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Abstract

Powering wireless sensors has become a key challenge to enable the Internet of

Things vision. A common approach to achieve this is to use Energy Harvesting.

By means of this technology, sensors have access to an unlimited source of energy,

which can extend their operation lifetime.

Unfortunately, typically the energy that is available surrounding the sensors is

neither controllable nor predictable, showing significant variations in the expected

harvested energy in terms of both space and time. This can cause the temporal

disconnection of parts of the wireless network.

The objective of this thesis is to mitigate the undesirable effects of the spatio-

temporal variations of the surrounding energy, by following a two-fold approach:

first, to provide a high level understanding of the involved trade-offs in the design

of a wireless sensor and the interconnecting network. Then, to synthesize an en-

ergy field to guarantee the required amount of ambient energy at the surrounding

of the considered nodes.

The first part of the thesis starts by presenting a formal description of the envi-

ronment. The derived energy model is first used to answer fundamental questions

on throughput scaling and, then, to provide design guidelines for energy harvest-

ing sensors. It is found that energy harvesting is a scalable solution to power and

recharge IoT sensors, which require additional circuit design to guarantee their

operation in energy scarce scenarios.

On the second part of this work, wireless RF power transmission from control-

lable Energy Transmitters (ETs) is considered as a feasible approach to synthesize

an energy field to power sensors at-a-distance, hence tackling the lack of avail-

able ambient energy in spatial regions, at the cost of occupying the available

wireless spectrum. Due to the limited transmission range of this approach, the

use of multiple ETs to cover entire areas is required. We first discuss on the fea-

sibility of synthesizing energy fields with multiple ETs. We show that powering

those sensors with multiple ETs stands as a scalable approach, which presents

a trade-off between the channel conditions and the energy multiplexing design

complexity. We, then, present an opportunistic scheme to leverage the generated

interferences of multiple ETs. Finally, we propose a joint energy and communi-



cation method to circumvent the imposed trade-offs of in-band multi-ET wireless

RF power transmission.

Overall, we find that the analysis and design of wireless networked sensing

systems, enabled by energy harvesting, and the development of novel wireless RF

power transmissions schemes will play a key role in the future development of

autonomous IoT deployments.
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Chapter 1

Introduction

Wireless networked sensing systems are the “invisible” enablers of pervasive com-

munications, remote monitoring and surveillance, the Internet of Things, and of

all those systems that are an increasingly essential part of our everyday life. Pow-

ering these systems is becoming the crucial challenge, as key requirements such

as cost effectiveness, very small form factors and decade-long lifetimes are diffi-

cult to meet by using nodes that are battery-less or with low-capacity batteries.

Hence, alternative sources of energy must be considered to tackle this problem.

A promising approach to perpetually operate the sensor systems is by acquir-

ing the energy that is found in the close environment of the sensor. Physical

phenomena, such as solar energy, vibration, human movement or electromagnetic

RF waves have demonstrated potential as sources of energy, where sensors can

rely on to autonomously run unattended tasks without the need of manual re-

placement of batteries. This has been generally referred as Energy Harvesting

and it is defined as a process by which the ambient energy located at the close

environment of the considered device is captured, converted into electrical current

and stored for later use in powering the desired tasks of the device.

Energy Harvesting is being considered as the key-enabling-technology of the

Internet of Things and promises to change the way the considered devices make

use of the energy. Through this technique, the considered sensors have a time-

unlimited access to a scarce source of energy, which relaxes the need for large

energy storage units and manual re-charging or replacement, to guarantee a suf-

ficient operation lifetime. Accordingly, a proper design of the electrical device,

which aims at handling the temporal variations in access and demand of energy,
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brings several benefits in the considered IoT deployment scenarios, such as size

reduction, node placement in inaccessible locations, reduction of maintenance

costs and an increase on the network operation lifetime.

Unfortunately, the energy that is available at the close environment of the

sensing system is not controllable, and often not even predictable, hence showing

significant variations in the expected harvested energy in terms of both space

and time. In this sense, spatial energy shadowing causes that certain areas of

the network may render disconnected from normal operation, whereas temporal

fadings may temporarily inhibit sensing operations, temporarily interrupt the

network operation or to cause excessive traffic delays.

For this reason, two alternatives raise as a measure to guarantee an unin-

terrupted operation. On the one hand, defining models to analyze and proper

design both sensing systems and IoT networks are required. The aim of these

models needs to cover, among others, battery dimensioning to mitigate tempo-

ral variations in the energy access and optimal routing and traffic balancing to

mitigate spatial variations of the available energy. On the other hand, wireless

RF power transmission from controllable Energy Transmitters (ETs) stands as a

feasible, artificially generated source of energy to power sensors at-a-distance and

to tackle the lack of available ambient energy in spatial regions. Given that RF

propagation is affected by severe path-loss, the transmission distance of a wire-

less RF power transmission link is rather limited to just a few meters of distance,

hence, multiple deployments of ETs that coordinately transfer energy towards

the sensing systems are usually considered to cover entire networking areas.

The analysis and design of energy-harvesting-enabled wireless networked sens-

ing systems and the development of novel highly-efficient wireless RF power trans-

missions schemes have significantly attracted the attention of the research com-

munity at many design layers. The topics that have been mostly set to tackle

range from the design of energy harvesting transceivers and circuits, the impact

of these in the sensor performance and the eventual network operation, the de-

sign of energy harvesting alternatives specifically suited for wireless RF energy

transmission, coordination among multiple ET entities and the coexistence of

simultaneous transmission of energy and data.
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1.1 Motivation and Objectives

Energy harvesting and Wireless RF power transmission are research fields that

have been treated as separated problems, where each has presented their own

research challenges and associated trade-offs.

However, the fact that both approaches pursue a common objective, that

is to autonomously recharge the networked systems, along with the conceptual

difference based on acquiring energy which is either exogenous or endogenous

of the system under study, brings the following open question: Can we leverage

the acquired knowledge in the study of physical energy harvesting phenomena to

design Wireless RF power transmission schemes? To answer this question this

thesis is separated into two parts. The former refers to energy harvesting and

aims at analyzing existing ambient energy in the form of an energy field. The

latter refers to wireless RF power transmission and aims at synthesizing arbitrary

energy fields with the help of multiple ETs that are deployed over the networking

area.

1.1.1 Energy Harvesting

Interrelating the separated layers in the design of a complete energy harvesting

enabled communication system throughout a vertical approach is still a pending

challenge. As a result, several works analyze particular use-cases and provide

quantitative results, which are hard to extrapolate when the conditions of the

problem differ. The lack of qualitative trade-offs hinders the mutual understand-

ing between both network and circuit communities and, hence, hindering design

guidelines of critical circuit and system components.

Accordingly, generic feasibility studies that aim at relating the trend between

tangible magnitudes are missing, such as the relating available input power at

the node locations or number of deployed systems in a IoT to metrics for network

and communication evaluation, such as the throughput of a network. In these

lines, answering simple questions, such as: How does the throughput of a network

varies when the deployed nodes start failing? need to be addressed, regardless of

the non-triviality of its answer.
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Objectives

The scarce nature and poor predictability of the energy sources requires additional

efforts during the design stage. In this direction, the objectives of this thesis are:

• To provide a formal description of the energy harvesting process by propos-

ing a general-purpose energy model. This model needs to capture the spatio-

temporal variations of the ambient energy, as well as the node sensor system

implications.

• To study the scaling laws on the capacity of the network throughput. This

study assesses the viability using energy harvesting as the unique source of

energy of the deployed nodes. It provides a high-level understanding of the

energy harvesting process, its implications on the network performance and

the imposed design trade-offs.

• To study the implications of the spatio-temporal variations of the surround-

ing energy, and to analyze the performance of mulit-EH and self-tunable

EH as feasible solutions to circumvent their associated challenges.

1.1.2 Wireless RF Power Transmission

In a many-to-many wireless RF power transmission set-up for the IoT, where more

than one ET delivers power to multiple sensors, RF waves radiated from these

systems may interfere with each other at the receiver end if these are transmitted

in the same frequency band. Devising energy multiplexing methods to avoid

the destructive interference is still a pending challenge. However, despite these

methods, the use of multiple ETs to cover an entire area of interest leads to

concerns of scalability [144].

In order to design cost-effective communicating systems, the RF spectrum

must be shared for both power and data transmissions. This reduces the need of

duplicated antennas and hardware. Unfortunately, alternating between tasks may

seriously affect network operation and performance. In fact, Time multiplexing

between both tasks reduces, not only the eventual transmitted power, but also

the idle time for data communications. As such, scheduling data transmissions

in constrained time-slots increases the protocol complexity. For this reason, de-

vising methods for energy provisioning without affecting data communications
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appears to be the challenge that the research community has most recently set

to tackle [48].

Objectives

The deployment of multiple ETs to cover entire networking areas imposes several

research challenges. In this direction, the objectives of this thesis are:

• To study the scaling laws of the cumulative power that is injected in the

network. This study assesses the viability of using wireless RF power trans-

mission from multiple ETs. It provides high-level understanding of the wire-

less RF power transmission process, as well as the design considerations of

the energy multiplexing approaches, depending on the physical environment

and the channel quality.

• To propose an energy multiplexing method that constrains the protocol

complexity, while it improves the transmission of energy.

• To design a method to concurrently enable reception of power (from an

ET) and information (from neighboring nodes) in an in-band fashion. This

pursues an improvement of the network performance, without incurring into

additional hardware and protocol complexity.

1.2 Thesis overview and contributions

Along this work, several tasks are placed in order to interrelate the multiple

layer design of energy harvesting systems and to enhance the transmission of en-

ergy. The realized tasks and contributions are shown in Fig. 1.1. Accordingly,

the overall content is divided into two parts, namely energy harvesting (anal-

ysis) and wireless RF power transmission (synthesis). In the former, first an

energy model is derived that is necessary to derive the remainder contributions.

Then, an analytical expression to bound the per node throughput capacity in

a wireless network, when this is powered by energy harvesting is derived. Fi-

nally, design space exploration of energy harvesting sensors is proposed, tackling,

spatio-temporal correlation of the energy and both multi-source and self-tunable

energy harvesters. In the latter, an analytical expression to justify the use a
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Energy Model

Because energy harvesting and wireless RF power transmission are usually con-

sidered as separated scenarios, it is needed to develop a generic, energy-source

agnostic model to characterize the access of energy at the eventual sensor de-

vices. Hence, this model needs to cover two separated aspects. On the one hand,

a generic model for the ambient energy is required, such that it simplifies the

notation and helps the understanding of the energy harvesting process. On the

other hand, a model to characterize the management of this energy, once the en-

ergy is harvested, needs to be further investigated. As such, this model needs to

also consider the transmission patterns, statistics of the energy at the reception

and internal efficiencies of the sensor.

By considering this model, we are able to define important metrics and con-

cepts that will stand as the basis of the remaining work presented in this thesis.

Among other important concepts, this model defines: the spatio-temporal cor-

relation between the energy that is harvested at the node locations; the energy

path function of a node device that bridges the communication requirements to

the available energy in the environment, and the Energy-Erlang (E2), a statistical

unit to handle energy resources. It is noteworthy that the proposed model also

has multi-source energy harveting capabilities, such that modeling the operation

of complex sensors, powered by a set of different energy harvesters is simplified.

Scalability of Throughput Capacity

The scalability of the per node throughput capacity of a wireless network was first

bounded by Gupta and Kumar [50] showing that the throughput of a wireless

network in bandwidth limited conditions decreases with the number of deployed

nodes, n, as Θ(1/
√
n log n). At a high level, this bound showed that wireless

networks are not scalable with the number of nodes, therefore constraining the

deployment of nodes to just a few devices. More recently, a more closely related

bound, was found for power constrained, free-space conditions, showing that the

througphut increases with the number of deployed nodes, n, as Θ̃ (
√
n), where Θ̃

refers to the soft-order bound [98]. Given that the available resources in an energy

harvesting enabled WSN are very limited, reaching a non-scalable bound would

signify that a IoT network powered by energy harvesting cannot leverage node
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cooperation to enhance their performance, hence rendering impractical. There-

fore, a scalabiltiy analysis to evaluate the throughput scaling with the number of

nodes is required.

For this, a scalability analysis of the throughput capacity of an IoT powered

by energy harvesting has been addressed. Throughout this analysis, we are able

to derive a closed-form expression that relates the channel conditions, energy

management at the sensors and the bounds in throughput scaling of the given

network. By identifying the limits in the functionality of the nodes, we are able to

understand at a high level the main trade-offs between the energy-communication

conversion process, channel properties and eventual throughput.

Design space exploration of EH-powered nodes

As it is shown in the scalability analysis, the design of the energy management

units of a sensor node has a decisive impact upon, not only of the sensor perfor-

mance itself, but also on the overall network operation. Among other parameters,

it has been shown that the capabilities of the energy harvester and the capacity

of the energy storage unit play a very important role to ensure ideal throughput.

In particular, it is shown that the quantity of harvested power directly impact on

the throughput, whereas relatively small energy buffers can yield to non-resilient

to node failure network operations.

For this, a study of the dimensioning of the energy harvester and energy

buffer is provided. First, the impact upon the performance of the node, in terms

of energy outage probability, with the size of the energy buffer is discussed. To

derive these first results, a single energy harvester that optimally operates is

assumed. Then, the joint energy harvesting - energy storage unit design is studied

in a multi-source energy harvesting configuration. Finally, the idea of self-tunable

energy harvesters is discussed and its performance and trade-offs are compared

to multi-source energy harvesters.

1.2.2 Wireless RF Power Transmission

The obtained knowledge along the devoted chapters to energy harvesting aims at

orienting the design of the energy network, defined as a set of deployed Energy

Transmitters over the networking area. In addition, to leverage the properties of
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energy harvesting to implement sustainable IoT.

We describe next the primary contributions in the field of wireless RF power

transmission:

Scalability of the Energy Field and Throughput Capacity

Extensive experimentation has shown a relatively short charging range of a single

energy transmitter [36]. This has motivated the deployment of multiple ETs

over large deployment areas [97] in WSN. Indeed, the presence of multiple ETs

reduces the average propagation distance to the energy harvesting sensors, and

thus decreases the attenuation level of the energy waves. However, it is still

unclear that the combination of multiple transmissions can help reducing the

overall transmitted power.

A first step towards the design of integrated energy networks and WSN refers

to analyzing the scalability of the required energy in terms of the number of

deployed ETs. At a high level, it is investigated whether the combination of mul-

tiple ETs can help reducing the overall transmitted energy or, if on the contrary,

the deploying multiple ETs brings additional trade-offs and research problems

that may preclude an eventual operation. As the main results show, increasing

the number of deployed ETs for a given deployment is shown favorable in most

daily environments. However, the design of multiple access methods for multi-ET

transmissions i desired to achieve the best performance.

A Multiple Access Method for Multiple Energy Transmitters

Wireless RF power transmission from multiple ETs brings several trade-offs in the

design, since simultaneous transmissions that may overlap over the medium can

destroy each other. In particular, the constructive and destructive combination

of RF waves generate very large peaks and drops of power in a non-controllable

spatial-dependent manner. As a result, the underlying nodes, cannot guarantee

a minimum of harvested power, hence interrupting their normal operation. The

aim of existing MAC protocols for RF energy harvesting sensor networks with

multiple ETs is to mitigate the impact of interferences.

For this, we introduce an energy multiplexing method, which aims at handling

the simultaneous transmissions of power from the multiple ETs. This method
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relies on the fundamental assumption that efficiency is maximized when the input

power varies in time as much as possible, since the energy harvesters operate with

increasing efficiency as a function of the input power [105, 33, 100, 14].

Communications over Wireless Energy

The last step of this work is to effectively combine the wireless RF power trans-

mission with the inter-node communication. Existing approaches devote sepa-

rated access times for both operations when data communication and RF energy

recharging occur in-band, raising architectural and protocol level challenges.

Accordingly, we propose a novel method to permit the concurrent transmission

of data and energy that solves this problem. This allows ETs to transmit energy

and sensors to transmit data in the same band synchronously. By considering

this approach, nodes are able to avoid system duplicity at many design levels,

hence potentially reducing manufacturing costs, power consumption and overall

size.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. The next chapter presents

the necessary background that is required to understand and justify the main

contributions of this thesis. Accordingly, it first overviews the main applica-

tions of energy harvesting and wireless RF power transmission for the Internet

of Things. Then, it revises the current state-of-the-art of the proposed technolo-

gies. The following chapters, divided in two parts, namely energy harvesting

and wireless RF power transmission, present the main contributions of this work.

Chapter 3 introduces the developed models that have been considered to an-

alyze and characterize the energy access and utilization. Chapter 4 addresses

the scalability of wireless sensor networks powered by the use of energy harvest-

ing. Chapter 5 studies the impact of non-uniform energy fields in terms of both

temporal and spatial dimensions. These three chapters are based on the work

published in [21, 23, 29, 31] and refer to the first part of this work referred as

energy harvesting. The following chapters conform the wireless RF power trans-

mission part of this work. Accordingly, Chapter 6 performs a feasibility analysis
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of multi-ET wireless RF power transmission and compares the ideal performance

of the different energy multiplexing methods. This chapter has been submitted

for publication in [26]. Chapter 7 presents an opportunistic method for energy

multiplexing in a many (ETs)-to-many (sensors) scenario that leverages the cir-

cuital properties of existing energy harvesters to optimize their input-to-output

power conversion efficiency. This chapter has been presented in [27, 28]. Chapter

8 proposes a method to permit simultaneous wireless RF power transmission and

node-to-node communications in an in-band manner. The results of this chap-

ter have been presented in [24, 25]. Finally, Chapter 9 concludes the thesis and

presents ideas for future work.
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Chapter 2

Related Work and Background

This chapter aims at contextualizing the contributions of this thesis. Accordingly,

it first overviews the main applications and benefits of using energy harvesting

and wireless RF power transmission for the Internet of Things. Then, it revises

the current state-of-the-art of the proposed technologies.

2.1 Applications and Benefits

Energy harvesting and wireless RF power transmission are usually referred as

key-enabling technologies for the Internet of Things. By leveraging the delivered

power of such approaches, sensors will offer an unattended operation, reduce

maintenance costs, reduce their size and enable applications that are considered

unfeasible due to lack of practical accessibility.

Among the numerous applications of the Internet of Things, we find that

energy harvesting and wireless RF power transmission techniques will have a

determining impact in the following fields:

2.1.1 Perpetual Operation

The major benefit of energy harvesting and wireless RF power transmission in

the field of the Internet of Things is provided by the fact that the communicating

nodes are able to continuously harvest energy and to recharge their internal energy

buffers.
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To enable an almost uninterrupted operation of the deployed nodes, it is re-

quired to properly design the energy buffer capacity [23], transmission policies [7],

scheduling [57] and communication protocols [6]. If any interruption occurs, the

operating nodes must re-adapt the network operation until the failing nodes har-

vest sufficient energy and restart their operation [9].

