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Abstract— Building robust network monitoring applications is 
hard given the unpredictable nature of network traffic and 
continuous growth of link speeds, data rates and complexity of 
traffic analysis tasks. Effective resource management techniques 
are now a basic requirement for this class of applications, which 
have to deal inevitably with the effects of extreme overload 
situations during their normal operation. In this paper, we 
present in detail the problems involved in the management of 
system resources in network monitoring and describe the design 
of a load shedding scheme that can efficiently handle extreme 
overload situations by gracefully degrading the accuracy of 
monitoring applications. Our method controls the resources 
allocated to each application by dynamically adjusting the 
sampling rate based on an online prediction model of the system 
resource requirements. We present experimental evidence of the 
robustness and performance of our system using real traffic 
traces and injecting synthetic traffic anomalies.  

I. INTRODUCTION 
Passive network monitoring systems are commonly used to 

collect the traffic from operational networks and compute a 
set of relevant metrics in real time. The information they 
provide is crucial for managing and operating data networks, 
and it is used to aid network operators in the tasks of traffic 
engineering, capacity planning, network troubleshooting or 
anomaly detection, among others. 

The information that network operators desire to extract 
from the network traffic is of different size, granularity and 
accuracy depending on the measurement task. For example, 
the relevant data for capacity planning and intrusion detection 
are very different. To satisfy these different demands, a new 
class of network monitoring systems is emerging to handle 
multiple arbitrary network traffic queries. These systems 
allow users to easily define monitoring applications by 
providing them with an abstraction layer of the underlying 
network technology and hardware details. 

The main challenge in network monitoring is to achieve 
robustness against overload situations due to the continuous 
growth of link speeds, data rates and complexity of traffic 
analysis methods. This problem is even harder considering 
that these systems have to handle a large number of competing 
traffic queries in a resource constrained environment. 
Unfortunately, over-provisioning the system for worst case 
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scenarios is prohibitively expensive, because it is unviable to 
dimension system buffers to absorb sustained peaks in the 
case of anomalies or extreme traffic mixes. However, it is 
right under these situations when network operators most 
value the results of their queries. Therefore, it is essential to 
prevent uncontrolled packet losses during overload situations 
to minimize their impact on the accuracy of the results. 

In this paper, we introduce the problem of resource 
management in the context of network monitoring and discuss 
why this is an interesting and challenging problem (Section II). 
We review the design of an online predictive resource 
management system, firstly presented in [1], which allows 
network monitoring systems to efficiently handle extreme 
overload situations (Sections III-V). Finally, we evaluate the 
robustness and performance of our solution in the presence of 
overload situations due to anomalous traffic patterns, and 
show their impact on the accuracy of the results (Section VI). 

II. BACKGROUND 
In a distributed network monitoring infrastructure, there are 

two possible resource management actions to address 
overload situations. The first consists of trying to solve the 
problem locally (e.g. to apply sampling where an overload 
situation is detected). The second option is to take a global 
action (e.g. to distribute excess load among the monitors of 
the infrastructure). If no actions are taken in a timely manner, 
queues will form increasing response delays and, eventually, 
the platform will experience uncontrolled packet losses, 
leading to a severe impact on the accuracy of the results. 

Local resource management techniques are needed to 
manage the available system resources in a single monitor, 
according to a given policy. For example, such a policy might 
reduce query response times, while minimizing the impact of 
overload situations on the accuracy of the results. Simply 
rejecting incoming queries is not an option, since queries 
already running in the system may also exceed the system 
capacity. We refer to this problem as the local resource 
management problem. 

Given that new network monitoring platforms are 
distributed systems in nature, global decisions to overcome 
overload situations can also be taken. Global resource 
management techniques are used to distribute the queries 
among the multiple monitoring systems in order to balance the 
load of the infrastructure. However, traditional load-balancing 
and load-sharing approaches used in other contexts are usually 
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not suitable for network monitoring. The main reason is that 
neither the incoming traffic nor most queries can be easily 
migrated to other monitors, since the interesting traffic resides 
on the network where the monitor is attached to. We refer to 
this problem as the global resource management problem. 

