
Towards accurate classification of HTTPS traffic in
Software-Defined Networks

José Suárez-Varela
UPC BarcelonaTech, Spain
Email: jsuarezv@ac.upc.edu

Pere Barlet-Ros
UPC BarcelonaTech, Spain

Talaia Networks, Spain
Email: pbarlet@ac.upc.edu

Abstract—In nowadays Internet, there is a strong trend to
encrypt the traffic in order to protect users’ privacy. This results
in a hard challenge for traffic classification, as the payload in the
packets cannot be accessed anymore. In this context, some tech-
niques were proposed for traditional networks in order to classify
this traffic. However, we could not find previous works addressing
encrypted traffic classification considering the particularities of
the Software-Defined Networking (SDN) paradigm. In this paper
we present an OpenFlow-based classification system which com-
bines techniques leveraging information in SSL/TLS certificates
and DNS traffic to perform accurate flow-level classification for
encrypted traffic. We make experiments with real-world traffic
to evaluate the overall classification accuracy of our system
as well as the accuracy detecting specific popular applications
(e.g., Netflix). Furthermore, we assess the processing overhead
when deploying our system in SDN environments. As a result,
we observe that the support provided by OpenFlow enables to
achieve a high accuracy with a more reduced processing overhead
than in traditional networks, where typically the whole traffic is
mirrored to an external collector that classifies the traffic.

I. INTRODUCTION

Traffic encryption is gaining a prominent role in the Internet
of today. There is a strong evidence that more and more
applications are migrating to web services with encryption
protocols in order to protect the privacy of their end-users.
Thus, some of the major players of the web, such as Google,
Facebook, Twitter or Netflix have gradually moved towards
encrypted solutions. The importance of this new communica-
tion paradigm is also reflected in [1], where they estimated
that 70% of the global Internet traffic would be encrypted by
the end of 2016, even exceeding 80% in many networks.

Nowadays, a plethora of applications based on secured
web services are continuously emerging with very diverse
demands of Quality of Service (QoS) requirements. They
range from services where the most relevant factor is the
average bandwidth achieved (e.g., cloud storage services),
to some others where the end-to-end delay is critical (e.g.,
VoIP). This new scenario forces the necessity of performing
a fine-grained network management to optimally exploit the
resources in the networks and, in turn, be able to provide
the Quality of Experience (QoE) desired by the end-users. In
this context, the advent of the Software-Defined Networking
(SDN) paradigm enables to achieve a level of flexibility to
manage the networks never seen before. The main success of
this novel proposal lies in the use of a logically centralized
control plane, which can make decisions with a global picture

of the state of the network. However, in order to make the
most of this new paradigm, it is essential to perform accurate
traffic monitoring and classification. This reveals the great
importance to identify the applications generating each flow
within the bulk of encrypted traffic, given that it implies a
large portion of the whole traffic in the networks. This valuable
information enables network managers to efficiently perform
some network tasks including traffic engineering, QoS level
enforcement, or anomaly detection among others.

All these facts pose a new challenge in the field of traf-
fic classification, since most of the traditional classification
techniques based on payload inspection become useless when
applied to encrypted traffic, as they do not have access to
the packet payload anymore [2]. Note also that, traditionally
some techniques based on behavioral classifiers [3] have been
proposed for traffic classification using only information at
the transport layer. However, they do not perform well in
current scenarios, which increasingly rely on platforms where
the content is dynamically distributed in shared infrastructures
(e.g., content delivery networks). Likewise, some proposals in
the literature also leverage some information extracted at the
transport layer to classify the traffic using machine learning
[4]. Nevertheless, they are not well suited for encrypted traffic,
as they cannot accurately discern between specific applications
when there are plenty of applications generating traffic over
the same protocol (i.e, using the same port).