2.1.2 Size Downscaling

As a consequence of the perpetual operation of the sensors, these no longer require

large batteries to store energy for a few months of continuous operation [9]. On

the contrary, these need to store just a small portion of the overall required energy,

such that it powers the node while the ambient energy is shadowed.

A clear example of size downscaling is observed in solar powered sensors. By

implementing a solar panel, sensors move from storing energy for a few months

to just a few days, i.e., these just need to accumulate a portion of this energy to

power the devices at night and days without much sunlight.

2.1.3 Safety and Security

Sensors that implement energy harvesting and wireless RF power transmission

technologies enable fully-wireless approaches, such that these do not require to

implement accessible wires or physical ports. Accordingly, these sensors can be

hermetically sealed to separate the electrical circuitry and the system environ-

ment, bringing several benefits in terms of both security and safety.

On the one hand, such a closed system can only communicate through the

wireless communication unit. This avoids any type of malicious attack that needs

a physical or wired connection to capture internal signaling. On the other hand,

the actual physical separation permits a sensor deployment in highly-inflammable

environments, since any possible electrical spark will not ignite the flammable

fluid.

2.1.4 Flexibility and Ubiquitousness

In addition to the benefits in terms of safety and security. Enabling fully wireless

sensors also changes the way in that IoT is conceived since the communicating
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systems can be placed nearly anywhere. On the one hand, communicating systems

can be deployed in locations that rendered unfeasible due to lack of accessibility

to realize human maintenance. In addition to this, nodes do not need to be placed

in known locations, as well as these can be dynamically displaced due to either

environmental conditions or opportunism.

2.1.5 Economic and Environmental Impact

Energy harvesting and wireless RF power transmission permits the development

of unattended wireless sensor networks that offer real-time monitoring of the

nearby environment. This facilitates fast emergency control actions, plus an

efficient use of the supplies, along with the associated cost reductions. Provided

that this approach aims at suppressing the use of batteries and to perpetually

recharge the sensors by means of the ambient energy, the IoT maintenance costs

are assumed negligible and so its ecological footprint.

In addition to this, the ubiquitousness property of this approach will also

open a whole set of new applications, broadening the existing IoT market. Ac-

cordingly, the economic impact of energy harvesting for IoT does not only lay on

maintenance cost reductions, but also in the creation of new end applications.

2.2 Ambient Energy Sources

In an energy-harvesting-enabled wireless sensor node, the energy which is used

to enable the sensing, processing and communications is fully obtained from its

close environment by means of ambient energy harvesters [128]. In a real context,

the energy that is used to power the sensors can be derived from a diverse set of

physical phenomena, such as solar, thermal, acoustic, vibrational or RF energy.

Unfortunately the available energy which can be harvested from each source of

energy is usually limited and presents an unpredictable pattern in both temporal

and spatial domains [128, 23]. For this, energy harvesting has become, on the one

hand the key enabling technology for the IoT, whereas on the other hand, one of

the largest constraints in capabilities and future performance of the networked

systems.

In a general sense, it is found that some of the most important parame-
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Figure 2.1: Examples of energy transducers: a rectenna [51](left), wind genera-
tor [107] (center) and a ZnO energy harvester [95](right).

ters to characterize a given source of energy are controllability, predictability,

power availability or density and conversion efficiency of state-of-the-art trans-

ducers [128]. Controllability denotes the ability to modify the properties or power

density of the source of energy. As an example, human movement stands as a

controllable source of energy since. Predictability refers to the degree of predic-

tion on the characteristics of the source of energy. For instance, solar energy is

a predictable source of energy [46, 44]. Power availability or density is the ex-

pectable quantity of power that a sensor can harvest from the given source. This

is size or area dependent, so it is usually expressed in terms of power over area

units. Due to the unpredictable nature of the energy sources, the power density

is illustrative and may vary over two orders of magnitude [128]. In Table 2.1 we

show some results on the most relevant energy sources.

Table 2.1: Listing and characterization of the energy sources
Energy Source Properties Available Energy Efficiency

Solar [132, 65, 8] Uncontrollable, predictable 100 mW/cm2 15% to 20%
Wind [142, 107, 81] Uncontrollable, predictable 2 mW/cm2 70%

Human Movement [124] Controllable, predictable 1 mW to 1 W 7.5% to 40%
RF ambient Energy[15] Uncontrollable, Unpredictable 1nW to 100 mW 40% to 50%

Vibration [116, 52] Uncontrollable, Unpredictable 2 µW/cm2 -

Fig. 2.1 shows examples of energy harvesting for RF ambient energy (left),

wind (center) and Vibration (right). We describe next the most commonly con-

sidered sources of energy to power Internet of Things sensing systems and provide

examples of implemented prototypes.
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2.2.1 Solar Energy

Powering systems from solar energy is a widely considered approach, not only in

the context of IoT, but in all nowadays applications. Even though, light is a time-

dependent, time-varying source of power, it follows a predictable pattern [46].

This makes solar energy, one of the most stable and desired sources of energy for

the considered sensors.

To scavenge the energy, sensors integrate photovoltaic cells that convert the

incident light into an electrical current [73]. This generates an output DC current

that can be leveraged to power the entire sensing system. the harvested power is

in the order of 100 mW/cm2. The pattern of the received power is uncontrollable

and it is very affected by the geographical placement of the entire network and

the particular location of the nodes. Hence, the actual received power varies over

a large range. This shows a maximum power generation in outdoors locations

with the photovoltaic cell facing the light source.

Solar energy shows a daily trend that is largely predictable. It has been shown

that by considering accurate modeling and transmission policies, it is possible

to achieve an energy neutral operation [73]. Thanks to this, solar energy has

been widely considered to power WSN sensors as a mechanism to power and to

re-charge the internal batteries. Among others, we find the following existing

sensing platforms: [65, 64, 114, 73, 108].

2.2.2 Mechanical Vibration

Daily activities generate large amounts of residual energy that is expressed in the

form of vibrations and mechanical movement. Plausible examples range from the

subtle vibration of a floor or wall of a building when someone walks nearby, to

severe excitation caused by industrial machinery. In all, mechanical vibrations are

present in a wide variety of both frequency and amplitude ranges, which require

application-specific hardware to optimize the energy scavenging [19].

To harvest energy from mechanical movement, an inertial mass can be used

to generate electricity [5]. In particular, the acceleration of the suspended inertial

mass induces an electrical current that can be rectified and stored in a capacitor.

For this three different mechanisms, namely, piezoelectric [5], electrostatic [120]

and electromagnetic, stand as the feasible approaches.
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The piezoelectric energy harvesting bases its operation principle on given ma-

terials that generate an electrical current when these are deformed [19]. This

property has been leveraged by numerous researchers to implement energy har-

vesting for a wide variety of applications [10, 5, 32, 85]. Electrostatic energy

harvesting consists of generating energy by moving the plates of a charged ca-

pacitor. When the plates are moved, the variations on the electrostatic force

generates a voltage signal, which can be harvested [10, 120, 90]. Finally, elec-

tromagnetic energy harvesting is based on the Ampere law to generate electrical

current by fluctuating the magnetic field around a coil [10].

2.2.3 Thermal Energy

Thermal energy can be also harvested through the action of thermoelectric gen-

erators, by leveraging the Seebeck effect [127]. This effect generates an electrical

voltage that depends on the temperature difference at the junction of two dissim-

ilar metals. In practice, this is generally implemented with a Peltier plate, where

one side is connected to a heat source, whereas the remainder to a heat sink.

However, the thermal to electrical energy conversion shows very poor efficiency,

that is in the order of 5% [127]. Thermoelectric generators show an interesting

approach to reuse the extra heat generated by human machinery, hence improving

the energy efficiency of the system if considered as a whole [19].

2.2.4 Wireless RF Energy

Electromagnetic waves are widely employed as a method to broadcast and to

propagate information. These are transmitted by base stations and aim at cov-

ering large geographical areas. Provided that the RF spectrum is a limited and

scarce resource, frequency bands allocate a large amount of power, where sensors

can harvest energy from.

To harvest the RF power, sensors integrate antennas. Antennas generate a

voltage signal at the frequency of the received RF wave and its power is propor-

tional to the power density of the RF wave. However, given that RF power can be

neither stored nor used to supply the remaining sub-system units, the RF signal

is down-converted by means of a rectifying stage [33] and, sometimes, a DC-DC

converter to improve the conversion efficiency [56]. The design of antennas for
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wireless RF energy harvesting does not pose additional challenges to those for

signal reception. Alternatively, the concept of rectennas has also been well ac-

cepted in the research community [113]. These circuits refer to a combination of

an antenna and rectifying, built for energy efficiency maximization.

The amount of harvestable power and size of the antennas depend in a great

manner on the available RF power in the nearby spectrum. Accordingly, the

size of an antenna is proportional to the wavelength of the RF wave, such that

higher frequencies require smaller antennas and vice-versa. The received power,

however, depends on the transmitter-receiver pair distance and frequency. The

attenuation is proportional to the square of the distance and the frequency. It

has been experimentally shown that it is possible to harvest up to 60 µW at a

distance of 4.1 km in an urban environment [122].

Alternatively, wireless RF energy has also attracted the research community

as a method to supply power on-demand on a wireless manner. This approach

has given birth to wireless RF power transmission, which is discussed in Sec. 2.4

2.3 Energy Harvesting

In the recent years, several works ranging from the energy harvester circuit design

to the network analysis has driven the research in the field of energy harvesting

enabled WSN and IoT. Along these works, different type of energy sources have

been characterized, energy scavengers, power electronics circuits and tools for low-

power applications have been provided and a dense study on communications has

been carried out [7, 84, 128, 133, 138].

These studies have remarkably shown the large degree of analytical complex-

ity of energy harvesting systems. From a descriptive viewpoint, a generic system

requires handling random processes at both input (harvested energy) and out-

put (communications), while defining an energy state, also referred as residual

energy, that varies in time in a non-predictable manner. Accordingly, energy

modeling [102], optimal scheduling [7], dimensioning of the energy buffer [73] and

design of the protocol stack have been some of the most active challenges that

the research community has set to tackle.

Overall, energy harvesting conditions the design of the WSN at many different

levels. This section overviews the design implications accross the different layers.
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Figure 2.2: Depiction of the energy path.

2.3.1 Circuit Level

At the circuit level, the harvested energy is acquired through the action of the

transducers. This is temporarily stored in an energy buffer. Finally, the energy

is distributed to the different sub-system units to enable their normal operation.

This flow is referred as the energy path and it is shown in Fig. 2.2.

An energy transducer is defined as a device which is capable of converting

the energy of certain physical magnitude into electrical energy. i.e., the energy

which is available in the close environment of the sensor is harvested through

energy transducers and converted into electrical energy. In accordance with the

energy sources, there also exist several types of energy transducers, depending

on the nature of the energy source, such as MEMS and NEMS for vibrational

and mechanical energy harvesting, which can be either resonant [116] or non-

linear [52], antennas and rectennas for RF energy harvesting [51] or solar cells [65].

Energy transducers are very sensitive to size downscaling, since a modification

in size or area of the transducer may affect critical parameters, such as oscillation

frequency. As an example, in RF energy harvesting, the size of the rectenna is

directly related to the targeted RF wavelength. i.e., the natural frequency for

energy harvesting dramatically increases as the size downscaling in the rectenna

is performed. In this context, nanotechnology-based novel transducers aim to

provide similar properties of classical energy transducers at a much lower size.

As an example, a graphene-based nano-antenna allows a reduction in size of

two orders of magnitude (up to 100 times smaller), in comparison to metallic

antennas, while still operating at the same frequency [69]. Accordingly, combining

multiple energy harvesters to reduce the overall area, while meeting the user-

defined requirements is set as a major research challenge that the community has

set to tackle [22, 31]
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The subsequent part of the energy path aims at conditioning the harvesting

energy to the sensor requirements. As a result, the energy conditioning block pro-

vides the matching between the energy transducers to the sensor node [30, 8, 133].

As an example, in case of harvesting AC energy, this needs to be downconverted

to DC current by means of a rectifying circuit [100].

By following the energy path, the harvested energy is required to be tem-

porarily stored in an energy buffer, until this is used by the communication or

processing unit of the sensor node. This block results of vital importance for

the performance of the sensor node due to the fact that ambient energy sources

provide not only low-power densities, but also they present a large sparsity and

time-variant character [7].

The energy storage is usually composed of a battery or a supercapacitor [128].

Unfortunately, there is a huge compromise among both technologies. Particularly,

batteries usually provide larger energy densities than capacitors. On the other

hand, capacitors can handle faster energy fluctuations and have larger recharging

cycles [132, 77, 112]. As a result, the strong compromise among technologies

makes very challenging for the electronics designer to decide whether to use either

one, another or both. Table 2.2 shows typical values for batteries.

Table 2.2: Comparison of battery technologies [132, 128]

Technology Energy Density (MJ/kg) Recharging cycles

Sealed Lead Acid 0.11-0.14 500-800
Ni-cadmium 0.14-0.22 1500

NiMH 0.11-0.29 1000
Li-ion 0.11-0.29 1200

2.3.2 Energy State Modeling

The existing state-of-the-art joint models, which are based on Markov queues,

can be roughly classified into three types. In the first type the basic unit is the

energy packet and -unlike classical communications queues- empty queues of en-

ergy packets entail an interruption of the normal operation of the sensor nodes.

In such models the energy harvesters generate arrivals of energy packets that in

turn, are stored in the energy buffer (representing a battery or a supercapaci-

tor). The communication unit is modeled as a server which processes the energy
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packets where the service time is associated to the generation of communications

events[136, 70, 148]. The second type of models proposes the interconnection of

two different Markov chains, namely a main queue for communications packets

and a secondary queue for energy harvesting resources. Such type of models con-

sider that a data packet can be effectively transmitted when it has been processed

by the main queue and the queue of energy-packets is not empty [7, 102, 115].

And finally, the third type are based on state-dependent Markov chains where

each state represents a combination of the amount of energy,data packets available

in their respective buffers [88, 123].

Alternatively, existing joint models for solar energy harvesting account for

daily temporal variations of the ambient energy. Due to the fact that solar energy

provides a significantly larger amount of energy, and due to the fact that sensor

nodes must store enough energy for several hours, these models are very source-

specific, and therefore not general purpose [45, 73, 130, 83].

Overall, existing joint energy/information models suffer from a remarkable

degree of complexity, at the same time extending them to account for multi-

source energy harvesting systems is challenging since the energy harvesters are not

considered as individual entities. Furthermore, they are not typically equivalent

to classical communication models and as such, harder to solve. Developing a

new type of model that it is simple, accurate and that naturally accounts for the

multi-energy harvesting environment is set as a pending challenge.

2.3.3 Physical Layer Design

The physical layer is in charge of enabling a physical medium to transmit informa-

tion. This layer aims at determining optimal power allocation and transmission

policies to transmit in the best conditions [83, 7, 45, 58], as well as energy efficient

modulations and transmission schemes to survive the large interferences of the

transmitted power [96]. As one of the main research problems in this context we

find the field of information theory. where, the channel capacity of energy har-

vesting enabled WSN and IoT have been extensely addressed [115, 104, 103, 134].
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2.3.4 MAC Layer Design

It is widely accepted that communication in WSN requires more energy resources

than computation. For this, reducing unwanted collisions and retransmissions

of data packets becomes one of the challenges that the research community has

mostly set to tackle. MAC protocols for energy harvesting WSN are thought

as opposed to conventional energy-constrained MAC protocols. Provided that

the energy state of the sensor is constantly changing, sensors aim at efficiently

using the energy resources of the sensor, rather than employing energy-saving

approaches [76, 61].

There exist a wide variety of MAC protocols designed for energy harvesting.

These can be categorized in three main groups. First, polling-based protocols such

as PP-MAC, EH-MAC and MTTP [76, 42]. Second, random access protocols,

which, among others, considers ALOHA and CSMA-based protocols [61, 135].

Finally, scheduled protocols based on TDMA approaches [61, 135].

2.3.5 Energy Harvesting Wireless Sensor Networks

Energy harvesting changes the way in which networks are designed and consid-

ered. Non-energy harvesting powered IoT are constrained by the capacity of their

batteries, such that nodes aim at optimizing the communication and network op-

eration following an energy saving approach. On the contrary, energy harvesting

defines energy as an unlimited resource, with scarce and non uniform availability,

whereas the storage of energy is far limited. In this novel scenario, saving energy

to extend the sensor lifetime is usually not the best approach, since it is likely to

entirely fulfill the energy buffer. Accordingly, energy harvesting powered sensors

need to follow energy efficient policies to maximize the use of the energy.

The study of WSN powered by energy harvesting starts from a simple transmitter-

receiver pair [17]. From the networking viewpoint, studying the access of energy

in large scales networks is posed as a major challenge. Among the different sce-

narios, mobile ad-hoc networks (MANETs) and cellular networks have attracted

the interest of many research groups [59, 60].
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2.4 Wireless RF Power Transmission

Wireless RF power transmission is emerging as a promising approach to enable

battery-less wireless sensor networks (WSNs) [113, 144, 79, 145]. This technique

aims to leverage RF energy harvesting [128, 141], which will allow controlled

powering of nodes that may have insufficient residual energy in their batteries, or

are unable to scavenge energy from the ambient environment (say, through solar,

wind, vibration) at desired rates.

2.4.1 Circuit Design

The main circuits, which are required to implement an energy harvester for wire-

less RF power tranmission, are the antenna and a rectifying circuit, which con-

verts the RF power into a DC current [138]. In case that both components are

jointly integrated, this is referred as rectenna [51, 113]. However, employing sep-

arated circuits has been lately considered as an interesting approach to permit a

dual operation of the considered antenna [82]. Hence acting for both communi-

cation and power transmission actions.

The non-linear behavior of semiconductor devices results in the dependency

of the input impedance with the input power, such that the antenna and en-

ergy harvester impedances match only for a certain input power. The impedance

matching makes two distinguished regions in any real implementation [33]: In-

creasing efficiency for low input powers and decreasing efficiency for high input

powers. In region I, transmitting power in a time-varying manner leads to higher

amounts of harvested energy [14]. On the contrary, in region II the power conver-

sion efficiency at the high power range decreases with the input power [33], and

a low peak-to-average received power ratio improves the efficiency of the energy

harvester.

