
Towards a NetFlow implementation for
OpenFlow Software-Defined Networks

José Suárez-Varela
UPC BarcelonaTech, Spain
Email: jsuarezv@ac.upc.edu

Pere Barlet-Ros
UPC BarcelonaTech, Spain

Talaia Networks, Spain
Email: pbarlet@ac.upc.edu

Abstract—Obtaining flow-level measurements, similar to those
provided by Netflow/IPFIX, with OpenFlow is challenging as it
requires the installation of an entry per flow in the flow tables.
This approach does not scale well with the number of concurrent
flows in the traffic as the number of entries in the flow tables is
limited and small. Flow monitoring rules may also interfere with
forwarding or other rules already present in the switches, which
are often defined at different granularities than the flow level.
In this paper, we present a transparent and scalable flow-based
monitoring solution that is fully compatible with current off-the-
shelf OpenFlow switches. As in NetFlow/IPFIX, we aggregate
packets into flows directly in the switches and asynchronously
send traffic reports to an external collector. In order to reduce the
overhead, we implement two different traffic sampling methods
depending on the OpenFlow features available in the switch.
We developed our complete flow monitoring solution within
OpenDaylight and evaluated its accuracy in a testbed with
Open vSwitch. Our experimental results using real-world traffic
traces show that the proposed sampling methods are accurate
and can effectively reduce the resource requirements of flow
measurements in OpenFlow.

I. INTRODUCTION AND RELATED WORK

The paradigm of Software-Defined networking (SDN) has
recently gained lots of attention from research and industry.
Since its inception in 2008, OpenFlow [1] has become a dom-
inant protocol for the southbound interface (between control
and data planes) in SDN. It is impossible to foresee whether
OpenFlow will ever evolve towards a standard measurement
technology, but potentially it could be a valid solution for
obtaining flow-level measurements. It can maintain records
with flow statistics and includes an interface that allows to
retrieve measurements passively or actively.

An inherent issue of SDN is its scalability. For a proper
design of a monitoring system, it is necessary to consider
the network and processing overheads to store and collect
the flow statistics. On the one hand, since the controllers
manage typically a large amount of switches in the network,
it is important to reduce the controllers’ load as much as
possible. On the other hand, the most straightforward way of
implementing per-flow monitoring is by maintaining an entry
for each flow in a table of the switch. Thus, obtaining fine-
grained measurements of all flows results in a great constraint,
since nowadays OpenFlow commodity switches do not support
a large number of flow entries due to their limited hardware
resources (i.e., the number of TCAM entries and processing
power) [2]. For the sake of scalability, a common practice

in traditional networks is to implement traffic sampling when
collecting flow measurements (e.g., NetFlow [3]). As for the
sampling schemes, two different approaches can be mainly
distinguished: packet sampling and flow sampling. The former
consists of sampling each packet with a specific probability
and aggregating the statistics in different records for each
flow1. While the latter consists of sampling a flow with some
probability and aggregating all the packets of this flow in a
separated record. Packet sampling has been extensively used in
traditional networks. It provides a coarse view of traffic, which
is sufficient for applications such as traffic volume estimation
or heavy hitters detection. However, with this method small
flows are underrepresented, if noticed at all. Several studies
have shown that packet sampling is not the most adequate
solution for some fine-grained monitoring applications [4].

In the light of the above, we present a monitoring so-
lution for OpenFlow which implements flow sampling. As
in NetFlow/IPFIX, for each flow sampled, we maintain a
flow entry in the switch which records the duration, packet
and bytes counts. We use timeouts to define when these
records are going to expire and, therefore, being reported
to the controller. We implement flow sampling because it
is easier to provide without requiring modifications to the
OpenFlow specification, although we also plan to provide a
packet sampling implementation in a future work.

A similar approach was previously used in [5], where they
use the measurement features of OpenFlow to maintain per-
flow statistics in the switches and assess the accuracy of the
counters and timeouts. However, their approach is not scalable
as it requires to install an entry in the flow tables for every
single flow observed in the traffic, it assumes that all rules have
been deployed proactively for every flow that will be observed
in the network, and it does not address the problem of how
monitoring rules interfere with the rest of rules installed in the
switch (e.g., forwarding rules). In contrast, our contribution
is the design of a complete flow monitoring solution that
performs flow sampling to address scalability issues and which
is transparent for the operation of other network tasks. In more
detail, it has the following novel features:

Scalable: We address the scalabity issue in two different
dimensions: (i) to alleviate the overhead for the controller

1Interpreting a flow as a set of packets sharing the same IP 5-tuple {src IP,
dst IP, src port, dst port, protocol}



and (ii) to reduce the number of entries required in the flow
tables of the switches. To these end, we designed two sampling
methods which depend on the OpenFlow features available in
current off-the-shelf switches. We remark that our methods
only require to initially install some rules in the switch which
will operate autonomously to discriminate (pseudo) randomly
the traffic to be sampled. To the best of our knowledge, there
are no solutions in line with this approach. For example,
iSTAMP [2] performs a flow-based sampling technique where
they make use of a multi-armed-bandit algorithm to “stamp”
the most informative flows and maintain particular entries to
record per-flow metrics. However, this solution specifically
addresses the detection of particular flows like heavy hitters,
while our solution provides a generic dataset of the flows in
the network. Likewise, iSTAMP needs to perform periodically
a training phase. It means that it is not autonomous as our
system.