In the light of the above, some cutting-edge classification
techniques have been proposed in order to achieve a com-
prehensive level of classification for encrypted traffic [5].
These techniques basically harness some information that
still remain unencrypted in the traffic in order to unveil the
applications generating each encrypted flow. In this paper,
we focus on two different approaches that we envision that
are good candidates to be deployed in SDN-based networks:
(i) those techniques which leverage the information in the
SSL/TLS certificates exchanged during the initial handshakes
and (ii) those methods extracting information from the DNS
traffic to then associate encrypted flows to specific domain
names. In particular, we consider the techniques proposed in
[2] [6] to extract the Server Name Indication (SNI) fields from
the SSL/TLS certificates prior to establishing an encrypted
connection, and the frameworks presented in DN-Hunter [7]
and SFMap [8], where they extract the server hostnames from
the DNS queries that clients execute before opening new flows.

The main goal of this paper is to analyze how feasible
is to implement in SDN-based networks the classification
techniques for encrypted traffic mentioned above. In particular,
we rely on the OpenFlow protocol [9] to implement these
classification methods and study the tradeoff between accu-
racy and computing resources needed to deploy them. More
specifically, our contributions are the following:

• We designed a classification system for SDN-based envi-
ronments which combines techniques specifically targeted
to encrypted HTTPS traffic. Particularly, we implemented
two classification techniques: (i) based on the hostname
information of the SNI fields in the SSL/TLS certifi-
cates, and (ii) based on the domain name information
extracted from the DNS records in the traffic. To the
best of our knowledge, there are not previous works
directed to tackle traffic classification for encrypted traffic
considering SDN-based scenarios.

• Our implementation makes only use of OpenFlow [9]
native features. Thus, we leverage the flow-based process-
ing in OpenFlow to implement our classification system
without incurring in a high processing overhead in the
controller. Note that our solution is not only compatible
with OpenFlow, but also can be deployed using some
other novel proposals for the southbound interface of
SDN that operate at a flow granularity (e.g., P4 [10]).

• We evaluate the overall accuracy of each of the clas-
sification techniques we implemented and additionally
provide some results specifically regarding some popular
applications. All this evaluation was done with a large
dataset containing real-world traffic annotated with labels
for encrypted flows.

• We assess the processing overhead that implies to execute
our classification system in a SDN controller.

As a result, we show that OpenFlow allows to efficiently
deploy accurate classification techniques for encrypted traffic.
Thus, this protocol provides support to send to the SDN
controller only the desired slice of traffic we want to process.
In our case, the controller only processes a reduced amount of
traffic related to the DNS queries (∼0.08% of the total bytes
in our real-world traffic traces) and the first few packets of
the HTTPS flows. In contrast, in traditional networks typically
all the traffic is forwarded to an external collector (i.e., port
mirroring) where all the packets are inspected.

The remainder of this paper is structured as follows: Firstly,
in Section II, we provide a brief overview of OpenFlow
focusing on the features involved in our design. Section
III defines the design of our OpenFlow-based classification
system for encrypted traffic. In Section IV, we evaluate
our classification system using real-world traffic. Here, we
assess the accuracy of the different classification methods
implemented and the overhead contribution when deploying
our classification system. Section V provides a summary of
the most relevant achievements in the literature regarding the
work we present in this paper. Lastly, in Section VI, we expose
some conclusions and outline some ideas for future work.

II. OPENFLOW BACKGROUND

Software-Defined Networking, in a nutshell, emerged as a
proposal to separate the control and data planes of the network
in different logical entities for the sake of flexibility in network
management. In particular, the control plane is implemented
in some entities called SDN controllers, while the data plane
still remains in the switches of the underlying infrastructure.
These two planes should be completely decoupled and can
communicate through an interface known as the southbound
API. In this context, the OpenFlow protocol [9] was the first
proposal to standardize this interface. Thus, since its inception
it has been very well received by the academia and industry to
the extent that nowadays it has become a dominant protocol
in SDN-based commercial products.

Unlike routing in traditional IP networks, OpenFlow intro-
duces the concept of flow-based traffic management. In this
way, the behavior of the network is defined by sets of rules
which are installed in the switches by the SDN controllers
and aggregate the traffic in different flows that have the same
treatment. As a consequence, it enables to perform a very
flexible management, since it is possible to apply different
actions to flows with a level of granularity at the transport
layer (e.g., ports). Basically, the OpenFlow rules installed in
the switches include the following elements: (i) Match fields:
a set of fields (i.e., specific values in the packet headers) that
determines the packets that will be aggregated in the rule, (ii)
Instructions: a set of actions that will be applied to packets
matching the rule (e.g., forward, drop, modify header fields)
and (iii) Timeouts: records to define when the rule will be
removed from the switch.