High-efficient energy harvesters integrate two separated and generic stages for

energy optimization [56]. First, a rectifying circuit is employed that can convert

with very high efficiency the harvested power. Then, a DC-DC boost converter

operating in discontinuous conduction mode (DCM) is considered to transfer

the accumulated energy in a temporal capacitor towards the energy storage unit

(i.e., a super-capacitor or battery). The control unit handles the operation of this

converter.
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The aim of this dual-stage design is to optimize the transfer of energy by ac-

curately matching the input impedance of the rectifying stage, which depends on

its output load [100]. In particular, when connecting a rectifying stage for energy

harvesting applications to an energy buffer, it shows a time-variable conversion

efficiency, showing poor performance when the output capacitor voltage is either

too low or too high [56]. For this, a small capacitor is connected to the output

of the rectifier, which permits to rapidly skip the low-voltage operation regime

(i.e., below a given voltage level). When its output voltage surpasses a given

threshold the stored energy is high efficiently transferred to the output energy

buffer through a DC-DC boost converter, leaving the voltage at the temporal

capacitor at a low voltage (the duration time of this action is referred as on-

time). As such, the voltage of the temporal capacitor approximates a saw-tooth

waveform [34], and the output current of the energy harvester is in form of short

time-scale spikes. Accordingly, the saw-tooth waveform period inversely depends

on the input power.

2.4.2 Transmission of Energy

Given the relatively short charging range of one energy transmitter (ET), either

mobile ETs or multiple ETs are required to cover large deployment areas [39,

40, 97] in WSN. The presence of multiple ETs reduces the average propagation

distance to the energy harvesting sensors, and thus decreases the attenuation

level of the energy waves and improve the RF power harvesting rates [55].

In multi-ET deployment scenarios, RF waves may interfere with each other

when they are transmitted in the same medium. These interferences can be either

constructive (i.e., the received power is larger than the average) or destructive

(i.e., the received power is very low, or even zero) as shown in [97, 117], requiring

ETs to implement energy multiplexing techniques for wireless RF power transims-

sion [144]. It can be observed that the constructive and destructive combination

of RF waves generate very large peaks and drops of power in a non-controllable

spatial-dependent manner.

Existing energy multiplexing approaches for wireless RF power transmission

can be classified in two distinguishable groups. On the one hand, orthogonal

methods can be utilized to mitigate interferences between transmissions of energy,
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therefore providing separated access channels for each transmission of energy. In

this group we find a large variety of multiple access methods that were proposed

for communications and can be implemented for wireless RF power transmission

as energy multiplexing methods, such as TDMA, FDMA, OFDMA [99], FHSS

and DSSS [35]. This approach requires lightweight synchronization among ETs

to guarantee non-interfering power transmissions [35]. Also, cooperative commu-

nication methods for many-to-single and many-to-many communication can also

be considered [78]. On the other hand, distributed beamforming methods [94, 80]

aim at constructively combining the RF waves at the recipient end to maximize

the power transfer in a many (ETs)-to-many (sensors) configuration [144, 97, 80].

In this group, massive MIMO stands as the best alternative to optimize the power

transfer. This was first showed in a two-user case [109] and later extended to a

generic k-user [110]. However, this approach comes at the non-negligible cost of

increasing hardware complexity by necessitating k antennas per ET, with k the

number of deployed sensors, and requiring a node to ET communication link for

channel state information reporting [110].

2.4.3 Energy and Communications

Using the RF spectrum for both energy and data transfer, however, may seriously

affect network operations and performance, and require sophisticated hardware

and devices that many systems cannot afford. For instance, transmitting energy

and data on different frequencies [101] would require multiple or broadband access

capabilities, since the frequency gap between energy and data communications

cannot be very small [96]. Alternatively, when both energy and data share a single

band, specialized MAC protocols are required [97]. In both cases, devices should

feature two separate RF front-ends, for decoding the information and converting

RF energy into DC [111]. Therefore, devising methods for energy provisioning

without affecting data communications appears to be the challenge to tackle [48].

Simultaneous wireless information and power transfer (SWIPT) and full du-

plex energy harvesting have been presented in [82, 72]. These technologies aim

to deliver information over a wireless medium during the simultaneous transmis-

sion of energy. However, SWIPT enables the transmission of data and energy

from the same network device, thus enabling downlink communications, whereas
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full-duplex energy harvesting aims at receiving energy as the device transmits it,

thus targeting uplink communications. In these fields, significant work has been

recently performed, which includes considering MIMO-based solutions [147] or

simultaneous relay of energy and data [20]. In particular, a model for integrated

data and energy transmission using SWIPT has been presented in [149].

Simultaneous transmission of energy and data is also provided by other tech-

nologies. For instance, RFID technologies inherently implement simultaneous

transmission of energy and data, being based on backscatter communications [140].

In line with this approach, backscatter communications have recently been pre-

sented and experimentally demonstrated for wireless RF [84]. This approach

leverages ambient RF waves produced by a third entity that are passively re-

flected from the transmitting to the receiving node. To reflect the RF wave and

to modulate information, the impedance of the antenna is being constantly mod-

ified at the transmitter (i.e., short-circuiting and open circuiting the antenna to

modify its reflection properties and to transmit logic ‘1’s and ‘0’s). Ambient

backscatter enables ultra low power communications over an active transmission

of energy. However, the transmitting node cannot allocate power as it reflects a

portion of the power that it receives, whereas the allocated power in our approach

is a design parameter. On the receiver side, no integrated data and energy receiver

has been implemented, so the receiving sensor has to switch between activities,

thus requiring synchronized MAC protocols to detect active data transmission.
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Chapter 3

A general purpose Energy Model

3.1 Introduction

A major challenge in IoT is posed by the energy constraints of the nodes, where

energy harvesting stands as a promising approach to perpetually re-charge the

sensing and communicating devices yielding to self-powered IoT.

The available energy sources that a sensor can harvest can be originated from

many natural sources and are present in many different forms. As an example,

solar energy offers a slow pace time variation in cycles of 24 hours, with intense

fadings in both temporal and spatial domains. Alternatively, the harvested energy

from wireless RF sources, show a fast time-varying character with large dispersion.

Overall, the harvested energy is then scavenged by a whole set of heterogeneous

power processing techniques to maximize the conversion efficiency. Among other

circuits, rectifiers and DC-DC converters show reasonably good power conversion

performance. Finally, this is used to power a wide set of different applications.

As a result, the extremely large variation of approaches and alternatives to

perpetually re-charge the IoT devices shows the need of general-purpose, energy-

source-agnostic tools to model and characterize the ambient energy and the man-

ner that sensors acquire and process it renders of major importance

This chapter presents the energy harvesting models, which are considered

in the remainder of this work. First, the ambient energy is described. This is

based in a separation of dynamics, being the slow dynamics a largely correlated

in both time and space component which provides the average received power
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at the node locations, whereas the fast dynamics stands for a dimension-less

component which aims to capture the uncorrelated variations in both time and

space. Then, the operation of the node and the flow of energy, referred as energy

path is justified. This aims to provide a relation between the available energy

at the close environment and the operations that the node can realize. Finally,

a negative-energy queue model is provided to ease the modeling and simulation

of energy harvesting enabled IoT devices. The negative-energy model aims at

providing a one-to-one relation between the energy and the intensely devoted

literature to classical communication queues.

3.2 Ambient Energy

The ambient energy can be harvested from a very large variety of physical phe-

nomena. In particular, the most appealing energy sources for energy harvesting

range from solar, thermal, mechanical, acoustic or RF. As it is shown in [128],

the power that a sensor node can harvest depends upon many factors, such as

nature of the source, power availability and dimensions of the energy harvester.

Among other physical phenomena, solar, human movement, vibrations or RF

waves already present implementable transducers for sensors. In particular, the

average power that it can be harvested from each energy source is in the order

of 10 mW for solar, 1 mW for human movement, 10 µW for RF and 1 µW for

vibrations [128]. However, the instantaneous power that it available at a given

time and space is unpredictable.

In order to provide a model for the ambient energy, we require it to be as

general as possible, we assume that the ambient energy, which is harvested, is

spatio-temporal correlated and its value is given by what we define as the energy

field. The energy field, PH(r, t) in power units, is defined as a spatio-temporal

function which provides the energy that would be harvested in case that a node

is located at a certain location r at a time t.

To avoid an overhead in notation, in what follows, we will refer as PH(r, t)

the energy field, as PH(t) the power which is harvested from the energy field at

the location of the sensor node under study and PH as the average value of the

energy field at the location of the sensor node.

Then, we assume that the energy field is given by the product of two separated
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dynamics:

PH(r, t) = PS(r, t) · p(r, t) (3.1)

where p(r, t) is a dimension-less, spatio-temporal-decorrelated random process,

referred as the fast dynamics, and PS(r, t), in power units, stands for a random

process with a slow variation in time as well as in space, here referred as the slow

dynamics. The coexistence of these two dynamics is shown in Fig. 3.1.

The large temporal difference between both dynamics is such that it is ac-

complished that the average in time of PH , can be separated by the product of

both time-averages:

〈PH(r)〉 = 〈PS(r)p(r)〉 = 〈PS(r)〉 · 〈p(r)〉 (3.2)

where the 〈·〉 operator stands for time average. Provided that the above equation

holds, it is then obtained that we can approximate PH(r, t) at a time close to t0

as:

PH(r, t) ≈ PS(r, t0)p(r, t) (3.3)

for short time intervals, such that PS(r, t0) can be considered constant within a

node, while we can approximate PH as:

PH(r, t) ≈ PS(r, t) (3.4)

for long time intervals. Therefore, depending on the length of the time interval,

we can approximate the energy harvesting by just considering either the fast or

the slow dynamics.

In addition, we define as eH (and EH its averaged value) the harvested energy

over a fixed time TH :

eH =

∫

TH

PH(t)dt, (3.5)

and alternatively, we define tH (and thus, TH its averaged value) as the time such

that a given fixed amount of energy EH has been harvested:

tH ≡ time s.t.

∫

tH

PH(t)dt = EH . (3.6)

The spatio-temporal correlation of the slow dynamics is modeled with a cor-
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Figure 3.1: Separation of dynamics. The energy field is correlated in both time
and space. The harvesting energy is bursty and random but it presents a smooth
variation in temporal average.

relation coefficient. As a general definition, the correlation coefficient of the

harvested power between the nodes i and j, located at ri and rj at times ti and

tj respectively is given by:

ρij(ri, rj, ti, tj) =

=
E [(PH(ri, ti)− 〈PH(ri)〉)(PH(rj, tj)− 〈PH(rj)〉)]

σH(ri)σH(rj)

(3.7)

where σH(ri) and σH(rj) refer to the standard deviation of the energy field at the

locations of the nodes i and j.

Finally, we define the coherence time, tc, as the minimum average time at

which two points present no correlation between them. The concept of coherence

time will result very helpful in the following sections in order to relate how fast

the energy field varies in time and the impact that it has over the evaluated

results.
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Figure 3.2: Considered system architecture of a node powered by energy harvest-
ing. The harvesting power is denoted with PH and the power which is efficiently
converted into communications is shown as PC

3.3 Sensor Node

In an energy-harvesting-enabled wireless sensor node, the energy which is used

to enable the sensing, processing and communications is fully obtained from its

close environment by means of ambient energy harvesters [128]. This energy

would ideally present an ubiquitous and perpetual character, but it also generally

has spatio-temporal-correlated properties [21]. Afterwards, this energy is condi-

tioned in order to be stored in an energy buffer (e.g. a battery or a capacitor).

Finally, this energy is used to power the sensing, processing and communications

units [86]. This flow is here referred as the energy path.

The purpose of this section is two-fold. First, we aim to provide an overview of

the sensor system architecture and to formarlly desribe the energy path. Second,

we present the basic assumptions and relations among parts, as well as we define

the dynamics-decoupled model for the ambient energy.

3.3.1 Sensor System Architecture

Environmental energy sources The energy found in the close environment

of the sensor node can be presented in many different natures, such as thermal,

solar, acoustic, RF and vibrations [128]. These energy sources ideally present an

ubiquitous and perpetual character, as well as spatio-temporal-correlated prop-
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erties among different nodes [21, 23]. However, their properties show a variation

in time and frequency for a given node, because they also present a pulse-based,

burst-mode, time-domain behavior.

Energy transducers The energy from the environment is scavenged through

energy transducers. There exist several types of energy transducers, depending

on the nature of the energy source, such as MEMS and NEMS for vibrational and

mechanical energy harvesting, which can be either resonant [93] or non-linear [52],

antennas and rectennas for RF energy harvesting [51] or solar cells [49].

Energy conditioning The subsequent part of the energy path requires the

energy to meet a set of requirements, such as a regulated voltage. The energy

conditioning block provides the matching between the energy transducers to the

sensor node [133]. In this work, an adaptive front-end in the energy conditioning

block is proposed to improve the overall efficiency in the energy path.

Energy storage Given the low-power density of the environmental energy

sources, and their burst mode nature, there is the need of temporal energy stor-

age [21, 23], so that the sensor node can access to the energy when the application

requires more energy, despite severe time asynchronicity between time-dependent

energy access and energy consumption. The energy storage unit is usually com-

posed of either batteries, capacitors or supercapacitors.

Communications and applications The harvested energy is finally used to

carry out the communication among nodes or perform a certain task, such as

sensing, processing, or interacting with the environment [4].

3.3.2 The Energy Path

To model the access of energy in the node, we propose the use of the energy path

function. This is a function which relates the average energy which is required to

transmit a information packet to the actual energy which must be harvested from

the environment. In other words, this function represents the power conversion

efficiency along the energy path of an energy harvesting enabled sensor node. In
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uses it with 100% efficiency.

• f(x) < 1, i.e., the energy which is used for communications cannot exceed

the capacity of the energy buffer. Intuitively, if during the transmission of

two information packets the energy harvester receives more energy than the

capacity of this, the excess of energy is lost.

• The efficiency of the energy path can be defined as η(x) = h(x)/x. We

observe that the efficiency decays as 1/x for x sufficiently large.

Fig. 3.3 shows an example of the energy path function. As it is shown, the f

function is bound by f1(x) = x. It is also depicted the asymptotic behavior of

this function. We define as f0 as the f when it approaches x → 0 (denoted with

the interval x ∈ (0, x0)), that is, the energy buffer is very big compared to the

required energy to communicate, whereas we define as f∞ when it approaches

x → ∞ (denoted with the interval x > x∞), that is, the energy buffer capacity

is similar to the size of a communication data packet. These two particular cases

are described in detail as follows:

A Miniaturized Sensor We refer as miniaturized sensor to a device with

very limited energy buffering capabilities. Regardless of the available power that

these sensors can harvest, the energy buffer is able to only store a very small

portion of the energy. If the sensor does not use the energy immediately after it

is harvested to communicate, it stops buffering extra harvested energy. Notice

that the miniaturized sensor refers to the particular case EH ≫ CB. According

to the definition of such system, we can model f(x) ≈ f∞(x) as a function which,

regardless of the input energy, it provides a constant output energy f∞(x) = k,

with k = EC/CB. Therefore, the energy harvesting efficiency of a miniaturized

sensor is given by:

η∞(x) =
f∞(x)

x
=

k

x
, (3.9)

.

An Overdimensioned Sensor An over-dimensioned sensor refers to a de-

vice that, even though it operates in a low-end network (low data rates and

low power requirements), it has been designed to operate at higher power and

36



3. A GENERAL PURPOSE ENERGY MODEL

information rates. These devices are generally bigger in terms of area, capabil-

ities and also power losses than optimized devices. As such, the energy buffer

is over-dimensioned and, thus, the energy of a single data packet renders negli-

gible compared to the capacity of the energy buffer, i.e., EC ≪ CB. An over-

dimensioned sensor refers to a sensor such that its energy path function approx-

imates f(x) ≈ f0(x), and its efficiency depends on the harvested energy. Exper-

imental results in micro-scale energy harvesters show that energy harvesters op-

erating at lower rates than designed show an efficiency which is power-dependent

on the input power [100]. Without loss of generality, we therefore consider:

η0(x) =
f0(x)

x
= βxγ, (3.10)

where β and γ > 0 are technology-dependent values which are left as parameters.

3.3.3 A Model for the Energy Path

In this section, we propose a Markov chain model to characterize the energy path

function of a sensor node powered by energy harvesting. To do this, we first

establish the primary assumptions, and then we evaluate the equations to show

the energy path function of in the context of RF energy harvesting.

Overview

By following the energy path, the harvested energy is temporarily stored in an

energy buffer, until this is used by the communication unit of the sensor node.

This energy buffer of maximum capacity CB, in energy units, (e.g. a battery or a

supercapacitor) is used in order to absorb the time-varying random variations of

both the energy harvesting and communication processes. We define the energy

state, s(t), as the energy which is stored at a time t in the energy buffer. This is

a random process, which, in turn, is a function of the energy harvesting and the

communication processes. This is given by:

∂

∂t
s(t) = PH(t)− PC(t)

Subject to: 0 ≤ s(t) ≤ CB ∀t
(3.11)
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Figure 3.4: Depiction of the three elements which interact n the energy path/
The harvested energy, the energy stored in the energy buffer and the energy used
for communications.

where PH(t) is the energy which is harvested by the sensor node and PC(t) stands

for the power which is requested by the communications unit.

For a better understanding of the three elements which interact in the energy

path, they are shown in Fig. 3.4. H(t) refers to the aggregation of the energy

which is harvested starting from the time t = 0 plus the initial stored energy.

C(t) stands for the aggregated energy which has been used for communications.

In addition, the energy which is stored in the energy buffer, s(t), is represented

as the shaded area between the curves H(t) and C(t). Finally, we have also

represented the data transmission requests as arrows.

The communication process in a WSN is characterized by the transmission

of short data packets. A data packet has an associated energy, eC , which is

required in order to guarantee that the transmitted data can be recovered at the

receiver node. This energy, eC , is a function of the link capacity, link distance

and transceiver constraints, and it is provided by the Shannon’s link capacity.

Characterization of the Energy State

The energy state is a key parameter in the design and evaluation of any scheme of

the protocol stack, ranging from the PHY layer to the application. In this work,

we aim to characterize the energy state and to estimate the probability of each

state.

The packetized patterns of the communications unit enables the discretization

of (3.11). Such discretization has been performed in previous works [115, 45]
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by providing a Markov chain and defining a virtual energy harvesting packet

which arrives every certain time. However, given the unpredictable patterns of

the energy harvesting process, the assumption of a markovian energy harvesting

packet might not hold as a general case.

Therefore, we discretize in time the energy state equation. It is done at the

time, tk, produced by the communication event k. Thus, the energy state at the

communication event k + 1, sk+1, is given by:

sk+1 = ekH − ekR + sk

Subject to: 0 ≤ sk+1 ≤ CB ∀t
(3.12)

where sk refers to the energy state after the k-th communication event, ekH is the

harvested energy during the times tk+1 and tk. Finally, the term ekR stands for

the requested energy to transmit the data packet k.