Fully compliant with OpenFlow: Our monitoring sys-
tem implements flow sampling using only native features
present since OpenFlow 1.1.0. This makes our proposal more
pragmatic and realistic for current SDN deployments, which
strongly rely on OpenFlow. Furthermore, for backwards com-
patibility, we also propose a less effective monitoring scheme
that is compatible with OpenFlow 1.0.0, further increasing the
targets that can benefit from our solution. Additionally, we
could check there are many SDN switches (e.g., some models
of HP or NEC) which do not implement NetFlow, so our
solution would be a good alternative for these devices, since
it provides reports with flow-level statistics as in NetFlow. We
found in the literature some monitoring proposals for SDN
that rely on different protocols than OpenFlow. For instance,
OpenSample [6] performs traffic sampling using sFlow, which
is more commonly present than NetFlow in current SDN
switches. However, we consider sFlow has a high resource
consumption as it sends every sampled packet to an external
collector and maintains there the statistics. In contrast, our
system maintains the statistics in the switch. Alternatively,
some authors suggest to make use of different architectures
specifically designed for monitoring tasks. For example, in
[7], they propose using OpenSketch, where some sketches
can be defined and dynamically loaded to perform differ-
ent measurement tasks. However, in favor of our proposal,
some works like [8] highlight the importance of making an
OpenFlow compatible monitoring solution, as it is cheaper to
implement and does not require standardization by a larger
community. Note that despite the advances in the OpenFlow
standard (version 1.5.1 at the time of this writing), the protocol
does not provide direct support for flow sampling yet.

Transparent: Our system can be interpreted as an addi-
tional module which does not affect the correct operation
of other modules performing other network functions (e.g.,
forwarding). To ensure this, we make use of the pipeline
processing feature with multiple tables of OpenFlow. It takes a
similar approach to Omniscient [9], where they propose using
separate rules for monitoring specific flows tagged by end-
hosts and store them in a separate OpenFlow table.

Asynchronous collection of flow statistics: Our system
collects and aggregates packets directly in the switch, and
retrieves flow statistics when the flow expires (either by an
idle or hard timeout). In FlowSense [10], they propose the
same mechanism to retrieve statistics for the entries in the
switches to estimate per-flow link utilization. The problem of
their solution is that the statistics of flows with large timeouts
are retrieved after too long. It makes obtaining accurate mea-
surements unfeasible in environments with highly fluctuating
traffic. In our solution, as our module is completely decoupled
from others, we can define the most adequate timeouts to
obtain accurate measurements. Our solution can also include
mechanisms to conveniently select the timeouts, such as those
proposed in PayLess [11] or OpenNetMon [8], where they
design adaptive schedule algorithms to collect the statistics.

The remainder of this paper is structured as follows: Firstly,
in Section II, we provide an OpenFlow overview focusing on
the features and messages involved in our solution. Section
III defines our monitoring system and the sampling methods
proposed. In Section IV, we evaluate our monitoring system
in a testbed with Open vSwitch [12] and an implementation
within OpenDaylight [13]. Here, we include an analysis of the
accuracy of the sampling methods proposed and an evaluation
of the overhead contribution, both with real-world traffic
traces. Lastly, in Section V we conclude and mention some
aspects for future works.

II. OPENFLOW BACKGROUND

Nowadays, there is a growing trend among vendors to adopt
OpenFlow for their switches in two different ways. Some of
them are opting for OpenFlow-only devices, while others offer
hybrid switches, where both traditional network protocols and
OpenFlow coexist. At the moment, it is quite unusual to find
commodity switches with higher support than OpenFlow 1.3.0.

In this section, we particularly focus on OpenFlow 1.1.0
specification, since it is the first version fully compatible with
our solution. This is because from this version it is possible
to make use of multiple tables, which enable us to decouple
our monitoring system from others. However, we propose an
alternative solution with some limitations for switches with
OpenFlow 1.0.0 support (more details will be explained in
Section III-B). It is also worth mentioning that everything
described for our solution can be applied to IPv6 traffic from
OpenFlow 1.2.0 onwards, since previous versions have only
support for IPv4.

Regarding the monitoring solution proposed in this paper,
we provide below a summary of the principal elements and
messages involved.

A. Multiple flow tables and groups

Multiple flow tables and groups are both available from
OpenFlow 1.1.0. The support of multiple tables enables to
decouple the sets of entries of modules with different network
functions operating in different tables.

Packets begin their processing pipeline in the first table of
the device and can be directed to other tables. In this way, as it



goes through the pipeline, a packet can both execute an action
and continue the processing in the next table or accumulate
the actions and apply them at the end of the pipeline. In order
to resolve possible conflicts between overlapping rules in the
same flow table, each entry has a priority field.