Generally, in OpenFlow-based environments two different
modes of operation can be differentiated: (i) proactive and (ii)
reactive. The former one consists of installing some default
rules in the switches to determine the actions to be applied
to future incoming traffic. This is similar to the operation in
traditional IP networks, where the routing is typically based on
predefined rules considering the destination IPs in the packets.
Alternatively, the controller can operate reactively to make
decisions in real time for particular flows based on the current
state of the network. In more detail, the reactive installation
of rules works as follows. When a packet matches a rule
installed in the switch with an action output to controller, this
packet (or a portion of it) is encapsulated and forwarded to
the controller via an OFPT PACKET IN message. Then the
controller can process the packet and may install a flow rule
(via an OFPT FLOW MOD message) with a set of actions to
be applied for the subsequent packets of the flow. Remark that
in the reactive mode, packets belonging to the same flow are
sent to the controller until a specific rule is installed for them
in the switch. As a result, the SDN controller can receive
more than one packet belonging the same flow. Likewise,
when installing the flow rule, it is possible to define two
timeouts (hard and idle) associated to this rule. The hard
timeout determines the absolute time that the entry can remain
in the switch since it was installed, while the idle timeout

defines the maximum time interval between two consecutive
packets matching this rule.

As a final remark, note that both operation modes can be
combined to define proactively an amount rules for some slices
of the traffic and process reactively some flows for which
is particularly interesting to perform a more comprehensive
management (e.g., QoS-aware traffic engineering).

III. DESIGN OF THE CLASSIFICATION SYSTEM

In this section we describe the design and implementation
of our flow-level1 classification system for HTTPS traffic. As
mentioned earlier, we combined some techniques previously
proposed for traditional networks and implemented them in a
SDN controller considering the particularities of OpenFlow-
based environments. Particularly, we considered the two fol-
lowing techniques: (i) DPI (Deep Packet Inspection) on the
first few packets of HTTPS flows in order to extract the server
hostnames from the SSL/TLS certificates exchanged in the
handshakes, and (ii) DPI on DNS traffic in order to extract
the server domain names resolved by clients prior to establish
encrypted connections. This provides a deep insight of the
encrypted traffic in the network, as the server hostnames allow
to unveil the applications generating each flow in the traffic.

First of all, we provide a description of the two classification
modules that compose our classification system:

1) HTTPS traffic classifier: This classifier processes the
HTTPS traffic that arrives to the controller in order to extract
the server hostname included in the SSL/TLS certificates.
That way, packets are inspected to parse the SNI (Server
Name Indication) field of the certificates exchanged during the
handshake of each encrypted connection. As they do in [2],
we use the SNI strings to then associate the server hostnames
to specific applications. For instance, a hostname containing
“mail.google.com” provides enough information to infer that
the flow was generated by the Google Gmail application.

In order to implement this module with OpenFlow, the
controller proactively adds flow rules in the switches to receive
the packets matching port 443. However, this policy might
imply a high processing overhead for the controller, as it
should inspect every HTTPS packet in the traffic. Note that, the
classification technique implemented in this module typically
extracts only information from the first few packets of each
flow, where the certificates are present. The rest of the flow
is completely encrypted and, thereby, it is not possible to
extract relevant information from the payload. In view of
this, we leverage the reactive operation mode in OpenFlow
to receive in the controller only the first few packets of each
HTTPS flow. Thus, when a HTTPS packet is processed by this
module, the controller reactively installs a specific flow entry
with high priority in the switch. This rule allows to apply
directly in the switch the convenient forwarding action(s) for
the subsequent packets matching the 5-tuple fields of the flow
and avoids sending these packets to the controller. As a result,

1In the rest of the paper we consider a flow as a set of packets sharing the
same IP 5-tuple [src and dst IPs, src and dst ports, IP protocol].

it enables to significantly save the processing power needed
in the controller without decreasing the classification accuracy
achieved by this module.

