow [3] and the robust traffic summaries
proposed in [4].

Data stream management systems are push-based systems
specifically designed for continuous query processing. One of
the major challenges in these systems, like in network
monitoring, is to support real-time processing with limited
system resources. Thus, research proposals in this area are
very relevant to our work. They include solutions that define a
declarative query language, with a limited set of operators, for

 Offline Online

Local
• Static assignment of queries
• Resource provisioning
o CPU, memory, etc.

• Query scheduling
• Load shedding

Global • Placement of monitors
• Placement of queries

• Dissemination of queries
• Load distribution

Fig. 1 Resource management problem space

130

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:45 from IEEE Xplore. Restrictions apply.

which the cost and selectivity is assumed to be known. In the
presence of overload, operator-specific load shedding
techniques are implemented, such as selectively discarding
tuples or computing approximate summaries. This is the case,
for example, of Aurora [5] and TelegraphCQ [6].

Existing proposals in both environments incur a key
limitation: they reduce the flexibility of the system by either
restricting the queries to a pre-defined set of well-known
metrics or limiting them to a small set of operators with
known and constant cost. This reduces significantly the
possible applications and scenarios where these systems can
be used. Our approach differs from those solutions in that it
does not require any explicit knowledge of the traffic queries,
allowing them to perform any arbitrary computation on the
incoming traffic stream. Instead, queries are treated as black
boxes with variable input traffic, output results, and arbitrary
resource consumption.

III. SYSTEM OVERVIEW
The CoMo platform (Continuous Monitoring) [7] is an

open source passive network monitoring system designed for
capturing network traffic at high speeds and computing user-
defined queries in real time. CoMo follows a modular
approach where users can easily define traffic queries as plug-
in modules written in the C programming language. In order
to provide developers with maximum flexibility, CoMo does
not impose any restriction on the data structures a query can
use, allowing them to perform any arbitrary computation on
the incoming traffic stream. As a consequence, the platform
does not have any explicit knowledge of the cost of each
query. This flexibility makes the problem of managing the
system resources particularly challenging. More details about
the CoMo platform can be found in [7].

Given the bursty and unpredictable nature of network
traffic, in order to prevent uncontrolled packet losses (which
would have an unpredictable impact on the accuracy of the
results), the system must anticipate overload situations and
take load shedding decisions in advance. Since the platform
considers all queries as black boxes, the only solution consists
of measuring their resource requirements and learning their
resource usage patterns from these external observations.

Without any knowledge about the queries, we infer their
cost from the correlation between a large set of predefined
traffic features and the actual CPU usage of each query. As we
describe in Section IV.A, a traffic feature is simply a counter
that describes a specific property of a sequence of packets. For
example, potential features could be the number of packets in
the sequence, the amount of bytes, the number of unique IP
destination addresses, etc. The main advantage of the features
we compute is that they are lightweight with a deterministic
worst case computational cost.

The basic intuition behind our method comes from the
empirical observation that the cost of a query is dominated by
the overhead of maintaining the data structures needed to keep
its state, which directly depends on different properties of the
input traffic (i.e. the traffic features). For example, the cost of
a query performing some sort of flow classification using a

hash table will mainly depend on the number of new flows in
the traffic, assuming that the cost of creating a new entry is
much higher than the cost of updating an existing one. The
main novelty of our approach is that it does not require any
explicit knowledge of the queries. This way we preserve a
high degree of flexibility in the monitoring system, increasing
the potential applications and network scenarios where it can
be used.

Fig. 2 presents the four components of our prediction and
load shedding system, which are described in detail in the
following sections. The CoMo monitoring system collects the
traffic from the wire, filters the packets of interest and groups
them in time-fixed batches (e.g. 100ms). Each batch is then
analyzed by our system in order to predict the CPU cycles
required by each query to process the entire batch, based on
recent observations of the previous resource usage. If the
prediction exceeds the system capacity, the load shedding
subsystem discards a portion of the packets via packet or flow
sampling to reduce the load of the system. Finally, the
resulting batch is processed by each query and the actual CPU
usage is measured to update the history maintained by the
prediction subsystem. In order to measure the CPU usage, we
use the time-stamp counter (TSC) as described in [1].