Groups are abstractions which allow to represent a set of
actions for all packets matching an entry in a flow table. Each
group table contains a number of buckets which, in turn, are
composed by a set of actions. Therefore, if a bucket is selected,
all its actions will be applied to the packet. There are four
different mechanisms to select the buckets applied to a packet
reaching the group table: I) All (e.g., for multicast), II) Select
(e.g., for multipath), III) Indirect and IV) Fast Failover (e.g., to
use first live port). Our solution leverages the select mechanism
for the hash-based method described in Section III-A. In
a group of type select, packets are processed by a single
bucket and so, only actions within the selected bucket are
applied. This bucket selection depends on a selection algorithm
(external to the OpenFlow specification) implemented in the
switch which should perform equal or weighted load sharing
among buckets.

B. Adding new flow entries and groups

When a packet matches an entry in a flow table with an
action output to controller, a portion of this packet is en-
capsulated in an OFPT PACKET IN message and forwarded
to the controller. Once the packet has been processed, the
controller may send an OFPT FLOW MOD message to the
switch to install a new flow entry with a set of instructions to
be applied for the subsequent packets matching it. That is the
way to add reactively new flow entries with OpenFlow. When
adding a new flow entry, it is possible to set two timeouts
(idle and hard) for that particular entry to define when it is
going to be removed from the switch. The idle timeout defines
the maximum time interval between two consecutive packets
matching this entry, while the hard timeout is the maximum
lifetime since the entry was installed.

In order to add a new group, the controller may send an
OFPT GROUP MOD message to the switch. This message
defines the type of group (all, select, indirect or fast failover),
a set of buckets with their correspondent actions set and an
unique identifier (32 bits) for this group. We should remark
that a group table does not contain match fields, but only
actions within buckets which may be applied for packets
directed to this group. In order to forward packets to a group
table, it is necessary to add an entry in a flow table (with match
fields) defining an action of type OFPAT GROUP. This action
must include the unique identifier of the group.

C. Statistics collection

To collect flow measurements, two different approaches
deserve to be highlighted. On the one hand, pull-based mech-
anisms consist of making active measurements, i.e., send-
ing queries (OFPT MULTIPART REQUEST message) to the
switch for the desired flows. The switch will respond with
an OFPT MULTIPART REPLY message with a summary of

the flow (duration in seconds and nanoseconds, packet count
and bytes count). On the other hand, push-based mechanisms
consist of collecting measurements asynchronously. In this
case, when adding a new flow entry, idle and/or hard timeouts
are defined. Then, when a flow entry is evicted, the switch
sends to the controller an OFPT FLOW REMOVED message
with the flow statistics. This message also informs with flags
that indicate if the expiration was caused by either the idle
or the hard timeout. To receive asynchronously this message,
when adding a new flow, the controller has to explicitly note
it in the OFPT FLOW MOD message by marking the flag
OFPFF SEND FLOW REM.

III. MONITORING SYSTEM

Our system fully relies on the OpenFlow specification to
obtain flow measurements similar to those of NetFlow/IPFIX
in traditional networks. This is not new in SDN, since some
works, such as [5], used a similar approach earlier. However,
to the best of our knowledge, no previous works proposed
OpenFlow-based methods to implement traffic sampling and
provide reports in a NetFlow/IPFIX style, i.e., randomly sam-
pling the traffic and maintaining per-flow statistics in separated
records, which are finally reported to a collector. Since we are
aware that OpenFlow has many features that are classified
as “optional” in the specification, we designed two different
sampling methods with different levels of requirements of
features available in the switch. These methods, in summary,
consist of installing a set of entries in the switch which allow
us to discriminate directly the traffic to be sampled. Thus, we
only send the first packets of those flows to be monitored and
the controller is in charge of installing reactively specific flow
entries to maintain the flow measurements. Since OpenFlow
switches are capable of communicating to the controller the
features available, it is possible to decide the method to be
used separately for each switch depending on its capabilities.
We did not design any method for packet sampling since we
found it excessively complex to implement with the current
OpenFlow support, although we plan to implement it as future
work.

Before showing the details of each method, we describe the
generic structure of OpenFlow tables in our system, which is
illustrated in Fig.1a. In both methods proposed, the monitoring
system operates in the first table of the switch, where the
pipeline process for incoming packets starts. In this way, our
system installs in this table some entries to sample the traffic
and maintains records for monitored flows. All the entries in
the first table have at least one instruction to direct the packets
to another table, where other modules can install entries with
different purposes (e.g., forwarding). Focusing on the table
where our system operates, three different blocks of entries can
be differentiated by their priority field. There is a first block
of flow level (5-tuple) entries that act as flow records. Then, a
block of entries with lower priority defines the packets to be
sampled. And lastly, we add a default entry with the lowest
priority which simply directs to the next table the packets that
did not match any previous entries. In this way, the key point



(a) Sampling based on IP suffixes (b) Sampling based on hash function

Fig. 1. Scheme of OpenFlow tables and entries of the monitoring system.

of our system resides on the second block of entries, where
the methods described below establish different rules to define
which packets are sampled. The operation mode when a new
packet arrives to the switch is to check firstly if it is already
in one of the per-flow monitoring entries. If it matches any of
these entries, the packets and bytes counters are updated and
the packet is directed to the next table. If not, it goes through
the block of entries that define whether it has to be sampled
or not. If it matches one of these, then the packet is forwarded
to the next table and to the controller (Packet In message) to
add a specific entry in the first block to sample subsequent
packets of this flow. Finally, if the packet does not match any
of the previous rules, it is simply directed to the next table.