In more detail, the controller will receive packets belonging
the same flow during the time interval from the arrival of the
first packet of a flow, to the time when a specific flow entry
is installed in the switch to process subsequent packets of
this flow. This time interval mainly depends on the following
factors: (i) the time to process an incoming HTTPS packet
in the switch and forward it to the controller, (ii) the Round-
Trip Time (RTT) between the switch and the controller, (iii)
the time to process the packet in the controller and send
to the switch an OFPT FLOW MOD message to install a
flow entry, and (iv) the time in the switch to install the new
entry in the flow table. The RTT depends on some features
of the control infrastructure that connects the switches with
the SDN controllers (e.g., the end-to-end delays, the capacity
or the utilization of the links). The first and fourth factors
mainly depend on the processing power of the switches. And
the second factor depends on the processing power and the
workload in the controller.

Furthermore, to make our implementation more efficient,
when a packet arrives to this module we first check if its
associated flow was already labeled. That way, we only inspect
the packet if its flow was not classified yet.

In order to implement this module in our system, we made
use of the open source tool Bro IDS [11], which has support
to extract the SNI fields from certificates.

2) DNS classifier: The technique implemented in this
module is based on the assumption that clients typically send
a DNS query to resolve the server IP addresses prior to
establish HTTPS connections. Thus, monitoring all the DNS
queries enables to then associate the server IPs of encrypted
flows to their domain names2. As a result, this classifier
complements the one described previously by offering domain
name labels, which are very valuable to unveil the application
generating the flows [2]. Furthermore, this module achieves
early classification, given its ability to provide a label even
before flows are created. In other words, it is possible to
foresee from DNS traffic the flows that will traverse the
network [7]. This opens up the opportunity to leverage the
flexibility offered in SDN-based networks to perform fine-
grained management. Thus, for instance, it is possible to select
the paths at the beginning of incoming flows considering the
estimated QoS requirements of their associated applications.

In order to implement this classification technique with
OpenFlow, it is necessary to forward all the DNS traffic from
the switch to the SDN controller. To this end, the controller
proactively adds flow entries in the switch to receive all the
traffic matching port 53. We then show in Section IV-D that
the cost of processing the DNS traffic in the controller is quite
reduced.

2Remark that this technique cannot be applied in the odd case of HTTPS-
based applications that use hardcoded IPs to establish a connection with the
server, as the client does not perform a previous domain name resolution.

Fig. 1. Scheme of our classification system for encrypted traffic.

Note that in some cases clients do not execute a DNS query
prior to create a flow because they had already the domain
name resolution stored in their local caches. That way, it is
necessary to save in the controller the resolutions of DNS
queries at least for the period defined in the TTL (Time-To-
Live) records. Thus, our module maintains a local copy with
the records that should be stored in client’s DNS caches and,
thereby, can infer the domain names even if there is not a DNS
query just before the start of the flow.

This module was implemented in Python following the
guidelines presented in DN-Hunter [7] and SFMap [8] for
traditional networks. Particularly, in our solution we maintain
a copy of all the DNS records in the traffic, which a priori
represents an upper-bound of the accuracy that could be
achieved individually by those previous proposals.

In Fig. 1, we show a scheme that describes the operation of
our system in the SDN controller. Firstly, as our classification
system is only aware of HTTPS and DNS traffic, it filters (by
ports) the packets belonging these protocols to process them
separately. That way, when either the source or destination
ports match port 443, the packet is processed by our “HTTPS
traffic classifier”. Conversely, in case any of the ports match
the port number 53, the packet is processed by the “DNS
classifier” in order to store the resolutions from domain names
to IP addresses in DNS queries. That way, the “HTTPS traffic
classifier” processes the packets from each HTTPS flow until
a label is extracted from the certificates or a flow entry is
installed in the switches to avoid receiving more packets from
this flow. Additionally, we use the information collected by
the “DNS classifier” to obtain a label with the domain name
associated to each HTTPS flow.