IV. PREDICTION METHOD
In this section we describe the three components of our

online prediction method (i.e. feature extraction, feature
selection and multiple linear regression) that constitute the
core of our resource management system.

A. Feature Extraction
Traffic features are the input of our prediction method. Our

goal is to extract a set of features that, with low overhead,
provides enough information on the traffic characteristics that
dominate the processing cost of a wide range of queries.

A feature that is too specific would add overhead without
contributing to build a better resource usage model.
Alternatively, a feature could provide valuable information
but have a cost, in terms of CPU, comparable to the cost of a
query, which is not desirable.

In our system, we use two kinds of counters. First, two
simple counters: the number of packets and the number of
captured bytes. These are of very low cost, but can explain a
great portion of the cost of most queries. Second, we calculate
a set of traffic aggregates that hold the count of unique
occurrences of several combinations of the 5-tuple header
fields in the traffic (e.g. unique destination IP addresses and
ports). A detailed list of the features we compute on the traffic
stream is available in [1].

A naive algorithm for calculating these traffic aggregates

Fig. 2 Prediction and load shedding system

131

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:45 from IEEE Xplore. Restrictions apply.

would be very expensive in terms of both CPU time and
memory space. Fortunately, the recent literature provides us
with efficient approaches that can obtain approximate counts
in linear time and bounded memory space [8]-[9]. In this work,
we use multi-resolution bitmaps [8] to calculate traffic
aggregates.

B. Feature Selection
The set of features presented in the previous section helps

to explain the cost of many queries. However, not all the
extracted features are relevant to each query. The feature
selection stage selects the relevant features that exhibit
correlation with the cost of the traffic queries. This has two
beneficial outcomes: it reduces the noise in the prediction and
it lightens the cost of building the prediction model.

Our feature selection algorithm is based on the fast
correlation-based filter (FCBF) from [10]. Based on past
observations of each query, this algorithm can discard both
features that do not exhibit any correlation with the CPU
usage (irrelevant features) and features that become linear
combinations of other relevant features under a particular
input traffic (redundant features), and therefore do not
provide any new information to build the prediction model.

C. Multiple Linear Regression
The main thesis behind our resource management approach

is that our simple traffic features provide a characterization of
the incoming traffic that can be used to build a prediction
model of the CPU usage of each query.

The system maintains a table with the previous values of
each traffic feature together with the actual CPU usage of each
query. The prediction subsystem uses this information to
generate a prediction model of each query. It considers the
selected features as predictors, whereas the CPU usage is the
response variable (i.e. the variable we want to predict).

We experimentally observed that no single predictor
provides enough information to explain in detail the cost of
most queries. Instead, it is the combination of many features
that can help to accurately predict the CPU usage of a query.
Our system uses a multiple linear regression (MLR) to predict
the response variable from several predictors.

The MLR studies the relationship between a response
variable Y and p predictor variables X1, X2, …, Xp, and
assumes that Y is a linear function of the predictor variables.
The general form of a linear regression model with a history
of n observations can be expressed as follows [11]:

ni
XXXY ipipiii

,,2,1
,22110

…
"

=

+++++= εββββ
 (1)

In the previous expression, all Yi variables correspond to
previous observations of the response variable. The β1 … βp
variables are known as the regression coefficients or the
weight that each predictor variable has on the response
variable. Using the ordinary least squares (OLS) procedure,
the estimators b of the β coefficients are calculated so that the
sum of squares of the residuals εi is minimized.

Note that the MLR assumes that the relationship between

the cycles consumed by a query is in fact a linear combination
of the traffic features. While in practice in our system the
MLR provides accurate results, as we show in Section VI,
other methods that can account for non-linear relationships
between predictors and response variables constitute an
important piece of future work.

V. LOAD SHEDDING
In this section, we present our approach for dynamically

reducing the system load. In particular, our system controls
the CPU cycles allocated to each query by dynamically
modifying the sampling rate applied to each of them, based on
the output of the prediction subsystem.