A. Proposed sampling methods

We present here the two methods devised for our monitoring
solution and discuss the OpenFlow features required for each
of them. One is based on hash functions, which performs
flow sampling very accurately, and the other one, based on
IP suffixes, is proposed as a fallback mechanism when it
is not possible to implement the previous one. We assume
that the switches have support for OpenFlow 1.1.0 and later
versions so, they have at least support for multiple tables.
However, in Section III-B, we make some comments about
how to implement an alternative solution with OpenFlow 1.0.0.
Our selection mechanisms for the packets are covered by the
Packet Sampling (PSAMP) Protocol Specification [14], which
is compatible with the IPFIX protocol specification. According
to the PSAMP terminology, our first sampling method can
be classified as property match filtering, where a packet is
selected if specific fields within the packet are equal to a
predefined set of values. While the second is of type hash-
based filtering.

1) Sampling based on IP suffixes: This method is based on
performing traffic sampling based on IP address matches. To
achieve it, the controller adds proactively one entry with match
fields for particular IP address ranges. A similar approach
was also used in [15] for load balancing client traffic with

OpenFlow. Typically, in traditional routing the matching of IP
addresses is based on IP prefixes. In contrast, we consider to
apply a mask which checks the last n bits of the IPs, i.e.,
we sample flows with specific IP suffixes. In this way, we
sample a more representative set of flows, since we monitor
flows from different subnets (IP prefixes) in the network. In
order to implement this, it is only necessary a wildcarded entry
that filters the IP suffixes desired for source or destination
addresses, or combinations of them. To control the number of
flows to be sampled, we make a rough consideration that, in
average, flows are homogeneously distributed along the whole
IP range (we later analyze this assumption with real traffic
in Section IV-A). As a consequence, for each bit fixed in the
mask, the number of flows sampled will be divided by two
with respect to the total number of flows arriving to the switch.
We are aware that typically there are some IPs that generate
much more traffic than others, but this method somehow allow
to control the number of flows to be monitored. Furthermore, if
we consider pairs of IPs for the selection, instead of individual
IPs, we can control better this effect. In this case, if we
sample an IP address of a host which generates a large number
of flows, only those flows which match both source and
destination IP suffixes are sampled. Generically, our sampling
rate can be defined by the following expression:

sampling rate =
1

2m · 2n
(1)

Where ’m’ is the number of bits checked for the source IP
suffix and ’n’ the number of bits checked for the destination
IP suffix.

This method is similar to host-based (or host-pair-based)
sampling, as we are using IP addresses to select the packets
to be sampled. However, host-based schemes typically provide
statistics of aggregated traffic for individual or group of hosts.
In contrast, we sample the traffic by single or pairs of IP
suffixes, but provide individual statistics at a flow granularity
level. Moreover, to avoid bias in the selection, the IP suffixes
can be periodically changed by simply replacing the sampling
rule(s) in the OpenFlow table.



To implement this method, the only optional requirement
of OpenFlow is the support of arbitrary masks for IP to
check suffixes, since there are some switches which only
support prefix masks for IP. We also present and evaluate in
the technical report version of this paper [16], an alternative
method based on matching on port numbers for those switches
that do not support IP masks with suffixes, but this method
requires a larger number of entries to sample the traffic.

2) Hash-based flow sampling: This method consists of
computing a hash function on the traditional 5-tuple fields of
the packet header and selecting it if the hash value falls in a
particular range. In Fig.1b, we can see the tables structure of
this method. In this case, all IP packets are directed to the next
table as well as to a group table where only one bucket sends
the packet to the controller to monitor the flow, other buckets
drop the packet. To control the sampling rate, we can select
a weight for each bucket. This method much better controls
the sampling rate, since we can assume that a hash function
is homogeneous along all its range for all the flows in the
switch.

This method, in contrast to the previous one, accurately
follows the definition of flow sampling, i.e., sample the packets
of a subset of flows selected with some probability [17].

The requirements for this method are to support group tables
with select buckets and to have an accurate algorithm in the
switch to balance the load properly among buckets.

B. Modularization of the system

Our solution leverages the support of multiple tables to
isolate its operation from other modules performing other net-
work functions. Thus, we can see our monitoring system as an
independent module in the controller which does not interfere
with other modules operating in other tables. In the controller
we can filter and process the Packet In messages triggered by
entries of our module, since these messages contain the table
Id of the entry which forwarded the packet to the controller.
Additionally, our system can be integrated in a network using
a hypervisor (e.g., CoVisor [18]) to run network modules in
a distributed manner in different controllers. Nevertheless, we
propose an alternative for those switches with OpenFlow 1.0.0
support, where only one table can be used. Since this version
does not support group tables, only the first method, based
on matches of IP suffixes, can be implemented. In that way,
it is feasible to install the monitoring entries by combining
them with the correspondent actions of other modules at the
expense of loosing the decoupling of our monitoring system.