IV. EVALUATION OF THE CLASSIFICATION SYSTEM

In this section we evaluate our classification system specifi-
cally designed for OpenFlow-based environments. To this end,
we make experiments with a ground truth we created from a
real-world traffic trace. All our experiments were directed to
answer the following questions:

- How accurate are the different classification techniques we
implemented?

- What is the processing cost in the SDN controller to run
the different classification techniques we implemented?

In short, our goal is to analyze how feasible is to deploy in
SDN-based networks the classification techniques we consid-
ered for HTTPS traffic.

A. Ground truth

In order to evaluate the accuracy of our classification
system, we created a ground truth using real-world traffic.
In particular, we use traffic from a large university network
which includes a collection of 4,676,795 different (5-tuple)
flows. More details about this trace are described in Table I.

TABLE I
SUMMARY OF THE TRAFFIC TRACE USED IN OUR EXPERIMENTS.

of flows # of packets Description

731,054 HTTPS flows

643,123 DNS flows

4,676,795 total flows

79,478,303 HTTPS packets

1,411,098 DNS packets

299,975,514 total packets

10 Gbps access link of a large Spanish
university, which connects about 25 faculties

and 40 departments (geographically distributed
in 10 campuses) to the Internet through the
Spanish Research and Education network

(RedIRIS)

Average traffic rate: 3.17 Gbps

Date: 17th March 2017

We built our ground truth using the tool Bro IDS [11], which
allows to process HTTPS traffic and extracts the hostnames
from the SNI fields in the SSL/TLS certificates. Thus, we
processed the whole trace (with 731,054 HTTPS flows) and
Bro reported a total of 540,505 HTTPS flows with a valid
SNI label. We consider that a label is valid when the SNI
field fulfills the following conditions: (i) it has at least one
character and (ii) it does not correspond to an IP address3.
As a result, our ground truth is a collection of those HTTPS
flows with a valid label. It includes the 5-tuple header fields
that identify each flow together with their correspondent clas-
sification labels. This selection of labels allows us to properly
evaluate and compare the server hostnames provided by the
two classifiers presented in Section III.

B. Evaluation of the overall accuracy of our system

In this section, we evaluate the accuracy of our system
classifying the HTTPS flows in the traffic.

We first recall that in OpenFlow-based networks, when
operating in a reactive mode, packets belonging to the same
flow are sent to the controller until a specific entry for them
is installed in the switch. As a consequence, our classification
system can receive more than one packet of each HTTPS flow.
In particular, it receives packets during the time interval from
the reception of the first packet of a HTTPS flow in the switch,
to the time when a flow entry is installed in the switch to avoid
receiving more packets. The factors that determine the duration
of this time interval depend on specific features of the network
scenario which were previously discussed in Section III.

For our experiments, we consider scenarios with a range
from 1 ms to 100 ms for this elapsed time until a specific flow
entry is installed in the switch. Thus, we use the real-world
traffic trace described in Table I to simulate different values
within this range of times. As a result, for each scenario, we
only process in our system the first packets of each HTTPS
flow that would be sent to controller. Note that, in case of the
DNS traffic we forward all the packets to the controller. We

3This condition was imposed because we could observe some flows with
certificates where the SNI field is an IP address, and it does not provide any
valuable information to unveil the application generating the flow.

then show in section IV-D that the total amount of DNS traffic
processed is quite reduced.

In our evaluation, we compare the labels that our classifiers
provide in the different scenarios to those labels provided in
the ground truth presented in Section IV-A. This allows us
to compare the results actually obtained in our system with
respect to the results that could be achieved if the controller
processed every HTTPS packet in the traffic. In other words,
the ground truth represents the results that could be obtained in
a traditional network where all the packets are inspected in an
external collector. Remark that in our scenario the controller
only receives the first few packets of each HTTPS flow.

In order to evaluate the accuracy of our system, we only
consider the second-level domains of the hostnames in the
ground truth. That is, if the hostname is “www.netflix.com”,
we take “netflix” as the correct label. Thus, we consider that a
classifier succeeds if it provides a label with the same second-
level domain than the label of the ground truth.

Fig. 2. Overall accuracy achieved by the classification system.