The harvested energy during communications events needs to be modeled

since this time usually randomly varies. As such, we find that the harvested

energy during time events, eH , is actually the result of the integration of random

processes, PH during a random time. As such, we proceed to characterize eH by

means of the law of total probability, which states the cumulative distribution

function (cdf) of eH , here referred as FEH
, is given by:

FEH
= E[F

E
tC

H

|TC ] (3.13)

which can be rewritten as:

FEH
=

∫
∞

0

F
E

TC

H

(tC)fTC
(tC)dtC (3.14)

where F
E

tC

H

(tC) is the cdf of the harvested energy during a fixed time tC and

fTC
(tC) stands for the probability density function (pdf) of the time between

communications events, tC .

The energy which is actually used to transmit the data packet, the commu-

nication energy ekC , equals to the requested energy, as long as there is enough

stored energy:

ekC =

{
ekR if sk > ekR

0 otherwise.
(3.15)
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Figure 3.5: Energy balance at the sensor node, where ekH is the harvested energy,
sk stands for the energy state of the energy buffer, CB stands for the maximum
capacity of the energy buffer, ekL refers to the energy which is lost due to battery
fulfillment, ekR is the requested energy, ekC stands for the communication energy,

In addition, we denote as ekL the energy which is lost when the node is not able

to store the energy due to energy buffer fulfillment. This is given by:

ekL = ekH − (CB + sk)

Subject to: eL > 0.
(3.16)

The relation among energies is referred as the energy balance. This is shown

in Fig. 3.5. Finally, we have that, in average, the input energy must equal to the

output energy. Therefore:

EH = EC + EL (3.17)

where EH , EC and EL refer to the average value of the harvested, communi-

cations and lost energies. As it follows, we will refer as eH , eC , eR, s, eL and

tC the discrete random processes of energy and time, such that a given random

process x accomplishes that xk = x(tk). The random processes eR and tC are

communications-related, which both are provided by the application.

By having defined a time-discretized energy state equation, (3.12), and by

having modeled the cdf of the ambient harvesting energy which arrives at each

discrete time, (3.14), the energy state probability can be mathematically obtained

through a Markov model.

Markov Modeling of the Energy State

In order to model the sensor node through a Markov chain, the energy state is

discretized into NB states. In addition to this, we have assumed Poisson arrivals
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only produced by the communications unit. After an event arrival, the transition

probability is estimated by means of the difference between the harvested energy,

with cdf defined by FEH
(3.14), and the statistics of eR, which are provided by

the application.

Then, we define the transition matrix, P as the NB-by-NB matrix, where each

element of the matrix, pij, refers to the transition probability from the state i to

the state j. This probability is given by:

pij =

{
p1(i, j) if j ≤ i

p1(i, j) + p2(i, j) otherwise
(3.18)

where the first term, p1(i, j), is common for both cases and refers to the prob-

ability that eR − eH = (i − j)CB/NB, i.e., the probability that the difference

between eR and eH equals to the distance between both states. In addition, the

second therm, p2(i, j), refers to the probability that eH + iCB/NB < eR, i.e.,

the sensor node does not have enough energy to communicate, and also that

eH = (j − i)CB/NB, i.e., eH coincides with the distance between both states.

Therefore, we define π as a horizontal vector of NB elements, which contains

the state probabilities. In order to be the π vector the probability vector in

steady state, it must be accomplished that i) π = πP, i.e., π is left-eigenvector

of P, with eigenvalue λπ = 1, and that ii)
∑

NB
πi = 1, i.e., the sum of every

element of the vector is equal to one.

Derivation of the Energy Path Function

In order to obtain the average function, we first estimate the f function for a

fixed CB and average EH . By considering the markovian model, we have x as the

normalized harvesting energy, yR as the normalized requested energy to transmit

the data packet, yC as the normalized communications energy. We define zS as

the energy which is not lost, i.e. zS = x− zL. The energy zS is highly dependent

on the current energy state. Indeed, in large energy states, the chances that the

energy buffer is over-flooded, thus causing a loss of the harvested energy is larger

than in low energy states. As a result, the average ZS,i at the state i of the
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Figure 3.6: Cumulative distribution function of the harvested energy for different
values of the bandwidth in RF energy harvesting (W ∈ {1, 10, 100, 1000} kHz).

Markov chain is given by:

ZS,i = E[zS,i] =

∫ NB−i

0

xfX(x)dx+

∫
∞

NB−i

(NB − i)fX(u)dx (3.19)

where fX refers to the pdf of the energy normalized harvesting process. This is ob-

tained through (3.14), by computing its derivative. Then, the average harvested

energy which is stored in the i-th state can be obtained by:

ZS = E[ZS,i] =

NB∑

i=0

E[ZS,i]πi (3.20)

where πi stands for the i-th state probability in the Markov chain.

As a last step, by assuming that the energy which is stored will be eventually

used to communicate, we obtain that in average YC = ZS.

3.3.4 A Case Example

As a case example, we evaluate the energy path function in case of RF energy

harvesting. Firstly, we assume that the RF energy source is generated by an

AWGN noise-like power source with bandwidth W and two-sided spectral density

PH/2W , such that the resulting received power at the sensor node is PH .
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It is well known that the energy, EH , which is harvested from an AWGN-like

power source over a fixed time T can be modeled as a chi-square distribution with

ν = 2TW degrees of freedom random variable. This probability density function

is expressed in terms of the normalized random variable Y = 2EHW/PH , and is

given by:

fY (y) =
1

2ν/2Γ
(
ν
2

)y(ν−2)/2e−y/2. (3.21)

However, the integration time is given by the communication block, which is

modeled as an exponential random variable. Therefore, by the law of total prob-

ability, which is given by (3.13) and (3.14), the cumulative distribution function

(cdf) of the chi-squared distributed harvested energy, eH over an exponentially

distributed time t is given by:

FEH
(eH) =

∫
∞

0

γ
(
tW, eHW

PH

)

Γ(TW )
λte

−λttdt (3.22)

where γ stands for the lower incomplete gamma function. This integration does

not have a close-form expression, thus it must be numerically solved. Afterwards,

the estimation of the cdf is used in order to compute the transition matrix P from

the Markov model and the energy state probabilities are found. Finally, the state

probabilities of the energy state are used in order to compute the h function.

In order to evaluate these results we have assumed the following configuration:

PH = 1 mW, λt = 1000 packets/second, W ∈ {1, 10, 100, 1000} kHz and eC =

1 µJ. In Fig. 3.6 we evaluate the CDF of the harvested energy, FEH
, from (3.22).

As it is shown, the bandwidth of the energy harvester has a strong effect on the

statistics of the harvested energy. Afterwards, we show in Fig. 3.7 the cdf of the

energy state, when considering RF harvesting energy. In order to characterize the

energy state, a total capacity of the energy buffer has been chosen as 1 mJ. It is

observed that larger bandwidths provide a more uniform distribution of the energy

state at the sensor node. Finally, we evaluate the energy path function in Fig. 3.8.

The energy path function is shown for different values of bandwidth. Consistently

with the energy state distribution, larger values of bandwidth uniformly distribute

the energy state, thus reducing the probabilities of not having enough energy to

transmit.
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width (W ∈ {1, 10, 100, 1000} kHz).
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3.4 The Negative-Energy Queue Model

Given the large amount of literature devoted to queue theory for communication

models, we consider that a queue model for EHE-WSN nodes should have the

same properties than a communication queue. That is, we pursue an energy

model such that:

• The stability condition must be ρ < 1.

• The idle state must be defined as the state of having an empty queue.

• The loss of communication must be assigned to a full queue.

Thanks to such queue model, we would be capable of using the well known re-

sults and closed-form expressions for communications, and to translate them into

energy harvesting requirements.

Therefore, we define the negative-energy queue model for EHE-WSN as in

Fig. 3.9. As it is shown, the arrivals of this queue are generated by the set of

applications of the sensor node. i.e., every time an application spends one unit

of energy, it generates an arrival of negative-energy. Each type of application has

an associated generation rate (e.g. λC for communications, λP for processing and

λS for sensing). On the other hand, the service time, TH = 1/µH , is the time

that an energy harvesting unit needs to process one negative-energy packet. In

other words, TH is the time that it takes for the energy harvesting unit to harvest

45



3. A GENERAL PURPOSE ENERGY MODEL

the required amount of energy that has been consumed by a certain application

(3.6).

In order to account for power losses [86] in our negative-energy queue model

we assume them as constant. This assumption is valid for a wide set of values

of the energy buffer state while does not apply for very low or very high energy

buffer states [29]. Below a certain threshold of stored energy the sensor node stops

its operation, this is taken into account by our model as a full negative-energy

queue. Similarly, the energy harvested by sensor nodes with very high energy

stored is lost because of the leakage, this represents the maximum achievable

capacity of the energy buffer. We consider this case in our model as an empty

negative-energy queue.

In addition to this, recent trends in sensor node design is pointing to multi-

source energy harvesting [8, 108, 141]. Multi-source energy harvesters can be

considered in this queue model by connecting them in parallel, such as multiple

servers in a communication queue (e.g. M/M/c/N and M/G/c/N).

Finally, the queue of negative-energy packets refers to the energy buffer but

observed upside down. A queue which is empty of negative-energy packets refers

to a fulfilled energy buffer, while a fulfilled queue stands for an empty energy

buffer. Thus, the number N of negative-energy states is related to the energy

buffer capacity as:

N =
CB

EH

(3.23)

where CB is the energy buffer capacity and EH refers to the energy which is

harvested over a time TH . Additionally, if at a certain time tk the queue has Lk

negative-energy packets, then the energy state sk at the energy buffer is given by:

sk = CB − LkEH . (3.24)

It is observed that when the queue does not have any negative energy packet,

the energy harvester unit can remain in idle state, alike communications queues.

For further evaluation along this work, we have considered communications

processes, with Poisson arrivals, as the generator of negative-energy packets and

a single energy harvester. Therefore, as it follows, we can use the literature of

M/G/c/N queues, so that we can evaluate the system for any arbitrarily chosen

statistic distribution for the energy harvesting source.
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The Energy-Erlang

By having provided the negative-energy queue model for EHE-WSN, we can now

define the energy utilization as:

ρE =

∑
i λi

µH

=

∑
i Pi

PH

(3.25)

in Energy-Erlang [E2] units. As it can be observed, the energy utilization of the

negative-energy queue model, unlike the utilization which was defined in typical

queue models for EHE-WSN, is now stable for ρE < c, where c stands for the

number of energy harvesters.

In general terms, the Energy-Erlang is a dimension-less unit which is proposed

here as a statistical unit of energy harvesting resources.

As an example, let us assume that an energy harvester is able to harvest

PH = 10 µW. If, in order to communicate, it requires PC = 25 µW, then the

required energy harvesting resources result in ρE = 2.5 Energy-Erlangs, which

means that at least 3 energy harvesters are required in order to enable a correct

operation of the sensor node (ρE < c).

Due to the fact that the Energy-Erlang is a ratio between the available and

the required energy resources, it provides significant advantages in the design

and dimensioning of sensors. In particular, this can be used to dimension energy

harvesters, since we can relate the required harvesting power to meet certain user-

defined requirements by PH = PC/ρe. In addition to this, it is also possible to

dimension energy buffers for fixed available energy and requirements, through the

evaluation of the negative-energy queue model. This is provided in the following

sections through the evaluation of the energy outage probability.

The Energy Outage

As a metric for evaluation of the energy model to provide guidelines in dimension-

ing of energy buffer, we define the energy outage. The energy outage is defined

as the time interval during which the sensor node does not have enough stored

energy, and thus its operation is temporarily interrupted. This situation can be

observed in Fig. 3.4. The probability that this occurs equals to the probability

that the queue of negative-energy is full, and so, it equals to the expression for
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blocking probability of a queue model for communications [89]. Therefore, by

means of queue theory on M/G/1/N, we can obtain that the outage probability,

pout is given by:

pout = PN = 1−
1

π0 + ρE
(3.26)

where π0 refers to the probability that there are 0 negative-energy packets left

within the queue right after the last negative-energy packet was processed by the

energy harvester. π0 is found as a solution for:

πn =
N−1∑

n=0

πjpjn, 0 ≤ n ≤ N − 1

and
N−1∑

n=0

πn = 1

(3.27)

where, equivalent to π0, πn refers to the probability that there are n negative-

energy packets left and pjn stands for the state transition probability of remaining

negative-energy packets from the state j to the state n, considering each state

right after a negative-energy packet has been processed by the energy harvester.

3.4.1 Model Evaluation

Time-domain Simulation Set-up

In order to validate the negative-energy queue model, we have first performed a

time-domain simulation which implements a one-to-one transmission of RF energy

in a multi-path environment. The energy transmitter (ET) generates an RF wave,

which is propagated through a multi-path Rayleigh channel with coherence time

tc = 0.5 s [117], the average power at the receiving node is set to 10 µW, which

is reasonable as reported in [100]. A block diagram of the simulation set-up is

shown in Fig. 3.10. At the receiving node, a rectenna is used to harvest the

energy of the RF wave [51]. The power which is harvested is power processed

and stored in a continuous manner in an energy buffer of variable capacity. The

communications unit transmits data packets with a variable Poisson distributed

inter-arrival rate.
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Figure 3.10: Considered set-up in the time-domain simulation.

Negative-energy Model Simulation Set-Up

We assume that the energy harvester processes these negative-energy packets at

a rate of µH = 1 negative-energy packets per second, following both Poisson and

chi-squared statistics. Then, the communications unit generates Poisson arrivals

of negative-energy packets at a rate of λC = ρe/µH .

A Poisson distribution might not hold as a general case, however it studied

due to two main reasons. Firstly, the energy outage probability has a closed-form

expression, which is given by:

pout =
1− ρE

1− ρN+1

E

ρNE . (3.28)

And, secondly, a Poisson process has very large entropy [143], thus becoming the

energy outage probability of a M/M/1/N as an upper bound in the energy outage

probability in many environments.

Alternatively, a chi-squared distribution is of special interest in the context of

energy harvesting, since this distribution is given as a result of harvesting energy

from a Gaussian noise-like energy source [92]. In particular, the energy which

is harvested during a time T from a Gaussian noise-like source of bandwidth W

is modeled as chi-squared distribution with k = 2TW degrees of freedom. In

this simulation, we have chosen k = 4, since it is the result of approximating the

time-domain simulation parameters with a time T = 1/µH and W = 1/tc.

Performance Evaluation and Comparison

In Fig. 3.11 we compare, in terms of the energy outage probability, the time-

domain simulation results to the negative-energy queue model results assuming

i) a Poisson distribution for the energy harvesting process (black continuous lines)
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Figure 3.11: Comparison between the energy outage probability obtained by
assuming both a Poisson process and a chi-square distributed process for the
energy harvesting. It is shown as a function of the energy utilization for different
values of the normalized energy buffer capacity.

and ii) a chi-squared distribution for the energy harvesting process. The energy

outage is evaluated as a function of the energy utilization for different values of

the normalized energy buffer.

As the results show, the negative-energy model well predicts the behavior of

time-domain simulation, although significantly reducing the computational cost.

In addition, we observe that the energy outage probability is upper bounded by

the results from the M/M/1/N queue and it tends to pout = 1/(N + 1) when the

energy utilization tends to one. As an example, if considering that the sensor

node has the following requirements: EC = 10 µJ, λC = 0.9 packet/s, and the

node is able to harvest PH = 10 µW from an environmental source, then we find

that the energy utilization equals to ρE = 0.9 E2. By considering a target of

pout = 10−2 in the energy outage probability, it is obtained that we would require

a normalized energy buffer capacity of N = 20. Finally, if we express the energy

buffer capacity in terms of energy, we would require an energy buffer capacity of

CB = 200 µJ.
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3.5 Summary and Conclusion

The large amount of sources of available ambient energy has yield to application-

specific models. This chapter has introduced a general-purpose energy-source-

agnostic definition of the ambient energy by defining the energy field, and has

provided an implementation-independent system model, through the energy path

function. This has enabled a generic framework to model arbitrary sources of en-

ergy and to characterize the access that sensors do with it. In the following

chapters, we will employ the presented definitions to address the research chal-

lenges that appear during the network planning and sensor design.
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Chapter 4

Scalability of Network Capacity

in WSN Powered by Energy

Harvesting

4.1 Introduction

A critical parameter in the design and evaluation of Wireless Sensor Networks

(WSN) is the throughput capacity. In bandwidth-limited conditions, this was

bounded by Gupta and Kumar [50] showing that when n identical nodes, each

capable of transmitting W bits per second, the uniform throughput per node

decreases with n as Θ
(

W
√

n logn

)
where Θ refers to the asymptotic bound and n

is the number of nodes. In addition, in [98] it has been shown that in cases

where the system is constrained by power, the uniform throughput capacity per

node increases as Θ̃(n(α−1)/2) where α is the path loss exponent and Θ̃ stands

for soft order (i.e., the same as Θ bound with the powers of log n neglected).

More recently, the throughput capacity has been largely studied, finely modeled

and evaluated for several network topologies, physical layers, mobility and energy

constraints [47, 126, 71, 119].

In this chapter, we bound for the per node throughput capacity as a function

of the number n of nodes in energy harvesting powered wireless sensor networks.

This bound sets an important guideline for feasibility and deployability during

the design process of a network powered by energy harvesting. Among others, the
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scalability of such networks will decide whether these kind of networks support

large deployments of sensors of whether these will require additional infrastruc-

ture to properly operate.

As a result, we find that the per node uniform throughput of a network pow-

ered by energy harvesting is upper bounded by the power constrained bound [98].

That is, the operation of an energy harvesting enabled powered WSN operates

as a power constrained network if the energy conversion is perfectly performed.

However, we show that affordable hardware brings several non-idealities of the

sensors, such as a limited size of the energy buffer or a standby leakage current,

which alter this bound showing that: the former causes worse resilience to node

failure than power constrained wireless networks (i.e., the throughput rapidly

decays as the number of nodes decrease), while the latter makes the network to

become non-scalable. For this, it is observed that different strategies have to be

followed to come across these restrictive bounds. In particular, it is required to

increase the number of deployed nodes improve the scalability of low resilient to

node failure networks, while appropriate network protocol design is required to

improve non-scalable networks.

The rest of this chapter is organized as follows. In Sec. 4.2, we present the

main assumptions of this work at the different design levels. Sections 4.3 and 4.4

provide an upper and a lower bound for the throughput capacity. In Sec. 4.5 we

discuss the bounds in throughput capacity and consider a non-ideal operation.