C. Statistics retrieval

Our system envisions a push-based approach to retrieve
statistics. Given that it uses specific entries, we can selectively
choose the timeouts to retrieve the statistics. As a result,
we overcome the issue of other push-based solutions such
as FlowSense [10], where flows with large timeouts are
collected after too long a time decreasing the accuracy of the
measurements.

IV. EXPERIMENTAL EVALUATION

We have implemented our monitoring solution within Open-
Daylight [13], operating jointly with the “L2Switch” module
that it includes for layer 2 forwarding.

We conducted experiments in a small testbed with an Open
vSwitch [12], a host (VM) which injects traffic into the switch
and another host which acts as a sink for all the traffic
forwarded. All the experiments make use of real-world traffic
from three different network scenarios. One trace corresponds
to a large Spanish university (labeled as “UNIVERSITY”), and
the others correspond to two different ISP networks (MAWI
[19] and CAIDA [20]). These traces were filtered to keep
only the TCP and UDP traffic. In Table I there is a detailed
description of each trace.

Trace dataset # of flows # of packets Description

UNIVERSITY

25th November 2016

2,972,880 (total flows)

2,349,677 (TCP flows)

623,203 (UDP flows)

75,585,871

10 Gbps downstream access link of a large
Spanish university, which connects about 25
faculties and 40 departments (geographically
distributed in 10 campuses) to the Internet

through the Spanish Research and Education
network (RedIRIS).

Average traffic rate: 2.41 Gbps

MAWI [19]

15th July 2016

3,299,166 (total flows)

2,653,150 (TCP flows)

646,016 (UDP flows)

54,270,059
1 Gbps transit link of WIDE network to the
upstream ISP. Trace from the samplepoint-F.

Average traffic rate: 507 Mbps

CAIDA[20]

18th February 2016

2,353,413 (total flows)

1,992,983 (TCP flows)

360,430 (UDP flows)

51,368,574

This trace corresponds to a 10 Gbps backbone
link of a Tier1 ISP (direction A - from Seattle

to Chicago).

Average traffic rate: 2.9 Gbps

TABLE I
SUMMARY OF THE REAL-WORLD TRAFFIC TRACES USED.

A. Accuracy of the proposed sampling methods

We conducted experiments to assess if the sampling rate
is applied properly and if the selection of flows is random
enough when using the proposed sampling methods. All our
experiments were separately done for the MAWI, CAIDA and
UNIVERSITY traces described in Table I and repeated apply-
ing sampling rates of 1/64, 1/128, 1/256, 1/512 and 1/1024. For
the method based on IP suffixes, we considered two different
modalities: matching only a source IP suffix, or matching
both source and destination IP suffixes. For each of these
modalities, with a particular trace, and a specific sampling rate,
we performed 500 experiments selecting randomly IP suffixes.
We got these results by means of simulations and validated in
our testbed at least three experiments for each sampling rate.
For the hash-based method, since it is based on a deterministic
selection function, we only conducted one experiment in our
testbed for each case.

To analyze the accuracy in the application of the sampling
rate, we evaluate the number of flows sampled by our methods
and compare it with the theoretical number of flows if we
used a perfectly random selection function. We show in Fig.
2, the results for the method based only on source IP suffixes
for the three traces described in Table I. These plots display
the median value of the number of flows sampled for the
experiments conducted in relation to the sampling rate applied.
The experimental values include bars which show the interval
between the 5th and the 95th percentiles of the total 500



(a) Source IP suffixes - MAWI (b) Source IP suffixes - CAIDA (c) Source IP suffixes - UNIVERSITY

Fig. 2. Evaluation of sampling rate for methods based on source IP suffixes.

(a) Pair of IP suffixes - MAWI (b) Pair of IP suffixes - CAIDA (c) Pair of IP suffixes - UNIVERSITY

Fig. 3. Evaluation of sampling rate for methods based on pairs of IP suffixes.

(a) Hash-based - MAWI (b) Hash-based - CAIDA (c) Hash-based - UNIVERSITY

Fig. 4. Evaluation of sampling rate for the hash-based method.

measurements obtained for each case. Likewise, in Fig. 3,
we show the same results for the case that considers pairs
of source and destination IP suffixes. Given these results, we
can see that the median values obtained are quite close to
the theoretical values, i.e., in the average case these methods
apply properly the sampling rate established. However, we can
see there is a high variability among experiments. This means
that, depending on the IP suffixes selected, we can over- or
under-sample. In order to validate the implementation of this
method, we randomized the IPs of the flows of our traces
to have a homogeneous distribution and applied the method.
Thus, we could observe that it achieved a number of flows
very close to the theoretical values and a very low variability
among experiments (these results are detailed in the technical
report version of this paper [16]).

Next, we evaluate the hash-based sampling method making
use of the load balancing algorithm for group tables included
in Open vSwitch. The results, in Fig. 4, show that this method
considerably outperforms the previous one in terms of control
of the sampling rate. Not only it samples a number of flows
very close to the ideal one, but also it does not experience any
variability among experiments as it is based on a deterministic
selection function. Furthermore, it achieves good results for
the three different traces, which indicates that it is a robust
and generalizable method to be implemented in any network
independently of the nature of its traffic.