In our current implementation, we only support packet and
flow sampling, and assume that each query selects at
configuration time the option that would yield the best results.
We implement packet sampling by randomly selecting packets
in a batch with probability p (i.e. the sampling rate), while
flow sampling randomly selects entire flows with probability
p. To efficiently implement flow sampling, we compute a
randomly chosen hash function [12] on the 5-tuple flow ID,
which distributes the flows randomly. Then, if the hash value
is smaller than p × (2n-1), where n is the number of bits of the
hash value, the packet is selected. Finally, the actual number
of packets or flows can be simply estimated by multiplying
the number of sampled packets or flows by the inverse of the
sampling rate.

It is clear that there is a large set of imaginable queries that
are not able to correctly estimate their unsampled output from
sampled streams, even when flow sampling is used instead of
packet sampling. For those queries, we plan to implement
other load shedding mechanisms, such as computing different
lightweight summaries of the input data streams [6].

A. Load Shedding Algorithm
Packet or flow sampling is applied only when the sum of

the predictions for all queries (predicted_cycles) exceeds an
overall threshold (available_cycles), which is dynamically set
according to the CPU cycles available in the system to process
a batch. Since batches corresponds to fixed time bins (e.g.
100ms in our experiments), this threshold can be easily
computed as available_cycles = (0.1 × CPU_frequency) −
overhead, where overhead is the cost of our prediction method
plus the cycles spent by other tasks carried out by CoMo, but
not directly related to query processing (e.g. packet collection
and memory management). This overhead is measured using
the TSC. When the prediction exceeds the available_cycles
threshold, the sampling rate to be applied is set in all queries
to the ratio available_cycles / predicted_cycles. However, this
ratio is only an estimate of the most appropriate sampling rate,
because the CPU usage of a query can depend on several
traffic features or on a different feature than the number of
packets (or 5-tuple flows when flow sampling is used).

For this reason, before processing the sampled batch, we
recompute the prediction in order to assure that the applied
sampling rate is enough to shed excess of load. We repeat this
process until the prediction is below the threshold or a fixed

132

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:45 from IEEE Xplore. Restrictions apply.

number of retries is exceeded. In [1] we also show how the
sampling rate can be corrected to compensate for the
prediction error observed in previous batches and to account
for the space available in the system buffers.

VI. ROBUSTNESS AGAINST TRAFFIC ANOMALIES
Network monitoring systems are mostly needed in presence

of unfriendly traffic mixes. The system may observe extreme
traffic conditions when it is monitoring an ongoing denial of
service attack, worm infection, or even an attack targeted to
the measurement system itself. During these events, the query
results, even if approximate, are extremely valuable to
network operators. In this section, we evaluate the robustness
of an actual implementation of our prediction and load
shedding methods in the presence of anomalous traffic. In [1]
we evaluate our load shedding scheme under normal traffic
conditions.

A. Alternative Approaches
In this experiment, we compare the robustness of our

prediction model against two well-known prediction
techniques, namely the Exponentially Weighted Moving
Average (EWMA) and the Simple Linear Regression (SLR),
in the presence of traffic anomalies.

Exponentially Weighted Moving Average. EWMA is one
of the most frequently applied time-series prediction
techniques. It uses an exponentially decreasing weighted
average of the past observations of a variable to predict its
future values. EWMA can be written as:

ttt YYY ˆ)1(ˆ
1 αα −+=+ (2)

where 1
ˆ

+tY is the prediction for the instant t+1, which is
computed as the weighted average between the real value of Y
and its estimated value at the instant t, and α is the weight,
also known as the smoothing constant. The results shown in
this section consider the best prediction accuracy we obtained
in most of our experiments, which corresponds to α = 0.3.

Simple Linear Regression. SLR is a particular case of the
multiple linear regression model where one single prediction
variable is used. The SLR model can be written as:

iii XY εββ ++= 10 i = 1, 2, …, n (3)
where X is the prediction variable, β0 is the intercept, β1 is the
unknown coefficient and εi are the residuals. As in the case of

MLR, the estimation b for the unknown β is obtained by
minimizing the sum of the squared errors. In the experiments
presented in this section, we use the number of packets as
predictor to compute the linear regression.