On the other hand, some resource management decisions 
can be taken statically (i.e. at configuration time) or 
dynamically (i.e. at run time). Therefore, we can divide the 
resource management problem space in the context of network 
monitoring systems into four dimensions (see Fig. 1), 
according to whether decisions are taken offline or online, and 
if they are local (i.e. in a single monitor) or global (i.e. 
involving multiple monitors): 
1. The local static resource management problem can be 

divided into two different sub-problems: (i) provisioning 
of system resources (i.e. CPU, memory, I/O bandwidth, 
storage space, etc.) according to network properties (e.g. 
network bandwidth, traffic characteristics, etc.) and (ii) 
static planning of a fixed set of queries to be executed in 
the network monitor. 

2. The global static resource management problem refers to 
the placement of both monitors over the network (i.e. 
where to place the network monitors according to a given 
budget and/or measurement goals [2]) and the static 
distribution of queries over the available monitors. 

3. The local dynamic resource management problem 
consists of managing the local queries given the available 
resources to ensure fairness of service and maximize the 
utility of the system according to a given policy. 

4. The global dynamic resource management problem 
basically refers to how to distribute the load of the 
platform among the multiple monitors in an effective and 
efficient manner. 

In the rest of this paper we focus on the local dynamic 
resource management problem, although the feasibility of 
using some of the proposals resulting from this work to 
address the global resource management problem constitutes 
an important part of our future work. 

A. Traditional Systems vs. Network Monitoring Systems 
Resource management techniques have been extensively 

studied in other contexts, such as operating systems, 
distributed systems or database management systems. 
However, network monitoring systems have several 
particularities that render solutions adopted in other contexts 
unsuitable. These differences can be summarized as follows:  
1. Arbitrary input. Traditional resource management 

techniques have been designed for pull-based systems, 
where data feed rates can be easily managed, given that 
the relevant data reside on disk. On the contrary, in 

network monitoring the input data is the network traffic, 
which is generated by external sources that cannot be 
controlled by the monitoring system. Network traffic is 
highly variable and unpredictable in nature, and typically 
peak rates are several orders of magnitude greater than 
the average traffic. Thus, provisioning a network 
monitoring system to handle peak rates is not possible. 
However, it is usually during these bursts when the 
monitoring system is mostly needed and results may be 
more critical (e.g. to detect network attacks or anomalies). 
For this reason, network operators are particularly 
interested in capturing the properties of the traffic during 
overload situations. 

2. Data rates and volume. The input rates and volume of 
data in an online network monitoring system are usually 
extremely high (e.g. 10 Gbps). Traditional pull-based 
systems do not target the high data rates involved in 
network monitoring. This makes traditional approaches, 
where data are firstly loaded into static databases, 
unviable in this scenario. 

3. Arbitrary computation. On the one hand, query loads 
heavily depend on the incoming traffic, which is 
unpredictable in nature. On the other hand, query loads 
depend on its actual implementation, which is also 
arbitrary. In particular, new network monitoring systems 
allow users to express queries with arbitrary resource 
requirements (e.g. written in imperative programming 
languages). As a result, most queries do not have a fixed 
cost per packet. For example, a worm detection query 
may be idle for a long period of time until attack traffic 
appears in the network. 

4. Real-time results. Most pull-based resource management 
techniques assume that applications do not have real-time 
requirements. On the contrary, most network queries 
require a timely response, whereas some of them may 
even come with an explicit deadline the monitoring 
system must assure. For those queries, late results may be 
useless (e.g. virus and worm detection queries). 

B. Related Work 
Recently, several research proposals have addressed these 

challenges in the context of network monitoring and data 
stream management systems. 

In the network monitoring space, existing solutions 
consider only a pre-defined set of well-known traffic metrics. 
To deal with overload situations, the accuracy of this fixed set 
of metrics is degraded by means of traffic filtering, dynamic 
sampling and/or aggregation techniques. Examples of 
monitoring systems implementing these methods include 
Adaptive NetFlow [3] and the robust traffic summaries 
proposed in [4]. 

Data stream management systems are push-based systems 
specifically designed for continuous query processing. One of 
the major challenges in these systems, like in network 
monitoring, is to support real-time processing with limited 
system resources. Thus, research proposals in this area are 
very relevant to our work. They include solutions that define a 
declarative query language, with a limited set of operators, for 
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Fig. 1  Resource management problem space 
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which the cost and selectivity is assumed to be known. In the 
presence of overload, operator-specific load shedding 
techniques are implemented, such as selectively discarding 
tuples or computing approximate summaries. This is the case, 
for example, of Aurora [5] and TelegraphCQ [6]. 