In order to evaluate the randomness in the selection of
our sampling methods, we compare our results with those
obtained with a perfect implementation of flow sampling, with
a completely random selection process. Thus, if our imple-
mentation is close to a perfect flow sampling implementation,
the flow size distribution (FSD) should remain unchanged after
applying the sampling, i.e., the distribution of the flow sizes (in
number of packets) must be very similar for the original and
the sampled data sets. We acknowledge that this property is not
completely preserved for the IP-based method, but we follow
this approach to measure how random is the flow selection of
this method and compare it with the hash-based method.

We quantify the randomness of the sampling method by
calculating the difference between the FSDs of the original
and the sampled traffic. For this purpose, we use the Weighted
Mean Relative Difference (WMRD) metric proposed in [21].
Thus, a small WMRD means that the flow selection is quite
random. In Fig. 5 we present boxplots with the results of our
proposed methods. For the sake of brevity, we do not show
the results for a sampling rate of 1/256, since they are very
similar to those displayed (all these results are available in the
technical report version of this paper [16]). We can observe
that the results are in line with the above results about the
accuracy controlling the sampling rate. The method which
shows better results is the hash-based one. Additionally, for
the methods based on IP suffixes, we see that for the MAWI



(a) Sampling rate = 1/64 (b) Sampling rate = 1/128

(c) Sampling rate = 1/512 (d) Sampling rate = 1/1024

Fig. 5. Weighted Mean Relative Difference (WMRD) between FSDs.

trace, the method based on pairs of IP suffixes achieves a more
random flow subset. While for the CAIDA and UNIVERSITY
traces, the method based on source IP suffixes behaves better.

Note that we chose the FSD to compare the randomness of
the two flow selection methods, because the FSD is known to
be robust against flow sampling. As future work, we also plan
to analyze how the randomness in the flow selection process
affects other statistics commonly extracted from Sampled
Netflow data, such as application mixes, port distributions or
bandwidth utilization per customer.

B. Evaluation of the overhead

An inherent problem in OpenFlow is that, when we install
flows reactively, packets belonging to the same flow are sent
to the controller until a specific entry for them is installed
in the switch. This is a common problem to any system that
works at flow-level granularities. As a consequence, in our
system we can receive in the controller more than one packet
for each flow to be sampled. Specifically this occurs during
the interval of time between the reception of the first packet
of a flow in the switch, and the time when a specific entry for
this flow is installed in the switch. This time interval is mainly
the result of the following factors: (i) the time needed by the
switch to process an incoming packet of a new flow to be
sampled and forward it to the controller, (ii) Round-Trip Time
(RTT) between the switch and the controller, (iii) the time
for the controller to process the Packet In and send to the
switch the order to install a new flow entry, and (iv) the time
in the switch to install the new flow entry. The first and fourth

factors depend on the processing power of the switch. The
RTT depends on some aspects like the distance between the
switch and the controller or the capacity and utilization of the
control link that connects them. The second factor depends on
the processing power and the workload of the controller and,
of course, its availability.

In order to analyze all these different bottlenecks in a single
metric, we measure the amount of redundant packets of the
same flow that the controller processes. That is, the number
of packets of a sampled flow that are sent to the controller
before the switch can install a rule to monitor that specific
flow. We consider a scenario with a range from 1 ms to 100
ms for the elapsed time to install a new flow entry. This time
includes all the factors described earlier, from (i) to (iv). As a
reference, in [22] they observe a median value of 34.1 ms for
the time interval to send the OFPT FLOW MOD message
to add a new flow entry with the ONOS controller in an
emulated network with 206 software switches and 416 links.
Thus, we simulate this range of time values for the three traces
described in Table I and analyze the timestamps of the packets
to calculate, for each flow, how many packets are within this
interval and, thereby, would be sent to the controller. We
analyze separately the overhead for TCP and UDP, as their
results may differ due to their different traffic patterns. We
show the results in Fig. 6. As we can see, the average number
of redundant packets varies from less than 0.2 packets for
delays below 20 ms, to approximately 1.2 packets per flow
for an elapsed time of 100 ms for TCP traffic.

(a) TCP traffic

(b) UDP traffic

Fig. 6. Average number of redundant packets per flow.

Likewise, in Fig. 7 we show the results in terms of average
percentage of redundant bytes sent to the controller. That way,
the percentage of redundant bytes ranges from less than 0.8%
for elapsed times below 20 ms to 3.1% in the worst case
with an elapsed time of 100 ms and TCP traffic. These results
show that the amount of redundant traffic sent to the controller



is significantly smaller than if we implemented the trivial
approach of forwarding all the traffic to the controller or a
NetFlow probe and not installing in the switch specific entries
to process subsequent packets and maintain per-flow statistics.
The best case is for elephant flows, as the amount of packets
sent to the controller at the beginning of the flow is very low
in proportion to the total amount of traffic they carry.

(a) TCP traffic

(b) UDP traffic

Fig. 7. Percentage of redundant bytes.