Sec. VI presents a model to derive the energy path function. Finally, in Sec. 4.6

we conclude our work.

4.2 Energy, Hardware and Network Architec-

ture

This section overviews the hardware and network architectures which are consid-

ered in this work.

4.2.1 Sensor Node Considerations

Sensors integrate the sub-system units which are described in Chapter 3. In

summary, the considered sub-system units are:
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• Harvester: This unit interacts with the environment to transform the

ambient energy into electric current.

• Energy Harvesting Unit: This unit aims to optimize the AC to DC

power conversion.

• Energy Management and Buffering Unit: This unit is in charge of

distributing the harvested energy to the remaining units of the node.

• Sensors, actuators and applications: Nodes are intended to monitor

their close environment and to occassionally interact with it.

• MCU: The microcontroler unit (MCU) is the central unit of the node.

• Radio Transceiver: This unit actually establishes the communication

among nodes.

In order to achieve an energy neutral operation (i.e., a node can uninterrupt-

edly operate for an unlimited time) the harvested power must be greater or equal

than the power demands in temporal average [73]. In addition to this condition,

the capacity of the energy buffer plays a key role during this operation. Given

that the energy buffer separates the time-varying dynamics of both the energy

harvesting and energy demands, the capacity of the energy buffer must be suffi-

ciently large to supply the remaining units when the energy source is temporarily

unavailable.

To capture the interaction between the access and demand of energy we em-

ploy the concept of energy path function, derived in Chapter 3. Accordingly, this

translates the average energy which is required to transmit an information packet

to the actual energy which must be harvested from the close environment.

4.2.2 Network Considerations

We describe next the network considerations, including network topology and

physical, MAC and routing layers
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Network Topology

This work assumes a wireless Ad-Hoc network topology of n nodes, which is

deployed over a spherical surface of unitary area. The deployed nodes are assumed

to be equal in energy harvesting, processing and communication capabilities, as

well as in traffic generation. It is assumed that each node generates information,

which is intended to be delivered to a single, yet different, node located in a

random destination of the network, such that for a sufficiently large n, we can

assume that each node receives and generates the same amount of information.

Physical Layer

The expected data-rate of the nodes is expectedly lower than the allocated band-

width [128]. In real context applications, it has been shown that nodes powered

by energy harvesting techniques are able to generate just a few bits per second,

while the communication channel allocates a few tens of kbps. This fact conveys

to establishing the infinite bandwidth approximation as a starting hypothesis,

and to be a reasonable approximation.

We assume a flat channel, which is a function of the distance. This is given

by:

gij = g0d
−α, (4.1)

where g0 refers to the attenuation at a distance of 1 m, d is the distance between

the transmitting node i and destination node j and α stands for the path-loss

exponent. Usually ranging from 1.9 to 6 in real context applications [117]. Finally,

we assume that sensors have full channel state information (CSI) and perform

perfect power allocation. That is, given a communications link, these achieve the

required data-rate with the minimum power.

Medium Access Control Protocol

MAC protocols are required to synchronize nodes and to coordinate data packet

transmissions. Substantial work has been published in this matter to achieve

near-optimal solutions.

In this work, we assume an optimal MAC layer, which ensures perfect co-

ordination among nodes and avoid destructive interference among data packets
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(i.e., each packet which is transmitted is perfectly decoded at the receiver end).

Ideal MAC layer can be demonstrated for infinite bandwidth approximation. In

particular, as it is shown in [98], CDMA is demonstrated as an optimal multiple

access method, with a bandwidth scaling of Θ(n(n2 log n)α/2).

Routing Protocol

The routing layer is a key aspect in the throughput capacity of a network and

it requires further optimization. Routing protocols for these types of networks

show that factors, such as the stored energy at the nodes and the available energy,

modulate the cost functions during the design of optimal routes.

Notice that in accordance to the network topology description (i.e., there are

no edge effects, each node has the same capabilities, is both source and destination

of the same amount of information and each sensor generates information towards

a single random destination node), every node in the network is expected to have,

in average, the same residual energy. As such, optimal routing in this scheme must

be based on the least-energy path.

We observe that the shortest-path accomplishes this condition. Intuitively,

given that sensors have the same capabilities and requirements, there is no reason

to justify any traffic diversion towards any specific area of the network. In other

words, the least-energy consumption route matches the route with less relaying

nodes.

We define the route Ri as the route that is generated to propagate the gen-

erated data packet from the i-th node towards its destination. Then, we refer as

the throughput produced by a route, r(Ri) as both the generated and the relayed

traffic required to propagate the data packet along the route Ri

In case of considering the effect of a non-constant energy field, traffic routes

should be obtained by means of a convex optimization problem. This problem

is similar to the optimal routing for wired networks [12]. Additionally, optimal

routing for massively deployed wireless sensor networks has been addressed in [18].

However, notice that the spatial dependence of the energy field does not have an

impact upon the per node throughput scalability, since, the energy field can be

both upper and lower bounded by a constant value.
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4.3 An Upper Bound in Throughput Capacity

In this section we provide an upper bound on the throughput capacity for net-

works powered by energy harvesting as a function of the number of nodes. In

order to obtain this upper bound, the f function is used to relate the requirements

in the communication unit to the available environmental energy.

4.3.1 Relating Link Capacity to the Ambient Energy

First, we have that the link’s Shannon capacity between a generic pair of nodes

i and j, assuming the infinite bandwidth approximation, is given by:

rij =
Pijgij

N0

log2 e (4.2)

where Pij is the output power, gij refers to the channel attenuation from (4.1)

which is a function of the distance between nodes and N0 stands for the noise

level.

Provided that nodes communicate employing data packets and the link ca-

pacity can be rewritten in terms of the energy needed to transmit a single packet,

EC , during the communication process as:

rij = c0
EC

N0

d−α

T
(4.3)

where c0 is a certain constant, which does not depend on the link distance, and

T refers to the time between communication events.

Then, by fixing a target energy per packet, EC0, at the receiving node such

that the receiver requirements are accomplished, it is then obtained that the

energy of the packet at the transmitter, EC , is given by EC = EC0/gij. Given

that the node relies on the available energy stored at the energy buffer, the time

between communication packets equals to the time that it takes for the energy

harvester to acquire an exact amount of EC . As such, the product ECT is constant

and equal to the output power Pij. Therefore, the time between communication

events also depends on the distance between nodes and can be rewritten as:

T =
Pij

EC

= T0d
α, (4.4)
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where T0 refers to a given constant in time units.

Thus, knowing from Sec. 4.2.1 that EC is related to EH by means of the f

function, as shown in (3.8) and in Fig. 3.3, and that EH is the average available

harvested energy, which equals to the power PH harvested during T = T0d
α, the

link capacity can be rewritten in terms of the available harvesting power as:

rij = c1
f(PHT0d

α/CB)

T0d2α
, (4.5)

which actually predicts the shape of the information capacity of energy harvest-

ing nodes as a function of the harvested energy, reported in the existing litera-

ture [115]. Then, we simplify the equation by only considering the dependency

of the link capacity with the distance between nodes:

rij(d) = c2f(c3d
α)d−2α. (4.6)

4.3.2 Relating Link Capacity to the Overall Throughput

Once the ambient energy is related to the link capacity, we need to relate this

to the overall traffic of the entire network. This overall traffic considers both the

generated and relayed traffic of the nodes and it can calculated as:

∑

i

r(i) =
∑

i

r(Ri), (4.7)

where r(i) is the traffic of the i-th node, defined as the addition of the generated

traffic and the relayed information from neighboring nodes, and r(Ri) refers to

the throughput generated by the route Ri.

Intuitively, we find that the link capacity of the i-th node must be grater

than its traffic, ri ≥ r(i). Otherwise, the node is not capable of supporting

the communication and its operation remains interrupted. By combining this

principle with (4.7), we find that the link capacity of all nodes relates to the

overall traffic of the network as:

∑

i

ri ≥
∑

i

r(Ri). (4.8)

We find that there appears a significant symmetry in the network topology
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and routing layers. In particular, (i) there exist n routes in the network (i.e., one

per transmitting node). (ii) These routes are handled by the n sensors using a

shortest-path routing. (iii) Each node is considered identical in terms of capa-

bilities and requirements. For this reason, we find that, the summation of both

sides can be simplified. In other words, in order for the network to operate, the

throughput generated to forward the information from a source-destination pair

along its route, must be able to be entirely handled by the source node. Thus,

we have that:

ri ≥ r(Ri). (4.9)

The overall throughput of the route Ri, r(Ri), which considers both the gen-

erated and relayed data, can be calculated as the number of hops, N , times the

throughput capacity of the source node, r(n). Thus we have:

ri ≥ r(Ri) = Nr(n). (4.10)

To derive the per node throughput capacity as a function of the number of nodes,

we need to relate the average distance between nodes, d, and the number of hops,

N , to the overall number of nodes, n. First, defining the source-destination

distance as Di, it is found in [50, 98] that the number hops, N , required to

forward the packet along Di can be lower bounded by:

N ≤ c1 log n+ c2Li

√
n log n (4.11)

where Li is the addition of the distance between hops. We find that this distance

can be lower bounded by Di, according to the triangle inequality:

Li ≡
N∑

k=1

∣
∣Xk

i −Xk−1
i

∣
∣ ≥

∣
∣XN

i −X0
i

∣
∣ ≡ Di, (4.12)

where the term Xk
i refer to the position of the k-th node of the route Ri. The

relation of these distances is depicted in Fig. 4.1 As such, neglecting the term

which depends on log n as it vanishes in from of the second term in the number

of hops, and bounding Li by Di, we find that the number of hops, N , is upper

bounded by:

N ≤ c2Di

√
n log n. (4.13)
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Figure 4.1: Relation between distances between hops dj, end-to-end distance Di.
According to the triangle inequality, the addition of the distance between hops is
greater or equal than the end-to-end distance, Li =

∑
j dj ≥ Di.

Then, the average distance, d, between hops can be calculated as:

d =
Li

N
≥

Li

c1 log n+ c2Li

√
n log n

, (4.14)

where, again, bounding Li by Di and neglecting the term which depends on log n

as it vanishes in from of the second term in the number of hops, we find that the

average distance between hops is given by:

d ≥
1

c2
√
n log n

. (4.15)

4.3.3 Obtaining the Upper Bound

As a last step in the upper bound derivation, we must substitute d and N with

the actual dependence with the number of nodes n. Recall that the term Di is

set as a design parameter, and thus it does not depend on the number of nodes

it is found that the upper bound scales as:

c6h(c5
√

n log n
−α

)
√
n log n

2α−1
. (4.16)

4.4 A Lower Bound in Throughput Capacity

In this section we provide a lower bound on the throughput capacity to tie the

gap between the upper bound and the actual throughput capacity of an energy
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harvesting powered network. For this, we assume a sub-optimal communication

protocol stack such that: (i) nodes do not know the exact location of the neigh-

boring nodes, thus these must allocate more power to reach further distances.

(ii) The network is divided into small cells such that the shortest-path route is

calculated at the cell level. In this routing layer, a random node located in the

next cell is chosen as the next hop in the route.

4.4.1 Network Topology

Similar to the upper bound, we assume that the nodes are deployed over a spher-

ical surface of unitary area. Then, we first subdivide the networking area into

smaller cells. These cells are determined by a Voronoi Tessellation which accom-

plishes the following conditions:

• Every Voronoi cell contains a disk of area 100 log n/n. Thus we define ρ(n)

as the radius of a disk of area 100 log n/n. The radius ρ in the sphere is

given by:

4ρ ≤

√
3200 log n

πn
(4.17)

• In addition, every Voronoi cell is contained in a disk of radius 2ρ(n).

• There is at least one sensor node at each Voronoi cell, with high probability

(probability approaching 1 as n tends to ∞).

We refer the reader to [50, 98] for additional details on the network planning.

4.4.2 Routing Protocol

The considered routing protocol is defined as follows. First, a straight line be-

tween source and destination sensors is traced. This line crosses a given number

of cells. Then, the traffic is relayed from one cell to the following cell through a

randomly chosen node located at each cell until it reaches the destination. No-

tice that this routing scheme is a implements shortest-path sat the cell level.

However, given that the intermediate relaying nodes are randomly determined at

each cell, this node may not be the optimum relaying node in terms of energy

requirements. We show in Fig. 4.2 an example of the routing scheme considered

and we compared to the shortest path.
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Figure 4.2: Routing scheme considered in the calculation of the lower bound. A
straight line between source and destination is traced. A relaying node is selected
at each crossing cell.

Under these assumptions, it is then found that the amount of routes that

intersect a certain Voronoi cell, V , is bounded by [50]:

E [Routes intersecting V ] ≤ k4
√

n log n (4.18)

Then, being r(n) the traffic of a single route, the traffic that is carried in a cell

is bounded by:

E [Traffic carried by V ] ≤ k4r(n)
√

n log n (4.19)

4.4.3 Obtaining the Lower Bound

According to the definition of the Voronoi cell, there is at least one node per cell.

As such, we find that the most restrictive case in terms of the throughput of a

cell refers to the situation where the traffic carried in the cell is supported by just

a single node. Then, we can relate the link capacity of the single node to the

traffic that this must carry:

k4r(n)
√
n log n ≤ c2f(c3d)d

−2α, (4.20)

where d is the distance between nodes.

Provided that the nodes do not have CSI, nodes must allocate sufficient power
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to reach the following node. As such, nodes need to choose a range for the

transmission sufficient to guarantee that the node is always able to forward the

information to any adjacent cell. We select a transmission range of two times the

maximum diameter of a cell, i.e., the transmission range is set to 8ρ. Thus, (4.20)

remains:

k4r(n)
√
n log n = c2f(c3(8ρ)

α)(8ρ)−2α (4.21)

As a last step, we substitute ρ by (4.17) and we isolate the generated traffic,

r(n). By doing so, we find that the lower bound in the per node throughput

capacity scales as:

c9f

(

c8

√
log n

n

α) √
n
2α−1

√
log n

2α+1 . (4.22)

4.5 Discussion

In this section we first derive an expression for the soft-order bound in the

throughput capacity and evaluate it. Then we discuss the main implications

of this bound and discuss system design rules to improve the performance of

energy-harvesting-enabled WSN.

4.5.1 The Soft-order Bound in Throughput Capacity

A soft-order bound Θ̃(g(n)) is defined as the regular bound of Θ(g(n) logk g(n))

for some k. Essentially, this bound neglects logarithmic factors because it assumes

that it is more important predicting large trends with the input parameters than

fine-grained details.

We find that by neglecting the logarithmic powers, the throughput capacity

in an energy-harvesting-enabled network is both upper and lower soft-bounded

by the same expression. Therefore, we can say that the throughput capacity is

soft-bounded by:

Θ̃
(
f
(
n−α/2

)
n(α−1/2)

)
. (4.23)

Finally, we use the definition of energy efficiency from Sec. 4.2.1 with (4.23)

to relate the bound in throughput capacity to the energy efficiency of the node.
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Table 4.1: Evaluation of the soft-order bound in our considered case scenarios.
Case Bound

Ideal (power constrained [98]) Θ̃
(
n(α−1)/2

)

Miniaturized sensor (η(x) = k/x) Θ̃
(
n(2α−1)/2

)

Overdimensioned sensor ( η(x) = kxγ) Θ̃
(
n(α−αγ−1)/2

)
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Figure 4.3: Throughput capacity bounds of energy harvesting powered networks.
Comparison among the ideal, the miniaturized and the over-dimensioned sensor
particular cases.

We find that the throughput capacity scales as:

Θ̃
(
η
(√

n
−α
)√

n
α−1
)
. (4.24)

4.5.2 Evaluation of the Throughput Capacity

We particularize the efficiency of the energy path in the considered case examples

from Sec. 2. That is, we consider the ideal case η = 1, the miniaturized sensor with

efficiency η(x) = k/x and the over-dimensioned sensor with efficiency η(x) = kxγ

with γ < 0. These bounds are shown in Table 4.1. We observe that a miniaturized

sensor device scales faster than the ideal case, whereas an over-dimensioned sensor

scales slower or, even it does not scale for γ > 2 − 1/α. To better show these
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bounds, we observe in Fig. 4.3 the bounds in throughput capacity assuming a

path-loss exponent α = 2 and a γ = 1. We observe the following:

Throughput Capacity of Ideal Sensors

Energy harvesting powered networks which implement ideal energy harvesters

and management units show the same bounds than power constrained wireless

networks. Clearly, if a sensor can efficiently convert the environmental energy

and unlimitedly store it until required, the random character of both the com-

munications and harvesting processes become independent to each other. As a

result, the sensor will operate as a power constrained sensor, where its output

power equals to the average harvested power.

In addition, we observe that any sensor which is able to operate in a region

such that the energy efficiency is approximately constant as a function of the

energy demands and generation, i.e., η(x) ≈ η0, with η0 ∈ (0, 1) will have a

reduced throughput capacity in comparison to the ideal case, but it will show the

same scalability trend. As a general case, this is the desired operation region

Throughput Capacity of Miniaturized Sensors

Miniaturized sensors show similar performance than ideal energy harvesting sen-

sors for a large number of deployed sensors. However, we observe that the

throughput capacity rapidly drops if the number of sensors falls below a given

value (the intersection between curves is denoted with the point P in Fig. 4.3).

Intuitively, as the number of sensors decreases, the distance between neighbors

grows. Then, miniaturized sensors are unable to reach the next hop as it cannot

allocate enough power in the data transmission. As a result, the communication

is interrupted and the throughput capacity drops. The location of the intersec-

tion point P is related to the energy path function. In particular, it is related

to the point, x∞ such that the f function can be approximated by f∞(x) (see

Fig. 3.8).

In order to improve the throughput capacity, as well as its scalability, EHE-

WSNs show an interesting trade-off in terms of sensor affordability and number

of devices, such that a large number of devices relax the sensor requirements and

vice-versa. On the one hand, high-end sensors equipped with large energy storage
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units and high energy efficient transceivers can sustain the normal operation of

the network, since these store larger amounts of energy and to reach further

distances by transmitting signals with more instantaneous power. As a result,

deploying high-end sensors would shift the intersection point P between bounds

towards low values of number of nodes. On the other hand, deploying a very large

number of inexpensive devices can sustain the normal operation of the network.

In this case, nodes are located closer to each other, thus requiring a significantly

lower amount of energy to enable communication among them, which can be

stored in a smaller energy buffer.

Throughput Capacity of Over-dimensioned Sensors

Over-dimensioned sensors show similar performance than ideal energy harvesting

sensors for small number of deployed sensors. However, we observe that the

throughput capacity stops being scalable when the number of sensors is greater

than a given point (denoted as Q in the figure). The intersection point Q depends,

among many other factors, on the power losses which become non-negligible.