Existing proposals in both environments incur a key 
limitation: they reduce the flexibility of the system by either 
restricting the queries to a pre-defined set of well-known 
metrics or limiting them to a small set of operators with 
known and constant cost. This reduces significantly the 
possible applications and scenarios where these systems can 
be used. Our approach differs from those solutions in that it 
does not require any explicit knowledge of the traffic queries, 
allowing them to perform any arbitrary computation on the 
incoming traffic stream. Instead, queries are treated as black 
boxes with variable input traffic, output results, and arbitrary 
resource consumption. 

III. SYSTEM OVERVIEW 
The CoMo platform (Continuous Monitoring) [7] is an 

open source passive network monitoring system designed for 
capturing network traffic at high speeds and computing user-
defined queries in real time. CoMo follows a modular 
approach where users can easily define traffic queries as plug-
in modules written in the C programming language. In order 
to provide developers with maximum flexibility, CoMo does 
not impose any restriction on the data structures a query can 
use, allowing them to perform any arbitrary computation on 
the incoming traffic stream. As a consequence, the platform 
does not have any explicit knowledge of the cost of each 
query. This flexibility makes the problem of managing the 
system resources particularly challenging. More details about 
the CoMo platform can be found in [7]. 

Given the bursty and unpredictable nature of network 
traffic, in order to prevent uncontrolled packet losses (which 
would have an unpredictable impact on the accuracy of the 
results), the system must anticipate overload situations and 
take load shedding decisions in advance. Since the platform 
considers all queries as black boxes, the only solution consists 
of measuring their resource requirements and learning their 
resource usage patterns from these external observations. 

Without any knowledge about the queries, we infer their 
cost from the correlation between a large set of predefined 
traffic features and the actual CPU usage of each query. As we 
describe in Section IV.A, a traffic feature is simply a counter 
that describes a specific property of a sequence of packets. For 
example, potential features could be the number of packets in 
the sequence, the amount of bytes, the number of unique IP 
destination addresses, etc. The main advantage of the features 
we compute is that they are lightweight with a deterministic 
worst case computational cost. 

The basic intuition behind our method comes from the 
empirical observation that the cost of a query is dominated by 
the overhead of maintaining the data structures needed to keep 
its state, which directly depends on different properties of the 
input traffic (i.e. the traffic features). For example, the cost of 
a query performing some sort of flow classification using a 

hash table will mainly depend on the number of new flows in 
the traffic, assuming that the cost of creating a new entry is 
much higher than the cost of updating an existing one. The 
main novelty of our approach is that it does not require any 
explicit knowledge of the queries. This way we preserve a 
high degree of flexibility in the monitoring system, increasing 
the potential applications and network scenarios where it can 
be used. 

Fig. 2 presents the four components of our prediction and 
load shedding system, which are described in detail in the 
following sections. The CoMo monitoring system collects the 
traffic from the wire, filters the packets of interest and groups 
them in time-fixed batches (e.g. 100ms). Each batch is then 
analyzed by our system in order to predict the CPU cycles 
required by each query to process the entire batch, based on 
recent observations of the previous resource usage. If the 
prediction exceeds the system capacity, the load shedding 
subsystem discards a portion of the packets via packet or flow 
sampling to reduce the load of the system. Finally, the 
resulting batch is processed by each query and the actual CPU 
usage is measured to update the history maintained by the 
prediction subsystem. In order to measure the CPU usage, we 
use the time-stamp counter (TSC) as described in [1]. 

IV. PREDICTION METHOD 
In this section we describe the three components of our 

online prediction method (i.e. feature extraction, feature 
selection and multiple linear regression) that constitute the 
core of our resource management system. 

A. Feature Extraction 
Traffic features are the input of our prediction method. Our 

goal is to extract a set of features that, with low overhead, 
provides enough information on the traffic characteristics that 
dominate the processing cost of a wide range of queries. 

A feature that is too specific would add overhead without 
contributing to build a better resource usage model. 
Alternatively, a feature could provide valuable information 
but have a cost, in terms of CPU, comparable to the cost of a 
query, which is not desirable. 