Fig. 2 depicts the results of accuracy obtained in our experi-
ments. Thus, the y-axis represents the percentage of flows well
classified with respect to the total number of HTTPS flows in
the ground truth (540,505 flows). The x-axis represents the
scenarios we simulated with different time intervals. This plot
shows the accuracy achieved by our classification system as
well as the results individually achieved by each of the two
classifiers that compose the system (described in Sec. III).
Note that, for the evaluation of the classification system, in
case both classifiers provide a hostname label, we select the
label provided by the HTTPS traffic classifier to compare
it against the ground truth. Otherwise, if only one of the
classifiers achieves a valid label, we take it to evaluate the
accuracy against the ground truth. From these results, we
infer that the HTTPS traffic classifier is quite sensitive to the
value of the time interval. This basically reflects that, the more
packets it receives from a flow, the more accuracy it achieves.
However, the results achieved by the DNS classifier are not
affected by the time interval of the scenario, as our system is
always fed by all the DNS traffic. We can also observe that
the combination of both classifiers in our system significantly
improves the accuracy achieved individually by each of them
in most of the cases.

As final remark, note that it is possible to extend the
time interval fixed by a network scenario by delaying in the
controller the execution of the order to install the flow entry in

the switch. This would allow to further improve the accuracy
achieved by the HTTPS classifier at the expense of a higher
processing overhead in the controller, as it would have to
process more packets. In Section IV-D we show the amount
of traffic processed in the controller with respect to the time
interval in different scenarios.

C. Evaluation of the accuracy for specific applications

In order to further analyze our system, we evaluated sepa-
rately the accuracy targeting specific popular applications. In
particular, we consider the domain names associated to the
applications shown in Table II. To this end, we use again the
trace in Table I and the ground truth described in Section IV-A.

TABLE II
APPLICATIONS EVALUATED IN OUR EXPERIMENTS.

Application name Domain name

Google Drive drive.google.com

Google Gmail mail.google.com

Netflix netflix.com

Whatsapp web web.whatsapp.com

YouTube youtube.com

In fig. 3, we show the accuracy results achieved by our
classification system for the different applications. That is the
percentage of flows well classified for each application with
respect to the total number of flows generated by each of
them in our ground truth. It is noteworthy that the results
follow different patterns depending on the application. Thus,
for example, our system achieves a high accuracy to identify
flows from Netflix even in scenarios with short time intervals.
However, other applications such as YouTube or Google Drive
are quite more sensitive to the time interval.

Fig. 3. Application-specific accuracy achieved by the classification system.

D. Evaluation of the overhead contribution of our system

Lastly, we evaluate the processing overhead contribution
that would imply to run our classification system in a SDN
controller. For this purpose, we use the real-world traffic trace
in Table I to quantify the amount of HTTPS traffic that our
system should process depending on the time interval of the
scenarios we considered previously.

Fig. 4 shows the traffic processed by our classification
system in terms of average number of packets per HTTPS
flow and percentage of bytes processed with respect to the
total amount of HTTPS traffic in the trace. Thus, for instance,
we can observe that the percentage of bytes varies from less

Fig. 4. Evaluation of traffic processed by the classification system.

than 0.4% for time intervals below 20 ms, to approximately
2.6% in the worst case with a time interval of 100 ms.

As for the DNS traffic, we could observe that, despite
our system processes all this traffic, it does not represent a
significant overhead for the controller. Thus, in the case of
our real-world traffic, the DNS traffic involves around 0.08%
of the total bytes in the trace, or 0.49% in terms of packets.

In any case, we can infer from these results that our design
achieves a much more reduced overhead than in the trivial
case in traditional networks where all the HTTPS traffic is
forwarded and processed in an external collector. All this
thanks to the management flexibility provided by OpenFlow.

V. RELATED WORK

We could find in the literature plenty of proposals based
on Machine Learning (ML) [4] or Deep Packet Inspection
(DPI) that have been traditionally used to classify the traffic.
However, in nowadays Internet, where traffic is becoming
more and more encrypted, most of these techniques become
obsolete. On the one hand, it does not make sense to apply
traditional DPI-based techniques, as the content in packet
payloads cannot be inspected anymore. On the other hand,
ML-based techniques are not sufficiently accurate, as they do
not behave well using features at the transport layer to classify
different applications generating web-based traffic (i.e., over
the same port). Alternatively, other techniques like behavioral
classifiers (e.g., BLINC [3]) rely on host profiling to classify
the traffic. Nevertheless, they are not appropriate for current
network scenarios as well, as nowadays many applications
rely on shared infrastructures where the content is dynamically
distributed (e.g., CDNs or cloud platforms).