In order to test our prediction system (that drives the load
shedding scheme), we injected synthetic anomalies in a 30-
minute trace collected in November 2005 at a Gigabit
Ethernet link that connects the Catalan and the Spanish
National Research and Education Networks. The trace
accounts for 103.67M packets, with an average rate of 360.46
Mbps and a peak rate of 483.28 Mbps.

We have generated many different types of attacks, such as
simple volume-based denial of service attacks (i.e. an
overwhelming number of packets destined to a single target),
worm outbreaks (i.e. a large number of packets from many
different sources and destinations while keeping fixed the
destination port number) or attacks against our monitoring
system (i.e. attacks that result in a highly variable and
unpredictable workload for the system).

Fig. 3 shows the performance of each method in the
presence of attacks targeted to the monitoring system. We
injected in the trace a distributed denial of service attack with
spoofed source IP addresses and ports, which goes idle every
other second to generate a higher variable workload.

The figure shows the performance for a query (called flows)
that aggregates the incoming packets into flows and reports
the number of packets and bytes per flow. We chose this
query, from those in the standard distribution of CoMo,
because it is the most sensitive to this type of attacks.

In Fig. 3(c), we can see that MLR predictions track the
actual CPU usage very closely, with errors around the 10%
mark (with an average error of 4.77%). MLR can anticipate
the increase in CPU cycles while EWMA (Fig. 3(a)) is always
a little behind resulting in large oscillations in the prediction
error. In the case of SLR (Fig. 3(b)), since the number of
packets does not vary as much as the number of 5-tuple flows,
the errors are more stable but persistently around 30% (it
converges to the average cost between the anomalous and
normal traffic).

We also generated other types of attacks that targeted other
queries with similar results. For example, we generated an
attack consisting of sending bursts of 1500 byte long packets
for those queries that depend on the number of bytes (e.g.
collecting a packet trace and pattern matching).

0 5 10 15 20 25 30
0

1

2

3

4

5

x 10
6

Time (s)

C
P

U
 c

yc
le

s

actual
predicted

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Time (s)

R
el

at
iv

e
er

ro
r

0 5 10 15 20 25 30
0

1

2

3

4

5

x 10
6

Time (s)

C
P

U
 c

yc
le

s

actual
predicted

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Time (s)

R
el

at
iv

e
er

ro
r

0 5 10 15 20 25 30
0

1

2

3

4

5

x 10
6

Time (s)

C
P

U
 c

yc
le

s

actual
predicted

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Time (s)

R
el

at
iv

e
er

ro
r

 (a) Exponential Weighted Moving Average (b) Simple Linear Regression (c) Multiple Linear Regression

Fig. 3 Prediction accuracy in the presence of Distributed Denial of Service Attacks

133

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:45 from IEEE Xplore. Restrictions apply.

B. Impact of Overload Situations
In the following experiment, we evaluate the impact of this

kind of attacks on an actual implementation based on our
prediction method. As an example, we consider a query that
tracks the number of active (i.e. for which at least one packet
was observed) 5-tuple flows in the packet stream and reports
the count every measurement interval. We have implemented
this query with a few simple modifications to the flows query
used in the previous experiment.

In order to ease the exposition of the results, we manually
set a limit (available_cycles) on the amount of CPU cycles
available to the query for processing a batch (set to 6M cycles
per batch). The sampling rate to be applied, when the CPU
usage is above this threshold, is set to the ratio
available_cycles / predicted_ cycles.

During 20 seconds we inject a burst of traffic
corresponding to a SYN-flood attack with spoofed IP source
addresses to force higher CPU usage.

Fig. 4 shows the evolution of the CPU usage during the
anomaly with and without load shedding (with flow sampling)
for the trace in our dataset. Without load shedding, the CPU
usage increases from 4.5M to 11M cycles during the anomaly
(assuming an infinite buffer that causes no packet drops).
Instead, when load shedding is enabled, the CPU usage is well
under control within a 5% margin of the target usage.