In our system, we use two kinds of counters. First, two 
simple counters: the number of packets and the number of 
captured bytes. These are of very low cost, but can explain a 
great portion of the cost of most queries. Second, we calculate 
a set of traffic aggregates that hold the count of unique 
occurrences of several combinations of the 5-tuple header 
fields in the traffic (e.g. unique destination IP addresses and 
ports). A detailed list of the features we compute on the traffic 
stream is available in [1]. 

A naive algorithm for calculating these traffic aggregates 

 
Fig. 2  Prediction and load shedding system
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would be very expensive in terms of both CPU time and 
memory space. Fortunately, the recent literature provides us 
with efficient approaches that can obtain approximate counts 
in linear time and bounded memory space [8]-[9]. In this work, 
we use multi-resolution bitmaps [8] to calculate traffic 
aggregates. 

B. Feature Selection 
The set of features presented in the previous section helps 

to explain the cost of many queries. However, not all the 
extracted features are relevant to each query. The feature 
selection stage selects the relevant features that exhibit 
correlation with the cost of the traffic queries. This has two 
beneficial outcomes: it reduces the noise in the prediction and 
it lightens the cost of building the prediction model. 

Our feature selection algorithm is based on the fast 
correlation-based filter (FCBF) from [10]. Based on past 
observations of each query, this algorithm can discard both 
features that do not exhibit any correlation with the CPU 
usage (irrelevant features) and features that become linear 
combinations of other relevant features under a particular 
input traffic (redundant features), and therefore do not 
provide any new information to build the prediction model. 

C. Multiple Linear Regression 
The main thesis behind our resource management approach 

is that our simple traffic features provide a characterization of 
the incoming traffic that can be used to build a prediction 
model of the CPU usage of each query. 

The system maintains a table with the previous values of 
each traffic feature together with the actual CPU usage of each 
query. The prediction subsystem uses this information to 
generate a prediction model of each query. It considers the 
selected features as predictors, whereas the CPU usage is the 
response variable (i.e. the variable we want to predict).  

We experimentally observed that no single predictor 
provides enough information to explain in detail the cost of 
most queries. Instead, it is the combination of many features 
that can help to accurately predict the CPU usage of a query. 
Our system uses a multiple linear regression (MLR) to predict 
the response variable from several predictors. 

The MLR studies the relationship between a response 
variable Y and p predictor variables X1, X2, …, Xp, and 
assumes that Y is a linear function of the predictor variables. 
The general form of a linear regression model with a history 
of n observations can be expressed as follows [11]: 

ni
XXXY ipipiii

,,2,1
,22110

…
"

=

+++++= εββββ
 (1) 

In the previous expression, all Yi variables correspond to 
previous observations of the response variable. The β1 … βp 
variables are known as the regression coefficients or the 
weight that each predictor variable has on the response 
variable. Using the ordinary least squares (OLS) procedure, 
the estimators b of the β coefficients are calculated so that the 
sum of squares of the residuals εi is minimized.  

Note that the MLR assumes that the relationship between 

the cycles consumed by a query is in fact a linear combination 
of the traffic features. While in practice in our system the 
MLR provides accurate results, as we show in Section VI, 
other methods that can account for non-linear relationships 
between predictors and response variables constitute an 
important piece of future work. 

V. LOAD SHEDDING 
In this section, we present our approach for dynamically 

reducing the system load. In particular, our system controls 
the CPU cycles allocated to each query by dynamically 
modifying the sampling rate applied to each of them, based on 
the output of the prediction subsystem. 

In our current implementation, we only support packet and 
flow sampling, and assume that each query selects at 
configuration time the option that would yield the best results. 
We implement packet sampling by randomly selecting packets 
in a batch with probability p (i.e. the sampling rate), while 
flow sampling randomly selects entire flows with probability 
p. To efficiently implement flow sampling, we compute a 
randomly chosen hash function [12] on the 5-tuple flow ID, 
which distributes the flows randomly. Then, if the hash value 
is smaller than p × (2n-1), where n is the number of bits of the 
hash value, the packet is selected. Finally, the actual number 
of packets or flows can be simply estimated by multiplying 
the number of sampled packets or flows by the inverse of the 
sampling rate. 

It is clear that there is a large set of imaginable queries that 
are not able to correctly estimate their unsampled output from 
sampled streams, even when flow sampling is used instead of 
packet sampling. For those queries, we plan to implement 
other load shedding mechanisms, such as computing different 
lightweight summaries of the input data streams [6]. 