In this context, some solutions were proposed to specifi-
cally address traffic classification over encrypted traffic [5] in
traditional networks. Thus, authors in [6], propose to extract
information from the SSL/TLS certificates in order to infer the
applications generating encrypted flows. Other authors, like
those in [12] or DN-Hunter [7], use the data in DNS queries
to obtain the server domain names associated to encrypted
connections. Likewise, more recent works as SFMap [8] or
[2] use specific DPI techniques to specifically tackle traffic
classification for web-based applications. However, we did not
find in the state-of-the-art any contributions addressing how
to implement these kind of classification techniques in SDN-
based networks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a classification system compliant
with OpenFlow which provides labels for each HTTPS flow in
the traffic. Our system efficiently combines two classification
techniques. One leveraging some information in the SSL/TLS
certificates, and another using the data in DNS queries. We im-
plemented our system and made experiments with real-world
traffic to evaluate how feasible is to deploy these classification
techniques in SDN-based networks. Our experiments were
directed to measure the accuracy of our system as well as
the processing cost to execute it in a SDN controller. Lastly,
we conclude that OpenFlow permits to implement these clas-
sification techniques achieving a reduced processing overhead
if we compare it with solutions in traditional networks, where
typically all the traffic is mirrored to an external collector that
processes every packet. As future work, we plan to use the
labeled flow-level reports provided by our system as inputs
to perform automatic fine-grained network management using
Deep Learning models in SDN controllers.

ACKNOWLEDGEMENT

This work was supported by the European Union’s H2020
SME Instrument Phase 2 project “SDN-Polygraph” (grant
agreement n° 726763), the Spanish Ministry of Economy
and Competitiveness and EU FEDER under grants TEC2014-
59583-C2-2-R (SUNSET project) and TEC2017-90034-C2-1-
R (ALLIANCE project), and by the Catalan Government (ref.
2014SGR-1427).

REFERENCES

[1] Sandvine, “Global Internet phenomena spotlight - Encrypted internet
traffic,” Feb. 2016.

[2] M. Trevisan, I. Drago, M. Mellia, and M. M. Munafò, “Towards Web
Service Classification using Addresses and DNS,” International Wireless
Communications and Mobile Computing Conference (IWCMC), pp. 38–
43, 2016.

[3] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel
Traffic Classification in the Dark,” Proceedings of the conference on
Applications, technologies, architectures, and protocols for computer
communications - SIGCOMM, vol. 35, no. 4, p. 229, 2005.

[4] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” Communications Surveys
& Tutorials, IEEE, vol. 10, no. 4, pp. 56–76, 2008.

[5] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods
for encrypted traffic classification and analysis,” International Journal
of Network Management, vol. 25.5, pp. 355–374, 2014.

[6] A. Tongaonkar, R. Torres, M. Iliofotou, R. Keralapura, and A. Nucci,
“Towards self adaptive network traffic classification,” Computer Com-
munications, vol. 56, pp. 35–46, 2015.

[7] I. Bermudez and M. Mellia, “Dns to the rescue: Discerning content and
services in a tangled web,” Proceedings of the IMC, pp. 413–426, 2012.

[8] T. Mori, T. Inoue, A. Shimoda, K. Sato, S. Harada, K. Ishibashi, and
S. Goto, “Statistical estimation of the names of HTTPS servers with
domain name graphs,” Computer Communications, vol. 94, pp. 104–
113, 2016.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. Mckeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” ACM SIG-
COMM Computer Communication Review, vol. 44.3, pp. 87–95, 2014.

[11] “The Bro Network Security Monitor,” https://www.bro.org/.
[12] Plonka, “Flexible Traffic and Host Profiling via DNS Rendezvous,”

Workshop SATIN, 2011.