Intuitively, when the number of sensors increase, the distance between neighbors

is reduced. Then, the required power to reach the next hop becomes very small

and the power losses associated to a data transmission (e.g., turning ON and

OFF the transmitter) become noticeable.

In order to improve the throughput capacity and its scalability, EHE-WSNs

show an interesting trade-off in terms of circuit design and protocol complex-

ity. On the one hand, designing high-efficiency circuits and reducing leakage and

standby power losses make their associated power losses to become noticeable for

reduced required power. This shifts the intersection point Q between bounds to-

wards larger number of nodes. On the other hand, the throughput scalability can

be improved through avdanced protocol design: first, optimized MAC scheduling

may reduce standby power losses by implementing accurate duty-cycled transmis-

sions [97] or by implementing wake-up radio protocols [63]; second, we find that

optimal routing differs from shortest path in over-dimensioned sensors. That is,

we find that the optimal number of hops cannot arbitrarily grow with the number

of deployed nodes. Instead, this becomes a fixed value, which is independent to

the number of deployed nodes. In this context, optimal routing design, imposes

that each hop skips an optimal amount of intermediate relaying nodes making
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the distance between relaying hops to be independent of the distance between

nodes, and thus the overall number of nodes. By finding the optimal distance

between relaying nodes constant throughput scaling (i.e., O(1)) can be achieved

(see Sec. 5.C). That is, a wireless network powered by energy harvesting can un-

definitely scale with the number of nodes, without showing any improvement in

the overall throughput.

4.5.3 Upper Bound in Throughput Capacity for an Over-

dimensioned Node

In this section, we aim to provide a bound in throughput capacity for over-

dimensioned nodes. To do this, we find that the constraints imposed by these

devices alter the number of relaying nodes between a source-destination pair. As

such, the distance between hops and traffic carried by a sensor must be recalcu-

lated.

Let us consider that a node sS intends to transmit a data packet to the

destination sD located at a distance Di. Then, let us assume that the amount

of deployed nodes between the sS and sD pair of nodes is massively large [18]

and equals to NR. We find that the optimal number of hops NO is fixed and

independent to the overall number of intermediate nodes.

Provided that the optimal route must guarantee the least energy consumption,

we find that finding the number of hops becomes a linear optimization problem

that can be formulated as:

NO = argmin
Nh

Nh∑

i=1

ER(Di/Nh) (4.25)

where Nh refers to number of hops, ER is the required energy to forward a data

packet, which depends on the distance between hops, d = Di/NH .

In order to illustrate this equation, let us particularize this equation for the

following link budget model:

ER(d) = E0 + EC(d) = E0 + EC0g0d
α, (4.26)

where E0 refers to the standby losses for transmitting a data packet, EC0 refers to

68



4. SCALABILITY OF NETWORK CAPACITY IN WSN POWERED BY

ENERGY HARVESTING

the required energy to be received at the receiver end, g0 stands for the channel

attenuation at a distance of 1 m, d is the distance between nodes and α stands

for the path-loss exponent.

We find that the optimal number of hops, NO can be easily obtained by differ-

entiating (4.25) and equalizing to zero. This shows that the optimum number of

hops does not depend on the overall number of nodes. Particularly, the optimal

number of hops is determined to:

NO = Di
α

√
EC0g0

E0

(α− 1). (4.27)

Then, substituting the distance between hops, d = Di/NO in the link capacity

of the nodes and the number of hops, N , by NO from (4.10), we have:

rij(Di/NO) ≤ r(n)NO. (4.28)

which does not depend on the number of deployed nodes. As such, we find that

the per throughput capacity of over-dimensioned senors is upper bound by

O(1). (4.29)

4.5.4 Discussion

In this section we have addressed three particular case examples, namely an

ideal, a miniaturized and an over-dimensioned operation. We find that these

three cases cover a great part of possible non-idealities of the sensor nodes, and

show interesting trade-offs in terms of hardware affordability, number of deployed

nodes and protocol complexity.

Actual nodes powered by energy harvesting techniques will show an energy

path function which depend on many factors. As a result, the eventual char-

acterization of a given set of nodes will combine the addressed case examples.

This will show a throughput scalability which will depend upon the number of

deployed nodes.

We find that the throughput capacity and its scalability can be improved by

means of deploying nodes with improved hardware design. However, redesigning

these system components is often rendered unfeasible, as it increases the monetary
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costs of the network planning, it is time consuming and it may require replacing

all the deployed nodes. Instead, this work shows that small-size, inexpensive

nodes can be deployed over a networking area and achieve similar performance

than expensive nodes by simply deploying additional nodes in the network and

designing optimal approaches at the routing layer.

4.6 Summary and Conclusion

In this chapter, the bounds for throughput capacity of energy-harvesting-enabled

wireless sensor networks have been studied. These bounds set an important

guideline for feasibility and deployability during the design process of a network

powered by energy harvesting. It has been shown that for such networks these

bounds coincide with the bounds in power constrained networks when the energy

conversion is ideal. However, non-ideal factors during the energy acquisition and

buffering can alter the scalability of such networks, making them less resilient to

node failure or even non-scalable. This chapter has overviewed the main factors

which affect the proper scalability of these networks and motivates a joint network

deployment and sensor co-design in order to guarantee a successful operation of

energy harvesting powered wireless sensor networks.
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Chapter 5

Design Space Exploration of

Multi-Source Energy Harvesting

5.1 Introduction

In the previous chapter, a thorough analysis on the scalability of the network

has been provided. For this, a homogeneous energy field with no slow-temporal

evolution has need to be been considered. However, as provided in Chapter 2,

the available energy at the close environment of the sensor shows a temporal

correlation, causing the energy state at the sensor to be time-varying.

Accordingly, the energy buffer (e.g. a supercapacitor or a battery) is con-

stantly charging and discharging in a random manner [23]. For this reason, one

of the main challenges in the design of such devices lies in the dimensioning of

both the energy harvesting and energy buffer units [23]. Considering both subsys-

tem units to be sufficiently large solves undesired interruptions during the normal

operation of the sensor and, accordingly, on the wireless network. However this

comes at the cost of precluding desirable miniaturization of the sensors, caused

by the relatively small power densities of existing ambient energy sources and

low energy density of energy buffers [128, 112]. As an example, in order to har-

vest 0.2 mW vibrational energy and to store 1 J of energy, an energy harvester

of approximated 1 cm2 and an energy buffer of approximated 2 cm3 would be

required.

Recently, multi-source energy harvesters are gaining interest as a robust alter-
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native to power wireless sensors [8]. To implement multi-source energy harvesters,

there appear two feasible approaches. On the one hand, these can be implemented

through platforms which combine a few number of energy harvesters, each de-

voted to each source of energy [8, 108, 141]. On the other hand, self-tunable

approaches permit tuning their oscillating frequency, therefore enabling multi-

band capabilities to harvest energy from multiple energy sources [38, 67].

These platforms are more robust than the single-source ones. Indeed, if a

certain energy source renders unavailable for a certain time period, due to the

time asynchronicity among energy sources the sensor node can still maintain its

normal operation. An additional, but less explored, advantage of heterogeneous

multiple-source energy harvesters, which aids the miniaturization of the sensor

nodes, is that when the ambient energy presents large temporal variations (i.e.,

the harvested power randomly varies over a wide range during time) the com-

bination of multiple statistically independent energy sources lowers the sparsity

of the overall energy which is harvested. This causes that devices, which are

powered by multi-source energy harvesters show lower outage probabilities in

contrast to single-source configurations. Equivalently, the requirements in terms

of energy buffer capacity can be relaxed while maintaining the same performance.

As an example, Fig. 5.1 shows three wireless motes that implement one, two or

four energy harvesters which occupy the same overall area, in a chip-like planar

implementation.

In this chapter, we first analyze the need of proper battery dimensioning

and its impact over the energy outage probability. Then, we motivate the use

of multi-source energy harvesters and derive and derive a model to characterize

the overall occupied area by both the energy harvesting and the energy buffer

units. On top of these results, we explore the capabilities of self-tunable energy

harvesters as a feasible alternative to multi-source platforms [38]. In this context,

we evaluate their performance in terms of harvested power and compare it to the

performance of multi-source energy harvesting platforms. Finally, we address the

spatial correlation between nodes, by characterizing the expected energy state.

This framework shows that harvesting energy from multiple sources by using

either multi-source platforms or self-tunable energy harvesters provides significant

improvements in energetically sparse scenarios. These improvements, jointly con-

sidered with an optimal dimensioning of the energy buffer will pave the way to
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Figure 5.1: Architecture of a multi-source energy harvesting sensor. Increasing
the number of sources reduces the efficient area for harvesting but maximizes the
probability of finding an active energy source.

smaller energy management units and, therefore, actual miniaturization of even-

tual networking devices.

5.2 Sparse Energy Sources

Ambient energy is generally generated by the aggregation of an extensive number

of physical entities which simultaneously radiate power [128]. Then, the random

contribution of each entity, in both magnitude and time duration, entails a time-

varying character in the aggregated power.

Accordingly, we refer to any physical phenomena which produces an aggre-

gated power in a sparse, time-varying manner, such that this power cannot be

known or estimated and the magnitude of the instantaneous power falls within a

wide range, as a sparse energy source. In fact, sparse energy sources are present

in a wide variety of physical phenomena. Among others, acoustic energy, me-

chanical, vibrational or RF energy [143, 141, 52] are considered representative

examples of such sources, when considering a large time scale.

In this work, we propose the peak power to average power ratio as a metric

to enable the comparison of performance of ambient energy sources. This metric

is given by:

C =
Ppeak

PH

, (5.1)

where Ppeak is the average peak power and PH refers to the average harvested

power. Fig. 5.2 shows examples of two random energy sources with different

peak power to average power ratio (C = 8 and C = 3). As it is shown, energy

sources with large peak power to average power ratios are characterized by short
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Figure 5.2: Harvested power from a sparse ambient source of peak power to
average power ratio of (upper) C = 8 and (lower) C = 3.

but powerful bursts of energy, while leaving large inter-burst times where the

available energy is far below the average value. On the contrary, energy sources

with low values of this metric are characterized by being more constant and

predictable.

5.3 Evaluation of the Energy Outage

In this section we evaluate the energy outage probability in terms of the utilization

in Energy-Erlangs and the normalized energy buffer capacity.

In a real environment, the ambient energy is time-varying. This is, the actual

harvesting rate slowly evolves with time in an unpredictable manner, within a

wide range of orders of magnitude. As a result, the power which is being harvested

at the node location is affected by deep fadings.

Given the large variety of ambient energy sources, in this section we focus on

RF energy harvesting affected by multi-path propagation. It is well known that

multipath propagation is a very common effect during the reception of RF power

within an urban area. The multipath is defined as the propagation of an RF

signal through two or more paths, giving as a result constructive or destructive

interference and phase shifting. When the number of interferences is large and

it is very environment-dependent, the received power is affected by the Rayleigh

fading [117]. In general terms, this model is mainly characterized by a certain

coherence time, tc, or, equivalently, with the doppler frequency.

In Fig. 5.3 we show an example of the harvested power, PH(t) over time

when assuming that the harvesting source is affected by the Rayleigh channel.
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Figure 5.3: Model of the Rayleigh channel and evolution of the energy state at
the sensor node.
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Figure 5.4: Energy outage probability assuming Rayleigh fading with coherence
time tc = 10 s as the slow dynamics in the energy harvesting power source. An
average PH = 10 µW and EC = 10 µJ has been considered.
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In addition, it is also shown a depiction of the energy state at the energy buffer

of the sensor node. As it is shown, given the variation of the harvested power,

the energy state is unable to reach a steady-state. On the contrary, deep fadings

tend to completely deplete the energy buffer. Alternatively, when the multipath

propagation provides constructive interference, the sensor node is able to store

large amounts of energy.

Thus, in consideration of the multipath propagation, it is observed that the

energy buffer does not only have to store enough energy to handle the random

patterns of both communication and energy harvesting processes, but it also does

have to be able to store large enough amounts of energy to overcome deep fadings

in the harvested energy.

5.3.1 Energy Outage Probability

The lack of a steady state leads to evaluate the energy outage probability through-

out event-based simulation of the negative-energy queue. In order to do so, we

have assumed that the average energy harvesting rate, µH , evolves in time by

following a Rayleigh distribution. The temporal evolution of µH is related to the

coherence time, tc. In Fig. 5.4 and Fig. 5.5, we show the results of the energy

outage probability as a function of the energy utilization in Energy-Erlangs, for

different values of the energy buffer capacity. In order to obtain these results, the

average ambient power has been set to PH = 10 µW and the energy per packet

has been set to EC = 10 µJ. As it is shown, the effect of the slow dynamics is

clear. While in Fig. 5.5, an energy buffer of 200 µJ was enough to guarantee a

pout < 10−2 for ρE = 0.9 E2, in this case, by assuming slow dynamics, we would

now require an energy buffer of 5 mJ or 50 mJ to meet the same requirements

for tc = 10 s and tc = 100 s respectively.

As we would expect, the most critical situation refers to an energy utilization

of ρE = 1 E2. That is, the communications unit requires the whole amount

of energy which is harvested. As it is shown in the previous figures for both

dynamics, this case has for any energy buffer capacity the worst energy outage

probability. In Fig. 5.6, we show the energy outage probability of the sensor node

in terms of the energy buffer capacity. As it can be observed, by increasing the

size of the buffer, the node is able to temporarily store more energy to satisfy the
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Figure 5.5: Energy outage probability assuming Rayleigh fading with coherence
time tc = 100 s as the slow dynamics in the energy harvesting power source. An
average PH = 10 µW and EC = 10 µJ has been considered.

energy requirements for larger fadings. It is found that the relation between the

buffer size and the energy outage probability follows an exponential relationship.

5.3.2 Average Time to Energy Outage

Another relevant parameter which is set as a metric for design and dimensioning

of energy buffers is the average time to energy outage. This metric evaluates the

average time it takes for the node to fail in the communication due to energy

outage. This time has large implications in the network protocol designs, such

as routing. As an example, when a node is temporarily disconnected from the

network, any existing route which would go through this node must be reassigned

to neighboring nodes. Then, a larger average time to the energy outage represents

a reduction in the network reconfiguration, and thus it represents a reduction

in communication, control and energy overhead. In fact, a similar concept in

battery-powered WSNs is defined. The network lifetime in a WSN is defined as

the time it takes for any node to deplete its battery, thus causing an alteration

in the network topology.

In figures 5.7 and 5.8 we show the average time to energy outage as a function

of the energy utilization in Energy-Erlangs, for different values of the energy buffer

capacity, considering a coherence time of tc = 10 s in Fig 5.7 and a coherence
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Figure 5.6: Dependency of the energy outage probability in terms of the energy
buffer size. It is represented for three different coherence times of the energy
source: 1, 10 and 100 seconds.
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Figure 5.7: Average time to energy outage assuming Rayleigh fading with coher-
ence time tc = 10 s.
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Figure 5.8: Average time to energy outage assuming Rayleigh fading with coher-
ence time tc = 100 s.

time of tc = 100 s in Fig 5.8. In order to obtain these results, we have set the

same parameters as in the evaluation of the probability of energy outage. As

it is shown, the average time to energy outage rapidly decreases as the energy

utilization tends to one. On the contrary, this time increases rapidly for larger

energy buffer capacity, thereby establishing a relevant design guideline.

In addition to this, for a better understanding on the dependence of the energy

buffer capacity on the average time to energy outage, we show in Fig. 5.9 this

average time as a function of the energy buffer for a coherence time of tc =

{10, 100, 1000} s. As it is shown, channels with large temporal correlation need

larger energy buffers in order to overcome long deep fadings. Interestingly, it

is observed that for small sizes of the energy buffer, the average time to energy

outage tends to the coherence time. However, as the energy buffer capacity is

increased, the average time increases faster for those environments with smaller

tc.

5.4 Multiple Source Energy Harvesters

Multi-source energy harvesters are able to combine the energy from multiple

energy sources. This reduces the chances that the sensing system is in a deep

energy fading, where it is not able to harvest energy for a significant amount

of time, since whenever an energy source is faded, any other energy source can
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Figure 5.9: Average time to energy outage assuming Rayleigh fading with coher-
ence as a function of the energy buffer capacity.

be supplying energy. In other words, combining independent energy sources,

the sparsity of the overall process is reduced and thus the energy fadings are

potentially reduced, as well. In this section we provide a model for multi-source

energy harvester platforms and we evaluate the improvement on performance

that using multiple energy harvesting platforms has when contrasted to single

harvester platforms.

5.4.1 Performance of a Multiple Source Energy Harvester

We have considered an average communications rate of λc = PC = 100 µW.

Then, we have considered each negative energy packet to be of 10 µJ. Finally, we

have set the overall harvesting rate NµH = PH = PC/ρ, where ρe has been set as

an evaluation parameter. Therefore, each harvester harvests an average power of

PC/ρeN . These energy harvesting rates can be achieved by means of vibrational

harvesters [128].

In order to generate the sparse energy sources, we have approximated the am-

bient energy by a random process generated by exponentially distributed energy

bursts of power PHC/N , with an inter-burst time of 0.1/C seconds. An expo-

nentially distributed random process has been chosen as it presents the largest

entropy, thus estimating the worst case [143].

Fig. 5.10 and Fig. 5.11 compare the improvement over pout that using multiple

harvesters has as a function of the energy buffer capacity, CB, for a peak power
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Figure 5.10: Energy outage probability as a function of the energy buffer capacity.
ρE = 0.9 E2 and C = 10.
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Figure 5.11: Energy outage probability as a function of the energy buffer capacity.
ρE = 0.9 E2 and C = 100.

to average power ratio of C = 10 and C = 100 respectively. These results have

been obtained by assuming in the negative energy queue model ρe = 0.9. As it

is shown, there is a clear improvement, since varying from one to five harvesters,

the energy buffer capacity can be reduced from 30 mJ to just 5 mJ and from

600 mJ to just 100 mJ, while still maintaining pout < 10−3.

In addition to this, Fig. 5.12 and Fig. 5.13 compare this improvement as a

function of the ρe for peak power to average power ratios of C = 10 and C = 100

respectively. In order to obtain these results, the energy buffer capacity has been

set to CB = 10 mJ in Fig. 5.12 and to CB = 100 mJ in Fig. 5.13. As it is shown,

multi-source energy harvesters are able to provide similar performance, but at
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Figure 5.12: Energy outage probability as a function of the energy utilization.
CB = 10 mJ and C = 10.