A. Load Shedding Algorithm 
Packet or flow sampling is applied only when the sum of 

the predictions for all queries (predicted_cycles) exceeds an 
overall threshold (available_cycles), which is dynamically set 
according to the CPU cycles available in the system to process 
a batch. Since batches corresponds to fixed time bins (e.g. 
100ms in our experiments), this threshold can be easily 
computed as available_cycles = (0.1 × CPU_frequency) − 
overhead, where overhead is the cost of our prediction method 
plus the cycles spent by other tasks carried out by CoMo, but 
not directly related to query processing (e.g. packet collection 
and memory management). This overhead is measured using 
the TSC. When the prediction exceeds the available_cycles 
threshold, the sampling rate to be applied is set in all queries 
to the ratio available_cycles / predicted_cycles. However, this 
ratio is only an estimate of the most appropriate sampling rate, 
because the CPU usage of a query can depend on several 
traffic features or on a different feature than the number of 
packets (or 5-tuple flows when flow sampling is used). 

For this reason, before processing the sampled batch, we 
recompute the prediction in order to assure that the applied 
sampling rate is enough to shed excess of load. We repeat this 
process until the prediction is below the threshold or a fixed 
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number of retries is exceeded. In [1] we also show how the 
sampling rate can be corrected to compensate for the 
prediction error observed in previous batches and to account 
for the space available in the system buffers. 

VI. ROBUSTNESS AGAINST TRAFFIC ANOMALIES 
Network monitoring systems are mostly needed in presence 

of unfriendly traffic mixes. The system may observe extreme 
traffic conditions when it is monitoring an ongoing denial of 
service attack, worm infection, or even an attack targeted to 
the measurement system itself. During these events, the query 
results, even if approximate, are extremely valuable to 
network operators. In this section, we evaluate the robustness 
of an actual implementation of our prediction and load 
shedding methods in the presence of anomalous traffic. In [1] 
we evaluate our load shedding scheme under normal traffic 
conditions. 

A. Alternative Approaches 
In this experiment, we compare the robustness of our 

prediction model against two well-known prediction 
techniques, namely the Exponentially Weighted Moving 
Average (EWMA) and the Simple Linear Regression (SLR), 
in the presence of traffic anomalies. 

Exponentially Weighted Moving Average. EWMA is one 
of the most frequently applied time-series prediction 
techniques. It uses an exponentially decreasing weighted 
average of the past observations of a variable to predict its 
future values. EWMA can be written as: 

ttt YYY ˆ)1(ˆ
1 αα −+=+    (2) 

where 1
ˆ

+tY  is the prediction for the instant t+1, which is 
computed as the weighted average between the real value of Y 
and its estimated value at the instant t, and α is the weight, 
also known as the smoothing constant. The results shown in 
this section consider the best prediction accuracy we obtained 
in most of our experiments, which corresponds to α = 0.3. 

Simple Linear Regression. SLR is a particular case of the 
multiple linear regression model where one single prediction 
variable is used. The SLR model can be written as: 

iii XY εββ ++= 10  i = 1, 2, …, n    (3) 
where X is the prediction variable, β0 is the intercept, β1 is the 
unknown coefficient and εi are the residuals. As in the case of 

MLR, the estimation b for the unknown β is obtained by 
minimizing the sum of the squared errors. In the experiments 
presented in this section, we use the number of packets as 
predictor to compute the linear regression.  

In order to test our prediction system (that drives the load 
shedding scheme), we injected synthetic anomalies in a 30-
minute trace collected in November 2005 at a Gigabit 
Ethernet link that connects the Catalan and the Spanish 
National Research and Education Networks. The trace 
accounts for 103.67M packets, with an average rate of 360.46 
Mbps and a peak rate of 483.28 Mbps. 

We have generated many different types of attacks, such as 
simple volume-based denial of service attacks (i.e. an 
overwhelming number of packets destined to a single target), 
worm outbreaks (i.e. a large number of packets from many 
different sources and destinations while keeping fixed the 
destination port number) or attacks against our monitoring 
system (i.e. attacks that result in a highly variable and 
unpredictable workload for the system). 