These results also reflect that, for the UDP traffic, the
number of redundant packets and bytes per flow is significantly
smaller than for TCP flows. Among other reasons, this is due
to the fact that typically many UDP flows are single-packet
(e. g., DNS requests or responses). In the UNIVERSITY trace
we could notice that there were more UDP flows with a larger
number of packets, as it is reflected in Figs. 6b and 7b.

From these results, it is possible to infer the CPU cost
of running our monitoring system in a SDN controller, as
the processing cost per packet can be considered constant. In
particular, the controller only needs to maintain a hash table to
keep track of those packets sent to the controller and thus not
accounted for in switch (i.e., redundant packets shown in Fig.
6). As future work, we plan to further analyze the resource
requirements in the controller (e.g., processing power, buffer
size) and the control infrastructure to ensure that none of the
sampled packets are dropped and, thereby, are accounted for
in the controller.

As for the memory overhead in the switch, we implement
sampling methods that provide mechanisms to control the
number of entries installed. With our solution it is necessary
to maintain a flow entry for each individual sampled flow.
Thus, there are three main factors which determine the amount
of memory necessary in the switch to maintain the statistics:
(i) the rate of new incoming flows (traffic matching different
5-tuples) per time unit, (ii) the sampling rate selected, and
(iii) the idle and hard timeouts selected for the entries to

be maintained. The first factor depends specifically on the
nature of the network traffic, i.e., the rate of new flows
arriving to the switch (e.g., flows/s). It is a parameter fixed
by the network environment where we operate. However, as
in NetFlow, the sampling rate and the timeouts (idle and hard)
are static configurable parameters and the selection of these
parameters affects the memory requirements in the switch. In
this way, with (2) we can roughly estimate the average amount
of concurrent flow entries maintained in the switch.

Avg. entries = Nflows · sampling rate · E[tout]

sampling rate ∈ (0, 1] tout ∈ [tidle, thard]
(2)

Where “Nflows” denotes the average number of new incom-
ing flows per time unit, “sampling rate” is the ratio of flows
we expect to monitor, and E[tout] corresponds to the average
time that a flow entry is maintained in the switch.

In order to configure a specific sampling rate, for the method
based on IP suffixes we can set the number of bits to be
checked for the IP suffix(es) according to (1). Likewise, for the
hash-based method, we can set the proportion of flows to be
sampled by configuring the weights of the buckets. Regarding
the timeouts, the controller can set the values of the idle and
hard timeouts when adding a new flow entry in the switch to
record the statistics (in the OFPT FLOW MOD message).

To conclude this section, we propose some different sce-
narios and estimate the average number of concurrent flow
entries to be maintained in the switch. The purpose of this
analysis is to have a picture of the approximate memory
contribution of the monitoring solution proposed in this paper.
To this end, we rely on (2). In our scenarios we consider the
three different real-world traces described in Table I. Thus,
to calculate “Nflows” for each trace, we divide their respective
total number of flows (only TCP and UDP) by their duration.
Furthermore, we consider two different sampling rates, 1/128
and 1/1024. For the configuration of the timeouts, we envision
a typical scenario using the default values defined in NetFlow:
15 seconds for the idle timeout and 30 minutes (1800 seconds)
for the hard timeout. Regarding the average time that a flow
remains in the switch (E[tout]), we know that it ranges from
the idle timeout to the hard timeout. In this way, we consider
these two extreme values and some others in the middle. The
case with the lowest memory consumption will be when E[tout]
is equal to the idle timeout, and the case with the highest
consumption, when E[tout] is equal to the hard timeout. The
amount of memory for each flow entry strongly depends on
the OpenFlow version implemented in the switch. The total
amount of memory of a flow entry is the sum of the memory of
its match fields, its action fields and its counters. For example,
in OpenFlow 1.0 there are only 12 different match fields
(269 bits approximately), while in OpenFlow 1.3 there are
40 different match fields (1,261 bits).

Table II summarizes the results for all the cases described
above. As a reference, in [23] they noted that modern Open-
Flow switches have support for 64k to 512k flow entries.
To these flow entries estimated, we must add the additional



Sampling rate Trace dataset Nflows (flows/s)
Avg. number of flow entries

E[t]=15 s E[t]=60 s E[t]=300 s E[t]=600 s E[t]=900 s E[t]=1,200 s E[t]=1,800 s

1/128

UNIVERSITY 9,916 1,162 4,648 23,241 46,481 69,722 92,963 139,444

MAWI 3,665 429 1,718 8,590 17,180 25,770 34,359 51,539

CAIDA 21,672 2,540 10,159 50,794 101,588 152,381 203,175 304,763

1/1024

UNIVERSITY 9,916 145 581 2,905 5,810 8,715 11,620 17,430

MAWI 3,665 54 215 1,074 2,147 3,221 4,295 6,442

CAIDA 21,672 317 1,270 6,349 12,698 19,048 25,397 38,095

TABLE II
ESTIMATION OF THE AVERAGE FLOW ENTRIES USED IN THE SWITCH.

amount of memory of the implementation of the sampling
methods described in Section III-A. For both methods, the
switch must allocate an additional table to maintain the
sampled flows as well as the entries which determine the
flows to be sampled. For the method based on IPs, it uses
an additional wildcarded flow entry which determines the IP
suffix(es) to be sampled. For the hash-based method, it uses an
additional entry to redirect the packets to a group table, as well
as the group table with its respective buckets. We don’t provide
an estimation of this memory contribution since we consider
it is too dependent on the OpenFlow implementation in the
switch. Nevertheless, we assume that this amount of memory
is negligible compared to the amount of memory allocated for
the entries that record the statistics of the sampled flows.