Fig. 5 shows the query accuracy during the anomaly. To
estimate the error in the absence of load shedding, we emulate
a system with a buffer of 200ms of traffic and 6M cycles
available to process incoming traffic. If the CPU usage
exceeds 6M cycles per batch, we assume that a queue of
packets starts building up until the buffer is full and incoming
packets are dropped without control. When load shedding is
enabled, the error in the estimation of the number of flows
using flow sampling is less than 1%, while when using packet
sampling it is slightly larger than 5%. Without load shedding,
the measurement error is in the 35-40% range.

VII. CONCLUSIONS AND FUTURE WORK
Robustness against overload situations is crucial for

network monitoring systems, which must inevitably deal with
arbitrary data and computations in a resource constrained
environment. In this paper, we discussed the challenges
involved in managing the resources of network monitoring
systems and reviewed the design of an online predictive
approach to cope with overload situations.

Our method is based on modeling the resource usage of
arbitrary traffic queries in real-time by observing the
characteristics of the input traffic. We use a dynamic set of
traffic features to build a prediction model of the CPU usage.
This model is used to accurately predict the CPU requirements
of the system and dynamically select the highest sampling rate
that prevents packet losses.

We implemented our method in the CoMo platform and
evaluated its robustness in front of overload situations
injecting synthetic traffic anomalies. Our results indicate that
the system efficiently handles extreme overload situations and
minimizes their impact on the accuracy of the results.

The technique presented in this work is intentionally simple
to operate in real-time. We are currently working on allowing
users to define utility functions for their queries to maximize
the utility of the monitoring system. Another important piece
of future work consists of extending our techniques to other
system resources and using similar approaches to address the
resource management problem in a distributed environment.

REFERENCES
[1] P. Barlet-Ros, G. Iannaccone, J. Sanjuàs-Cuxart, D. Amores-López,

and J. Solé-Pareta, “Load shedding in network monitoring
applications,” in Proc. of USENIX Annual Technical Conference, 2007.

[2] K. Suh, Y. Guo, J. Kurose, and D. Towsley, “Locating network
monitors: complexity, heuristics, and coverage,” in Proc. of IEEE
Infocom, 2005.

[3] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
NetFlow,” in Proc. of ACM Sigcomm, 2004.

[4] K. Keys, D. Moore, and C. Estan, “A robust system for accurate real-
time summaries of internet traffic,” in Proc. of ACM Sigmetrics, 2005.

[5] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack, and M.
Stonebraker, “Load shedding in a data stream manager,” in Proc. of
Intl. Conf. on Very Large Data Bases, 2003.

[6] F. Reiss and J. M. Hellerstein, “Declarative network monitoring with
an underprovisioned query processor,” in Proc. of Intl. Conf. on Data
Engineering, 2006.

[7] G. Iannaccone, “Fast prototyping of network data mining applications,”
in Proc. of Passive and Active Measurement Conference, 2006.

[8] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high-speed links,” in Proc. of ACM Sigcomm Conf. on
Internet Measurement, 2003.

[9] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan,
“Counting distinct elements in a data stream,” in Proc. of Intl.
Workshop on Randomization and Approximation Techniques, 2002.

[10] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast
correlation-based filter solution,” in Proc. of Intl. Conf. on Machine
Learning, 2003.

[11] W. R. Dillon and M. Goldstein, Multivariate Analysis: Methods and
Applications, John Wiley and Sons, 1984.

[12] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
Jornal of Computer and System Sciences, vol. 18, num. 2, 1979.

0 5 10 15 20 25 30 35 40 45 50
4

5

6

7

8

9

10

11

12
x 10

6

Time (s)

C
P

U
 c

yc
le

s

no load shedding

load shedding

CPU threshold

5% bounds

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

R
el

at
iv

e
er

ro
r

no load shedding

packet sampling

flow sampling

 Fig. 4 CPU usage with and without load shedding Fig. 5 Error in the query results with and without load shedding

134

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:45 from IEEE Xplore. Restrictions apply.