Fig. 3 shows the performance of each method in the 
presence of attacks targeted to the monitoring system. We 
injected in the trace a distributed denial of service attack with 
spoofed source IP addresses and ports, which goes idle every 
other second to generate a higher variable workload. 

The figure shows the performance for a query (called flows) 
that aggregates the incoming packets into flows and reports 
the number of packets and bytes per flow. We chose this 
query, from those in the standard distribution of CoMo, 
because it is the most sensitive to this type of attacks. 

In Fig. 3(c), we can see that MLR predictions track the 
actual CPU usage very closely, with errors around the 10% 
mark (with an average error of 4.77%). MLR can anticipate 
the increase in CPU cycles while EWMA (Fig. 3(a)) is always 
a little behind resulting in large oscillations in the prediction 
error. In the case of SLR (Fig. 3(b)), since the number of 
packets does not vary as much as the number of 5-tuple flows, 
the errors are more stable but persistently around 30% (it 
converges to the average cost between the anomalous and 
normal traffic). 

We also generated other types of attacks that targeted other 
queries with similar results. For example, we generated an 
attack consisting of sending bursts of 1500 byte long packets 
for those queries that depend on the number of bytes (e.g. 
collecting a packet trace and pattern matching). 
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Fig. 3  Prediction accuracy in the presence of Distributed Denial of Service Attacks 
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B. Impact of Overload Situations 
In the following experiment, we evaluate the impact of this 

kind of attacks on an actual implementation based on our 
prediction method. As an example, we consider a query that 
tracks the number of active (i.e. for which at least one packet 
was observed) 5-tuple flows in the packet stream and reports 
the count every measurement interval. We have implemented 
this query with a few simple modifications to the flows query 
used in the previous experiment. 

In order to ease the exposition of the results, we manually 
set a limit (available_cycles) on the amount of CPU cycles 
available to the query for processing a batch (set to 6M cycles 
per batch). The sampling rate to be applied, when the CPU 
usage is above this threshold, is set to the ratio 
available_cycles / predicted_ cycles.  

During 20 seconds we inject a burst of traffic 
corresponding to a SYN-flood attack with spoofed IP source 
addresses to force higher CPU usage.  

Fig. 4 shows the evolution of the CPU usage during the 
anomaly with and without load shedding (with flow sampling) 
for the trace in our dataset. Without load shedding, the CPU 
usage increases from 4.5M to 11M cycles during the anomaly 
(assuming an infinite buffer that causes no packet drops). 
Instead, when load shedding is enabled, the CPU usage is well 
under control within a 5% margin of the target usage. 

Fig. 5 shows the query accuracy during the anomaly. To 
estimate the error in the absence of load shedding, we emulate 
a system with a buffer of 200ms of traffic and 6M cycles 
available to process incoming traffic. If the CPU usage 
exceeds 6M cycles per batch, we assume that a queue of 
packets starts building up until the buffer is full and incoming 
packets are dropped without control. When load shedding is 
enabled, the error in the estimation of the number of flows 
using flow sampling is less than 1%, while when using packet 
sampling it is slightly larger than 5%. Without load shedding, 
the measurement error is in the 35-40% range. 

VII. CONCLUSIONS AND FUTURE WORK 
Robustness against overload situations is crucial for 

network monitoring systems, which must inevitably deal with 
arbitrary data and computations in a resource constrained 
environment. In this paper, we discussed the challenges 
involved in managing the resources of network monitoring 
systems and reviewed the design of an online predictive 
approach to cope with overload situations. 

Our method is based on modeling the resource usage of 
arbitrary traffic queries in real-time by observing the 
characteristics of the input traffic. We use a dynamic set of 
traffic features to build a prediction model of the CPU usage. 
This model is used to accurately predict the CPU requirements 
of the system and dynamically select the highest sampling rate 
that prevents packet losses. 

We implemented our method in the CoMo platform and 
evaluated its robustness in front of overload situations 
injecting synthetic traffic anomalies. Our results indicate that 
the system efficiently handles extreme overload situations and 
minimizes their impact on the accuracy of the results. 

The technique presented in this work is intentionally simple 
to operate in real-time. We are currently working on allowing 
users to define utility functions for their queries to maximize 
the utility of the monitoring system. Another important piece 
of future work consists of extending our techniques to other 
system resources and using similar approaches to address the 
resource management problem in a distributed environment. 
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