Distributed Sampling for On-line SLA Assessment

R. Serral-Gracià¹ P. Barlet-Ros¹ J. Domingo-Pascual¹

¹Broadband Communications Centre (CBA) Technical University of Catalonia (UPC)

IEEE-LANMAN, Cluj-Napoca, Rumania, 3-5 September 2008

- Introduction
- Network Parameter Acquisition System
- Static Traffic Sampling
- 4 Evaluation
- 5 Conclusions and Future Work

- Introduction
 - Motivation
 - Objectives
- Network Parameter Acquisition System
 - Description
 - Deployment Scenario
- Static Traffic Sampling
- Evaluation
- Conclusions and Future Work

Evolution

- Content Oriented Internet
 - New user demands
 - More services
- New traffic profiles
 - Real-time traffic
 - Peer-to-peer
- Constraints on network metrics
 - Latency
 - Jitter
 - Packet Losses

New Requirements

- Operators need to monitor the network status
 - Detect congestion
 - Detect SLA violations
 - Take actions when required
 - Users should not notice potential problems
- Customers want guaranties about the network quality
 - Even if they have to pay
- Standardization Bodies push new recommendations for SLA assessment (ETSI EG 202 057-4)

Objectives

- Design a distributed infrastructure
 - Traffic monitoring of network metrics
 - SLA Assessment
 - On-line usage (real-time)
- Scalable system
 - Intra-domain reporting

- Introduction
 - Motivation
 - Objectives
- Network Parameter Acquisition System
 - Description
 - Deployment Scenario
- Static Traffic Sampling
- Evaluation
- Conclusions and Future Work

Basics

- Distributed system for on-line QoS reporting
- Compute the most important metrics
 - One-Way Delay
 - Inter Packet Delay Variation
 - Packet Loss Ratio
- Reduced latency on the reporting

Intra-Domain Scenario

Entities

- Monitoring Entity (ME)
 - Technology Independent Collection point
 - Extracts relevant traffic information
 - Timestamp
 - Packet Size
 - Packet Identifier
 - Flow Identifier
- Processing Entity (PE)
 - Matches packet information among ME
 - Extracts final network metrics
 - Logs or informs about the results

Identifiers

- Flow Identifier
 - Src and Dst Address
 - Src and Dst Ports
 - Protocol

- Packet Identifier
 - Total Length
 - Datagram ID
 - TCP Window (for retransmissions)
 - 27 Bytes of the payload

Issues of the proposal

- Per packet reporting is too expensive in resources
 - ullet Control traffic of \sim 18% of the total
- Also it does not scale
 - The PE has too much information to analyze
- We need ways of easing this
 - Traffic Sampling

- Introduction
 - Motivation
 - Objectives
- 2 Network Parameter Acquisition System
 - Description
 - Deployment Scenario
- Static Traffic Sampling
- Evaluation
- Conclusions and Future Work

Requirements

- Reduce the PE overhead by sending less packet information
- How to guaranty that all the ME collect the same packets
 - Hash sampling
- We need information about all the flows under analysis
- Efficient in computational requirements

Hash Sampling

- All the packets treated equally
- Some flows might get sampled out
- Not suitable for our requirements

Structure of the solution

- Two level hash table
- We should avoid too many collisions
- The size of the hash tables determine the memory requirements
- Hash table flushing interval

- Introduction
 - Motivation
 - Objectives
- 2 Network Parameter Acquisition System
 - Description
 - Deployment Scenario
- Static Traffic Sampling
- Evaluation
- Conclusions and Future Work

Testbed

- 12 Testbed across Europe (IST-EuQoS)
- 5 Different countries
- Overlay network over Gêant
- ullet \sim 520 tests with different traffic rates
 - 64Kbps low rate flows
 - 1Mbps big packets
 - 1.5Mbps small packets high rate

Methodology

- Capture the full trace
- Apply the sampling off-line (proof of concept)
- Compare the sampled results with the perfect knowledge
- Estimate the error
- *t* = 175*ms*
- A = 1297

One-Way Delay Results

- Good Accuracy even for low sampling rates
- Normally OWD do not change abruptly
- Few packets are representative of the whole set per bin

Packet Loss Ratio Results

- BAD Accuracy even for high sampling rates
- Caused by the amount of collected packets per bin
 - Low rate flows can have at much 3 packets per bin

- Introduction
 - Motivation
 - Objectives
- 2 Network Parameter Acquisition System
 - Description
 - Deployment Scenario
- Static Traffic Sampling
- Evaluation
- 5 Conclusions and Future Work

Conclusions

- System for on-line SLA assessment
- Basis for a solid intra-domain metric reporting framework
- Efficient intra-domain reporting solution

Future Work

- Enhance the platform to support inter-domain scenarios
- Other sampling methodologies (Dynamic Sampling)

Distributed Sampling for On-line SLA Assessment

R. Serral-Gracià¹ P. Barlet-Ros¹ J. Domingo-Pascual¹

¹Broadband Communications Centre (CBA) Technical University of Catalonia (UPC)

IEEE-LANMAN, Cluj-Napoca, Rumania, 3-5 September 2008