V. CONCLUSIONS AND FUTURE WORK

We presented a flow monitoring solution for OpenFlow
which provides reports like in NetFlow/IPFIX. In order to
reduce the overhead in the controller and the number of entries
required in the switch, we proposed two traffic sampling
methods that can be implemented in current switches without
requiring any modification to the OpenFlow specification.
We implemented them in OpenDaylight and evaluated their
accuracy and overhead in a testbed with real traffic. As future
work, we plan to extend the analysis of the randomness of our
sampling methods as well as the overhead evaluation, design
smarter algorithms to retrieve the statistics more accurately and
implement an OpenFlow compliant packet sampling method,
although we find it more challenging.

ACKNOWLEDGEMENT

This work was supported by the European Union’s H2020
SME Instrument Phase 2 project “SDN-Polygraph” (grant
agreement n° 726763), the Spanish Ministry of Economy
and Competitiveness and EU FEDER under grant TEC2014-
59583-C2-2-R (SUNSET project), and by the Catalan Gov-
ernment (ref. 2014SGR-1427).

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

[2] M. Malboubi, L. Wang, C. N. Chuah, and P. Sharma, “Intelligent SDN
based traffic (de)Aggregation and Measurement Paradigm (iSTAMP),”
Proceedings - IEEE INFOCOM, pp. 934–942, 2014.

[3] B. Claise, “NetFlow Services Export Version 9 Status,” pp. 1–33, 2004.
[4] V. Sekar, M. K. Reiter, and H. Zhang, “Revisiting the case for a

minimalist approach for network flow monitoring,” Proceedings of the
IMC, p. 328, 2010.

[5] L. Hendriks, R. D. O. Schmidt, R. Sadre, J. A. Bezerra, and A. Pras,
“Assessing the Quality of Flow Measurements from OpenFlow Devices,”
8th International Workshop on Traffic Monitoring and Analysis (TMA),
2016.

[6] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “OpenSample:
A low-latency, sampling-based measurement platform for commodity
SDN,” Proceedings - International Conference on Distributed Comput-
ing Systems, pp. 228–237, 2014.

[7] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with
opensketch,” Networked Systems Design and Implementation, (NSDI),
vol. 13, pp. 29–42, 2013.

[8] N. L. M. Van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNet-
Mon: Network monitoring in OpenFlow software-defined networks,”
IEEE/IFIP NOMS, 2014.

[9] D. A. Popescu and A. W. Moore, “Omniscient : Towards realizing near
real-time data center network traffic maps,” CoNEXT Student Workshop,
2015.

[10] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Mad-
hyastha, “FlowSense: Monitoring network utilization with zero mea-
surement cost,” Lecture Notes in Computer Science, vol. 7799 LNCS,
pp. 31–41, 2013.

[11] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “PayLess:
A low cost network monitoring framework for Software Defined Net-
works,” IEEE NOMS, pp. 1–9, 2014.

[12] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending Networking into the Virtualization Layer,” 8th ACM Work-
shop on Hot Topics inNetworks, vol. VIII, p. 6, 2009.

[13] “The OpenDaylight platform,” http://www.opendaylight.org/.
[14] B. Claise, “Packet sampling (PSAMP) protocol specifications,” 2009.
[15] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-Based Server Load

Balancing Gone Wild Into the Wild,” Proceedings of the Hot-ICE, p. 12,
2011.

[16] J. Suárez-Varela and P. Barlet-Ros, “Reinventing NetFlow for Open-
Flow Software-Defined Networks (Technical report),” arXiv preprint
arXiv:1702.06803, 2017.

[17] N. Hohn and D. Veitch, “Inverting Sampled Traffic,” Proceedings of the
IMC, pp. 222–233, 2003.

[18] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A Compo-
sitional Hypervisor for Software-Defined Networks,” Proceedings of
Networked Systems Design and Implementation (NSDI), pp. 87–101,
2015.

[19] “MAWI Working Group traffic archive - [15/07/2016],” http://mawi.
wide.ad.jp/mawi/.

[20] “The CAIDA UCSD Anonymized Internet Traces 2016 - [18/02/2016],”
http://www.caida.org/data/passive/passive 2016 dataset.xml.

[21] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” IEEE/ACM Transactions on Networking,
vol. 13, no. 5, pp. 933–946, 2005.

[22] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, and
B. Lantz, “ONOS: towards an open, distributed SDN OS,” Proceedings
of HotSDN, pp. 1–6, 2014.

[23] “Can OpenFlow scale?” https://www.sdxcentral.com/articles/
contributed/openflow-sdn/2013/06/, accessed: 2017-06-06.