0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

Energy Utilization [Energy−Erlangs]

E
n

e
rg

y
 O

u
ta

g
e
 P

ro
b

a
b

il
it

y

Harvesters from 1 to 5

Figure 5.13: Energy outage probability as a function of the energy utilization.
CB = 100 mJ and C = 100.

larger ρe values and, therefore, requiring smaller energy harvesting area.

As a result, we observe that multi-source energy harvesters can help reducing

both the energy buffer capacity, as well as the energy harvesting requirements,

while still providing the required performance.

5.4.2 Circuit Area Model

As seen in the previous section, additional energy harvesters have a positive im-

pact upon the performance. Nonetheless, this technique produces a non-negligible

area overhead, since each energy harvester requires some additional circuitry and

separation space.

An additional compromise is that low values of ρe help reducing the energy
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buffering capacity at the cost of proportionally increasing the energy harvesting

requirements.

These compromises motivate a framework for circuit area optimization which

considers the user-defined requirements, the area overhead of multiple harvesters

and the energy buffer capacity. In order to do so, we first relate the required

power, harvesting power, number of harvesters and energy buffer capacity which

are able to achieve the required performance in energy outage probability, through

the energy model presented in Sec. 5.4. Afterwards, this is translated into circuit

area by means of the following model.

We then define the overall area of the system as:

ATOTAL = AH + AB + AA, (5.2)

where AH refers to the area of the harvesting unit, AB stands for the area of

the energy buffer unit and AA is the area of the applications units (i.e., pro-

cessing, sensing and communications unit). In particular, since AA is fixed and

provided by a certain application, AA is not considered in the following circuit

area optimization.

Area of the Energy Harvesting Unit

The area of the harvesting unit depends on mainly two factors, the number of

energy harvesters and the power that these aim to harvest. As shown in [128],

the ambient power is generally characterized by a given power density. As such,

the overall area is expectedly proportional to the desired power to be harvested.

Alternatively, integrating more than one energy harvester requires additional cir-

cuitry, which increases the eventual size of the unit. In this work, we linearly

approximate the area of the energy harvesting unit in terms of the number of

energy harvesters and desired power rate:

AH = AH0 + AHNNH + AHPPR/ρe, (5.3)

where AH0 refers to a constant area, AHN to the partial contribution of AH

with respect to the number, NH , of energy harvesters and AHP to the partial

contribution of AH with respect to the required power PH .
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Table 5.1: Values used in the Optimization Framework
Parameter Value units

AH0 0.01 cm2

ANH .01 cm2

ANP 6.66 cm2 mW−1
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Figure 5.14: Overall area in terms of the Energy Utilization. C = 10.

The considered values in this works are shown in Table 5.1. These correspond

to reasonable values that have previously been reported [128].

Area of the Energy Buffer

In line with recent advancements in energy buffering [112], each technology presents

an associated energy density. In this context, we have considered consistent val-

ues for this density of DB = 2 J/cm3 and a fixed height of 1 cm. Similar to AH ,

we may linearly approximate the overall area of the energy buffer as:

AB = AB0 + CBDB, (5.4)

where AB0 is a fixed area overhead and CB is the required capacity of the energy

buffer in mJ units.

5.4.3 Evaluation of the Area Model

In order to optimize the area, we have simulated the wireless sensing system

through the same energy model as described in the previous sections. Then, we
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Figure 5.15: Overall area in terms of the Energy Utilization. C = 100.

have assumed a tolerable performance of a wireless device, when its energy outage

probability is below pout = 10−4.

We show in Fig. 5.14 the overall occupied area for the joint energy harvesting

and energy buffer unit, such that the user defined requirements in terms of output

power and energy outage probability are met. This area corresponds assuming

that the environmental energy is characterized by a peak power to average power

ratio of C = 10. As it is shown, the overall area is shows an optimal minimum for

ρe = 0.87 E2. This is due to the fact that for fixed values of power requirements,

a large energy utilization ratio reduce the amount of harvested energy, therefore

reducing the size of the energy harvester. However, this reduction of the energy

harvester comes at the price of increasing the size of the energy buffer.

Similarly, Fig. 5.15 shows the results of the circuit area optimization when

considering the same system requirements, but assuming a peak power to average

power of C = 100. As it is shown, an increase in this ratio enlarges the size of the

overall area, regardless of the number of energy harvesters and their operation

point. This increase is caused by the fact that the sensing system runs on the

stored energy for a longer time. In this case, it is found that increasing the number

of energy harvesters shows a significant benefit, since the sparsity of the energy is

reduced. In particular, the minimum area is found at a ρE = 0.66 E2, considering

five energy harvesters. The outcomes of this design, which are required for the

energy harvesting unit and an energy buffer to minimize the area can be found

in Table. 5.2 for both cases.
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Table 5.2: Component requirements
C Parameter Value Units

10 Harvesters 4 —
Area Harvester (total) 7.7 mm2

PH (each) 27.7 µW
Area Energy Buffer 3 mm2

Capacity Energy Buffer 15 mJ
100 Harvesters 5 —

Area Harvester (total) 8.3 mm2

PH (each) 40 µW
Area Energy Buffer 5 mm2

Capacity Energy Buffer 25 mJ

5.5 Self-tunable Multi-band Energy Harvesters

In case that the considered energy sources are of the same type and the differences

among them is that each is produced at a different frequency band, self-tunable

energy harvesters emerge as an encouraging alternative to multi-source platforms.

These devices have the property of tuning their oscillating frequency over a wide

range to adapt it to the frequency band of the harvestable energy [38].

This technology aims to provide a much higher performance compared to

independent multi-source platforms in cases where the ambient energy is very

sparse and the frequency bands are uncorrelated to each other. In this case, a

single energy harvester can generate more power than small energy harvesters.

However, this improvement compared to multi-source platforms is not always

achieved because of two main reasons. On the one hand, when the different

bands generate power simultaneously, self-tunable energy harvesters can only

tune a one of the frequencies, thus disregarding the other bands. On the other

hand, a similar concept to cognitive-radio communications [16], these devices

must implement spectrum sensing techniques to detect which frequency band

generates a larger amount of power, therefore requiring power to generate power.

To exemplify this, consider the time diagram shown in Fig. 5.16. In the

figure, two IoNT platforms (one equipped with a multi-source platform, and

one equipped with a self-tunable harvester) harvest power from bands #1 and

#2. We consider that both platforms integrate an energy harvester of the same

overall occupied area. Therefore, the self-tunable energy harvester integrates a
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Figure 5.16: Comparison between multi-source and self-tunable platforms.

single energy harvester which can select the operating frequency band, whereas

the multi-source energy harvester is divided by two energy harvesters, one for

each frequency band. Then, we observe that during the time T1 both energy

sources generate power at different times, whereas during T2 the energy sources

simultaneously generate power. As a result, the self-tunable energy harvester

shows potential improvement during T1 since it can harvest twice power, whereas

the multi-source platform scavenges more energy during T2 since both harvest

the same amount of power while this does not requires to spend power in sensing

the environment.

In this section we provide a generic model for a self-tunable energy harvester

and provide compare their performance to multi-source approaches as a function

of critical factors which affect their performance.

5.5.1 A Self-tunable Energy Harvester

We show a generic model block diagram of a self-tunable energy harvester in

Fig. 5.17. This is composed of four sub-units, namely the broadband sensor,

harvester, energy harvesting front-end and tuning circuit. As the figure shows,

the harvester is the only sub-unit which generates power, whereas the remaining

units require power to realize their operation. We define the net harvested power

as the net contribution of power generated by the harvester, broadband sensor

and tuning circuit:

PH = ηPEH(t, B)− PB − PT (5.5)
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Figure 5.17: Generic block diagram of an energy harvesting powered device that
employs a self-tunable energy harvester.

where η stands for the efficiency of the EH front-end , PEH is the power generated

in the harvester sub-unit, which is tuned at the band B, PB refers to the required

power from the broadband sensor to operate, PT stands for the power which is

consumed in the tuning circuit. As it follows we briefly describe the operation of

each unit.

Harvester

The tunable energy harvester stems as the key element in the energy harvesting

unit. This is the only component which generates energy by converting environ-

mental energy into electric current. This component has tunable properties, i.e.,

its oscillating frequency can be modified by adjusting its electrical parameters.

Provided that this component generates energy, there is a direct relation between

its occupied area and the power that it is able to harvest. As such, it is desired

that this component occupies the largest area allocated for the energy harvesting

unit. The harvested power is given by:

PEH(t, B) = (S(t) ∗ h(t, B))Aeff , (5.6)

where S is the spectral power density of the available energy source, in power/area

units, h(t, B) stands for the transfer function of the harvester, which is tuned to

the band B, and Aeff refers to the effective area of the harvester.
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Broadband Sensor

In order to choose the optimal oscillating frequency of the energy harvester,

a broadband sensor is integrated to detect most powerful band.These devices

show remarkable properties to detect oscillations at a significantly wide frequency

range. Unfortunately, they cannot be used as energy harvesters. As it is shown

in Fig. 5.17, this unit requires a supply power to operate and to reports the

sensed information. The sensing system must integrate spectrum sensing tools to

process this information to decide whether to re-tune the harvester. The power

consumed by this unit, PB is assumed constant during the normal operation of

the device.

Tuning Circuit

This circuit accommodates the natural frequency of the energy harvesting de-

pending on the processed results retrieved by the sensed data of the broadband

sensor. The basic element of this circuit is a capacitor. By selecting a capacitor

voltage, VC , the natural frequency of the energy harvester is tuned to a different

frequency. Recent studies show approximately linear dependency between the

frequency and this voltage [38]. As such, the tuned band B is selected according

to:

B = kf0VC , (5.7)

where k is a given constant, f0 is the center frequency of the harvester and VC

refers to the capacitor voltage Provided that the number of bands depends on

the capacitor voltage, switching to additional bands requires additional voltage

levels. Unfortunately, charging a capacitor to a higher voltage has an associated

quadratic loss of energy. Accordingly, the energy required to switch from one

band to another is given by:

Esw =
1

2
C(∆VC)

2 (5.8)

where ∆VC refers to the difference between voltage levels.
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Energy Harvesting Front-End

This unit is in charge of adapting the power which is generated by the energy

harvester to generate a DC current which is delivered to the energy buffer and

the remaining sub-system units of a wireless sensing system. As a result of this

power processing operation, the actual power which is delivered to the device is

always lower than the produced by the energy harvester [23]. This is generally

referred as the efficiency of the energy harvester.

5.5.2 Performance Evaluation

We evaluate the performance of a self-tunable energy harvester in terms of the

average power which is able to generate. For this, we consider the energy balance

at the energy harvester by calculating the generated power and the power losses

derived from sensing the spectrum and retuning the harvester.

To derive the generated power, we have assumed that a self-tunable energy

harvester occupies the same area as the optimized case in multi-source energy

harvesting platforms and is able to generate the same power. Alternatively, we

have assumed that the power that the energy harvester consumes to sense the

spectrum, to process this information and to tune the oscillating frequency of the

energy harvester, referred as Ploss, quadratically depends on the voltage range

applied, VC , to an equivalent capacity of Ceq = 1 µF, which is a reasonable value

as reported in [38]. The voltage applied at the capacitor linearly depends to the

number of frequency bands, as shown in (5.7).

We show in Fig. 5.18 the harvested power as a function of the peak power

to average power ratio, C, for different number of available bands. In addition,

we compare the results to the multi-source energy platform which has been op-

timized in the previous section for C = 10 with 4 energy harvesters. In order

to calculate these results, we have considered that the voltage difference to tune

between consecutive bands is 0.5 V. As the figure shows, when the peak power to

average power ratio increases, the power of the energy sources is more compacted

in time. Then, the likelihood that two energy sources are generating power at the

same time is reduced. This permits the energy harvester to maximize the har-

vestable energy, thereby showing a better performance than multi-source energy

harvesters. However, as this factor becomes large, the energy devoted to perform
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Figure 5.18: Harvested power as a function of the peak power to average power
ratio in self-tunable energy harvesters.

spectrum sensing and tuning the oscillating frequency gains significance, thus

negatively impacting upon the performance of the energy harvester. In addition,

it is observed that the number of frequency bands plays an important role in

the performance of the energy harvester. In fact, considering more energy bands

improve the likelihood of a given band being active, but significantly increases

the power losses.

We then show in Fig. 5.19 the harvested power as a function of the applied

voltage at the equivalent capacitor. In addition, we compare the results to the

multi-source energy platform which has been optimized in the previous section for

C = 10 with 4 energy harvesters. To calculate these values, a peak power to aver-

age power ratio of C = 10 has been assumed. As it is shown, the applied voltage

has a very strong impact upon the performance of the energy harvester. In fact,

as this voltage approaches zero, increasing the number of bands can provide a very

large improvement compare to multi-source energy harvesting platforms. As an

example, using a self-tunable energy harvester to harvest from 4 bands generates

almost 3 times the energy that an optimized multi-source energy harvester with

the same number of bands. However, as the required capacitor voltage increases,

the performance of the energy harvester is being affected, therefore showing equal

performance at a capacitor voltage of approximately VC = 0.65 V. This shows

the need of sophisticated sensing schemes to minimize the power consumption.

91



5. DESIGN SPACE EXPLORATION OF MULTI-SOURCE ENERGY

HARVESTING

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Capacitor Voltage [V]

H
a
rv

e
s
te

d
 P

o
w

e
r 

[m
W

]

 

 

N = 2

N = 3

N = 4

N = 5

N = 6

Multi

Figure 5.19: Harvested power as a function of the capacitor voltage in self-tunable
energy harvesters.
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Figure 5.20: Design space of self-tunable energy harvesters. Optimal number of
bands as a function of the capacitor voltage and peak power to average power
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Figure 5.21: Correlation of the ambient energy: comparison of the harvested
power in two neighboring nodes with spatial correlation ρd = 0.155 (top) and
ρd = 0.844 (bottom).

Finally, we optimize the number of bands of a self-tunable energy harvester

as a function of the peak power to average power ratio and capacitor voltage in

Fig. 5.20. In addition, this performance is compared to the performance of multi-

source energy harvesting platforms. As the figure shows, regardless of the asso-

ciated power losses of the energy harvesting unit, multi-source energy harvesting

platforms outperforms self-tunable harvesters, in terms of outage probabilities,

for moderately low values of C. Then, as this parameter increases, the effect of

the capacitor voltage becomes significant. In particular, it is observed that low

number of bands show more robust performance in terms of both studied param-

eters, whereas considering a large number of bands require low capacitor voltages

and large peak power to average power ratios.

5.6 Spatial Correlation of the Energy State

In previous sections, the energy outage has been addressed for just a single sensor

node. It has been assumed that the sensor node can transmit any time it has

enough energy to transmit. Intuitively, in order to successfully deliver a data

packet from the node i to the node j, not only the transmitter node must be

energetically charged, but also the receiver must be active.

In this section, we evaluate the correlation of the energy outage probability of

neighboring nodes. In order to do so, this work accounts for the spatial correlation

93



5. DESIGN SPACE EXPLORATION OF MULTI-SOURCE ENERGY

HARVESTING

Figure 5.22: Energy state correlation between two nodes, for a correlation factor
of ρd = 0.4.

Figure 5.23: Energy state correlation between two nodes, for a correlation factor
of ρd = 0.9.
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Figure 5.24: Correlation of the energy outage probability in terms of the correla-
tion among sensor nodes.

of the energy field. The spatial correlation, ρd, defined as a function of the

distance between nodes can be simplified from (3.7), if considering only spatial

variations by:

ρd(d) =
E [PH(ri)PH(rj)]− µ2

H

σ2

H

(5.9)

where d = ‖ri − rj‖ refers to the distance between nodes i and j, and µH refers

to the average power of the ambient energy source. The spatial correlation as a

function of the distance is assumed to decrease monotonically with the distance

and bounded to 1 when d = 0 and 0 when d → ∞. This spatial correlation

depends upon the physical phenomena, which can be generally classified into

several groups [68, 11], e.g., spherical, power exponential, rational quadratic or

matérn. As an example of physical phenomena, electromagnetic waves present

a power exponential correlation function, with θ2 = 1 [139]. The exponential

correlation function is given by:

ρd(d) = e(−d/θ1)θ2 ; θ1 > 0, θ2 ∈ (0, 2] (5.10)

In order to evaluate the correlation of the energy outage among neighboring

nodes,we focus on a RF energy harvesting environment, where the correlation

of the slow-dynamics of the harvesting energy between two locations is given

by (5.10). Then, we use a Rayleigh channel model from Sec. IV. To evaluate

this correlation, we proceed to simultaneously perform a time-varying simulation
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of two neighboring nodes which harvest correlated RF power. Fig. 5.21 shows

an example of the harvested power from two neighboring nodes when there is a

spatial correlation of ρd = 0.15 (top) and ρd = 0.85 (bottom).

In Fig. 5.22 and Fig. 5.23, we show the bivariate histogram of the energy

state of two energy harvesting enabled sensor nodes which present a correlation

in their harvesting rates of ρd = 0.4 and ρd = 0.9. In order to obtain these

results, an energy buffer capacity of CB = 2 mJ has been chosen. As shown,

the relatively small capacity of the energy buffer, leads to a noticeably large

probability of energy outage. As it is also observed, as the correlation of the

energy source decreases, the bivariate histogram the energy states spreads, thus

becoming challenging to estimate the energy state of neighboring sensors.

In addition to this, Fig. 5.24 shows the probability that a certain node j is

in energy outage, when it is known that the node i is already in energy outage.

This probability is shown as a function of the distance, when considering the

values of Θ1 = 5 and Θ2 = 1 in the correlation model shown in (5.10). As the

figure shows, at short distances, if a node is in energy outage, neighboring nodes

of this sensor node will probably be in energy outage as well. Alternatively, as

the distance among nodes increases, this probability tends to the energy outage

probability. Alike temporal variations of the slow dynamics, the energy buffer

has a significant effect in counteracting the impact of the spatial distribution of

the energy.

5.6.1 Applications of the Spatial Correlation

The correlation of the environmental energy and the energy state of the sensor

nodes is of special interest for network designers. As an example, in the MAC-

layer, sensors can increase the success rates in packet delivery in a point-to-

point communication, since they can estimate whether the destination node has

sufficient energy to receive the packet.

However, we expect that the majority of the benefits of this model will lay

on the routing layer. State-of-the-art routing protocolss for energy harvesting

include the energy state in their cost function [97, 53, 41]. With this, the network

tries to avoid nodes which have significantly less remaining energy and, therefore

extending the network operation. When considering spatially distributed energy
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fields, routes bend to energetic networking areas [53]. This aims to balance the

overall energy availability to the energy requirements.

Unfortunately, in order to optimize the routes in these environments, the

network must take decisions upon the up-to-date energy state and energy avail-

ability of the sensors. As a result, this information must be constantly exchanged

among nodes -or, even, reported to the base station (BS)- to generate the optimal

solutions.

In this context, having knowledge of the spatial distribution of the ambient

energy and the correlation among energy states can improve the network opera-

tion: on the one hand, sensor nodes can potentially take decisions on behalf of

their neighboring nodes, thus suppressing the local exchange of overhead infor-

mation. On the other hand, in case of reporting the energy state to a BS, the

reporting overhead can be also reduced, since fewer nodes are required to report

updated information.

5.7 Summary and Conclusion

Multi-source energy harvesting is gaining popularity as an alternative to power

wireless sensor networks. The benefits that this alternative provides when the

ambient energy is largely time-variant is two-fold: on the one hand, it provides

robustness to the sensors, while on the other hand, the sparsity of the overall con-

tribution is reduced, and thus its operation lifetime is improved. In this context,

circuit area optimization which considers both energy harvester and energy buffer

and takes advantage of the improvement in performance of multiple-source energy

harvesters has been addressed. As it has been shown, this joint effort can help

reducing the overall area, thus enabling circuit area optimization to pursue a fu-

ture miniaturization of the communicating devices. In addition, the performance

of self-tunable energy harvesters has been compared to an optimized multi-source

energy harvester. Self-tunable harvesters have shown better performance espe-

cially when the presented environmental energy is very sparse. However, the

operation of these devices require sensing and computing tasks to actively select

the optimal energy band.
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Chapter 6

Scalability of power of Multi-ET

Wireless RF Power Transmission

6.1 Introduction

Wireless RF power transfer has transitioned from proof-of-concept deployments

to commercial products over the recent years [113], indicating its feasibility in

powering unattended Internet of Things (IoT). This approach consists of har-

vesting the RF radiation from controllable energy transmitters (ETs) to supply

the power demands of the networked nodes [144]. Thus, this technology can im-

pact the growing market for wearables, intra-vehicle charging, industrial safety

sensors, among others.

The high path-loss of the RF signal in free-space constrains the range of the

transmission of energy to relatively short distances (i.e., up to a few tens of me-

ters) [138]. Hence, considerable efforts have been undertaken for extending the

power transfer range to cover a large area of deployed nodes, within the limita-

tions of the regulatory bodies (e.g., FCC) imposed maximum threshold on the

transmitted power, ET hardware installation costs, and the specific capabilities of

the transceiver system of the ETs [144]. One such viable direction involves using

antenna arrays and directional antennas that allow harvesting energy from 60 µW

of incident power, with the receiver placed a considerable distance away from the

energy source (i.e., 4.1 km). However, this setup increases the dimensions of

the antenna to a few tens of centimeters, since it requires a typical broadband
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UHF TV antenna [122]. MIMO-based approaches, on the other hand, permit on-

demand energy beam-forming, thereby reducing the energy spread [146]. How-

ever, despite these methods, multiple ETs may be needed to cover the entire area

of interest leading to concerns of scalability [144].

This chapter aims at presenting wireless RF power transmission from multi-

ple ETs as a feasible approach, by answering the following fundamental question:

In order to guarantee sufficient power at the deployed nodes, is it better to in-

crease the number of ETs, to increase their transmitted power or to increase

their system complexity? For this, a scalability analysis of the cumulative power

that ETs need inject into the network to guarantee the sensor nodes operation

is provided for three different multiple access methods for multi-ET transmis-

sions, namely cellular-based planning, orthogonal multiple access methods and

distributed beamforming. To analyze the former, a closed-form expression of the

minimum cumulative injected power is derived. Then, this is numerically evalu-

ated to analyze and compare the three proposed methods. The presented analysis

is agnostic of any underlying physical layer capability.

It is found that this power metric is bounded, in its worst case, by O(s1−α/2),

where α refers to the propagation path-loss exponent. That is, the injected power

is independent of the number of deployed ETs in free-space conditions, whereas it

is decreasing in typical indoors propagation environments (α > 2). By implement-

ing optimal power transmission schemes, this bound scales up to approximately

s times faster in ideal transmission channels, whereas this improvement becomes

less noticeable at higher values of the path-loss exponent.

In summary, this chapter shows that increasing the number of deployed ETs

is scalable in terms of aggregated transmitted power and that the propagation

channel conditions the way in which multiple ETs should coordinate to mitigate

mutual interferences and generate maximum constructive signal addition at the

energy-receiving sensors. We show that for the correct operation of such networks

it is necessary to research and develop sophisticated interference-aware schemes

for near-ideal channel conditions, and also demonstrate that simple approaches

can provide similar performance when the channel degrades.

The rest of this chapter is organized as follows. In Sec. 6.2, we briefly overview

the fundamentals of wireless RF power transfer. In Sec. 6.3, discusses the design

of multipe access for wireless RF power transfer. Sec. 6.4 derives a theoretical
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bound for the scalability of power. Sec. 6.5 numerically evaluates this work. In

Sec. 6.6 we discuss the obtained results and conclude this chapter in Sec. 6.6.

6.2 A Channel Model for Power Transfer

In this section we revise the fundamentals of wireless RF power transfer and the

channel model considerations.

6.2.1 Point-to-point Power Transfer

We consider the following path-loss model, which is described by the transmitted

power, PT , the path loss at 1 meter distance, L0, the transmission distance, R and

the path-loss exponent, α [143]. L0 also accounts for additional multiplicative

constants that play a role in the wireless medium and do not depend on the

distance, such as the antenna gain or directivity. The power which is received at

the antenna is given by:

PH = PTL0R
−α. (6.1)

As a general case, α is generally comprised between 2 (free space) and 6 within

urban areas (both outdoors and indoors) [2].

6.2.2 Multiple Power Transfers

When multiple ETs are required to cover a large networking area, the wirelessly

propagated RF waves may constructively or destructively combine. We find that

the received power at the harvesting antenna, when it harvests from a number s

of ETs is given by [110]:

PR =
s∑

i=1

PHi +
s∑

i,l=1

i 6=l

ρil
√

PHiPHl (6.2)

where PHi refers to the received power from the i-th ET and ρil stands for the

correlation between the i and l transmissions, in case of random signals, or or-

thogonality factor in case of deterministic signals. This value is bound in such

that −1 ≤ ρil ≤ 1.
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In order to exemplify this factor, let us consider two deterministic RF sine

waves that arrive at a receiver node with same power P = P1 = P2, frequencies

f1 and f2 and phases φ1 and φ2. If f1 6= f2, we have that ρ = 0, then the received

power equals 2P . If f1 = f2 and φ1 = φ2, the RF waves constructively combine

and the received power equals 4P . Finally, if f1 = f2 and φ1 = φ2 + π, the RF

waves destructively combine and the received power is zero.

6.3 Multiple Access for Multi-ET Transmissions

In this section, we revise the design space in multiple access for multi-ET trans-

missions. Multiple access methods to handle interference in wireless RF power

transfer can be classified as follows:

6.3.1 Cellular-based planning

Each ET has an associated region in the space, where this is in charge of trans-

ferring the energy. To avoid neighboring interferences, each ET has an associated

transmission slot (either in frequency or in time). After a certain distance, cells

could re-use slots [117]. The received power from a given node is simplified to:

PR = PH max, (6.3)

where PH max refers to the most energetic reception from the set of ETs. Given

that ETs do not cooperate to maximize the power tranfer, this approach stands

as the worst case.

6.3.2 Orthogonal Methods

Classical orthogonal approaches appear as a second approach to mitigate the

signal destruction due to interferences. In this group, simple schemes such as

FDMA, TDMA or advanced modulations, such as CDMA, FHMA or OFDMA

can be implemented at the ETs [35, 27, 28]. This approach aims at vanishing the

correlation factors between RF waves (ρil = 0 ∀i, l) hence, reducing the received
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power equation to:

PR =
s∑

i=1

PHi. (6.4)

These methods have been employed to implement off-the-shelf ETs and po-

tentially offer better performance than Cellular-based planning. Pseudo-random

codes for CDMA and FHMA, as in [35] permit an unattended operation and

deployment of the ETs.

6.3.3 Distributed beam-forming Methods

This last approach aims at leveraging the constructive combination of RF waves,

hence optimizing parameters, such as the transmission phase at each ET to either

maximize the received power at all locations or to guarantee a minimum delivered

power. In this direction, energy-on-demand (EoD) MAC protocols have been pro-

posed to maximize the constructive combination of RF waves [97]. Recent works

in massive MIMO for energy transmission has shown that ETs can constructively

combine at all sensor node locations if each ET has at least k separated antennas,

being k the number of users or deployed nodes in the network [110]. Due to the

large number of required antennas per ET and the excessive node to ET channel

state information (CSI) communication feedback, this approach may render un-

practical. Accordingly, it sets the upper bound in performance of transmission of

energy and, then, the lower bound in minimum cumulative injected power.

Analytically, this approach aims at providing the best correlation factors,

hence being upper bound (i.e., ρil = 1) by:

PR =
s∑

i=1

PHi +
s∑

i,l=1

i 6=l

√
PHiPHl (6.5)

As reported in [94], the received power considering this approach shows a gain of

s, with s being the number of considered ETs, compared to orthogonal methods.
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Figure 6.1: Voronoi tesselation generated by the energy transmitters.

6.4 A Theoretical Bound for Cellular Planning

In this section, we bound the minimum cumulative injected power per unit area

as a function of the number of ETs in a cellular-based planning set-up. In this

context, nodes are able to harvest power only from their nearest ET and disregard

the received power from any other ET.

Let us define a Voronoi Tessellation where the set of s ETs spatially dis-

tributed, following a Poisson Point Process, along the area A are used as center

of each cell. Then, we find that a given node k located at an arbitrary location

harvests power from the i-th ET if the node is contained in the cell Vi. In this

study, each deployed ET injects the same amount of power into the network. To

exemplify this, we show in Fig. 6.1 an example of an ET deployment and their

associated cells, based on closer distance.

Then, we bound the distance between the ET i and the node in its cell that

is located at the furthest distance from the ET. This distance is bound by one of

the vertices of the Voronoi cell, which, in turn, for arbitrarily large number of ES,

s, and any integer j > 0, we can bound it by defining a disk of diameter Rj [37],

which is given by:

Rj = 4 · 3−1/4

√
j

s− 1
(6.6)

with probability ≥ 1 − 6e1−j. In other words, the maximum possible distance

between the ET i and the furthest node that can be deployed within the ET cell

Vi is bounded by:

dmax,i <
Rj

2
< c1s

−1/2 (6.7)

with probability tending to one when s → ∞, being c1 a multiplicative term
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which does not have dependence on s.

Let us, then, define the minimum cumulative power density P, defined as the

sum of the transmitted power of every ET deployed in the networking area A.

The minimum cumulative power density refers to the total power per unit area

which is transmitted by the ETs to guarantee the power requirements at the

sensor node locations. In this sense, requiring a single ET transmitting 4 W of

power or four ETs transmitting 1 W of power each to cover a 10x10 m area, yield

to the same minimum cumulative power density of 0.04 Wm−2.

We then set the transmitted power at each ET to be such that the node located

at the furthest distance from the ET is able to receive the minimum required

power P0 set IoT communication layer. Therefore, the minimum cumulative

power density can be calculated as:

P =

s∑

i=1

P0L
−1

0
dαmax,i

A
(6.8)

where P0 refers to the requirements of power at the node location, L0 stands for

the path loss at the distance of 1 m, dmax,i stands for the distance between the

ET si and the furthest node located within its Voronoi cell Vi and α stands for

the path-loss exponent.

Provided that the maximum distance from the center of a Voronoi cell to any

point within its cell is bounded by dmax,i < c1s
−1/2, we can now obtain that the

transmitted power density can be upper bounded by:

P <
∑

i∈S

P0L0(c1s
−1/2)α < c2s

1−α/2, (6.9)

which is a function of the number of ETs. Finally, we can say that the minimum

cumulative power density is upper bounded by:

O
(
s1−α/2

)
. (6.10)
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Figure 6.2: Minimum cumulative power injected by the ETs to guarantee suffi-
cient harvested power at any location, considering a regular hexagon deployment
grid.

6.5 Numerical Results

We numerically evaluate the scalability of the three considered approaches. For

this, we assume the ideal operation of the multiple access methods. We calculate

the required power that it needs to be allocated at each ET, such that a sensor

node placed at any point in the networking area can harvest a minimum power

of P0 = 10 µW. The minimum cumulative power is then calculated by summing

the allocated power at every ET. The network is placed over a 20x20 m2 squared

area. The deployed ETs are deployed over the networking area following two

different topologies, namely regular hexagons and random positioning.

We first show in Fig. 6.2 the minimum cumulative injected power as a func-

tion of the number of deployed ETs. This numerical evaluation considers the

office environment channel model provided in [2], which provides an α = 3.3. In

the figure, we compare the different multiple access methods. In addition, we

also show the scalability trend that each curve offers. As it is observed, cellular

planing offers the worst performance, requiring larger amounts of injected power.

Nonetheless, we observe that it scales as predicted. Orthogonal methods, show
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very similar scalability as cellular planing, whereas offering an approximately

three-fold performance improvement in terms of the injected power. Finally, we

find that distributed beam-forming offers a substantial improvement with respect

to the other approaches, in terms of injected power and its scalability. Particu-

larly, this scales as O(s−1.2), instead of the theoretically obtained O(s−0.65).

Then, we show in Fig. 6.3 the design space for multiple access methods for

Multi-ETs. In the figure we show the scalability exponent as a function of the

path-loss exponent. The scalabilty exponent refers to the obtained exponent of

s in the scalabiltiy trend (i.e., 1−α/2 for cellular planing). We first see that the

numerically evaluated cellular planing matches the theoretical bound derived in

the previous section. Then, we find that distributed beam-forming achieves the

best performance, as predicted in Sec. 6.3 These two bounds define the design

space of multiple access methods for wireless RF power transfer.

6.6 Discussion

In this section, we assess the question asked in Sec. I: In order to guarantee

sufficient power at the deployed nodes, is it better to increase the number of ETs,

to increase their transmitted power or to increase their system complexity? To

provide an answer, we consider the following two use-cases:

The case α = 2 refers to free-space or ideal propagation. In this scenario,

the injected power scales as O(1) in cellular-based planning. That is, the in-

jected power is independent of the number of deployed ETs. As such, there is

no preference between increasing the allocated power or increasing the number of

deployed ETs, without taking into account practical constraints in the maximum

power per ET. In these conditions, it is observed that implementing sophisticated

interference-aware schemes extends this bound to O(s−1.1), which responds to the

theoretical s gain of distributed beam-forming over orthogonal methods predicted

in [94].

The cases where α > 2 generally apply to indoors and/or urban environments.

In such cases, larger densities of ET reduce the cumulative injected power. That

is, larger path-losses constrain the power transfer to very few meters distance from

the ETs, and this power very rapidly decays with the separation distance. For a

fixed deployment, increasing the number of ETs reduces the transmitted power,
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Figure 6.3: Design space of multiple access methods for Multi-ETs.

Table 6.1: Summary of the results and proposed recommendation
Channel Scalability Recommendation

Free-space O(s−1.1) Multiple ETs, sophisticated methods

Indoors O(s1−α/2) Multiple ETs, simple cellular approach

therefore yielding towards more sustainable environments. It is noteworthy that

as α increases, the large dispersion of the medium causes that the transmitted

RF waves do not propagate over long distances and cannot combine among them.

Hence, the derived bounds for optimal multi-ET transmissions approach the the-

oretical bound.

The provided use-cases provide strong design guidelines in the deployment of

ETs. It is first shown that large deployments of low-power ETs help reducing the

overall transmitted power. Then, it is shown that the path-loss exponent con-

ditions the multiple access for multi-ET design. We advocate for sophisticated

methods in near-ideal or line-of-sight environments, whereas simple multiple ac-

cess methods for inter-ET interference mitigation can offer similar power saving

in highly- dispersive channels. Table 6.1 summarizes the achievable scalability of

the minimum cumulative injected power and the recommended design guidelines,

depending on the type of considered channel.
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6.7 Summary and Conclusion

In this paper, the bounds for the cumulative power that energy transmitters

(ETs) need to inject to supply a wireless RF powered Internet of Things have

been addressed. These bounds compare the performance of different multiple

access methods for multi-ET transmission, and define the design space for ET

deployment. It has been shown that the required injected power decreases with

the number of deployed ETs, hence motivating the deployment of a supporting

network of ETs. It has been shown that near-ideal channel conditions can leverage

sophisticated interference-aware schemes to further reduce the required injected

power, whereas dispersive simple approaches can provide similar performance

when the channel degrades.
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Chapter 7

Energy Multiplexing for

Multi-ET Wireless RF Power

Transmission

7.1 Introduction

In the previous chapter, a thorough analysis on the scalabilty of the cumulative

injected power as a function of the number of ETs has been provided. As the

results show, this metric decreases when the number of ETs grows, hence mo-

tivating the deployment of multiple ETs to cover large networking areas. This

potential benefit has been already experimentally validated [39, 40, 97], showing

that the presence of multiple ETs reduces the average propagation distance to the

energy harvesting sensors, and thus decreases the attenuation level of the energy

waves and improve the RF power harvesting rates [55].

When deploying multiple ETs over a an area, the propagated RF waves spa-

tially overlap. Fig. 7.1 shows a many-to-many power transmission in a WSN,

where more than one ET delivers power to multiple sensors. In this network

RF waves may interfere with each other when they are transmitted in the same

medium. These interferences can be either constructive (i.e., the received power

is larger than the average) or destructive (i.e., the received power is very low, or

even zero) as shown in [97, 117], requiring ETs to implement energy multiplexing

techniques for wireless RF power transimssion [144]. It can be observed that the
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approaching distributed beamforming performance in our considered scenario.

The main contributions of this chapter are as follows:

• We analytically describe a new duty-cycled RF transmission and modu-

lation approach for energy multiplexing wireless RF power transmission

sensor networks.

• We perform an experimental study to validate the key working principles

of the approach. This study involves a scaled evaluation of DCRP on a

testbed composed of USRP radios with RF amplifiers as ETs and energy

harvesting sensors.

• We show the performance of DCRP for large-scale sensor deployments us-

ing network level simulation. This simulation studies the statistical power

distribution in space and demonstrates the charging action of many ETs to

many sensors.

The rest of the chapter is organized as follows. In Sec. 7.2, we overview the

hardware and network considerations. In Sec. 7.3, we present and analyze our

DCRP approach. In Sec. 7.4, we experimentally evaluate the performance of

DCRP in a many-to-one environment using both analysis and experiments. In

Sec. 7.5, we simulate the performance of the experimentally validated model for

many-to-many transmissions. Finally, we conclude our work in Sec. 7.6.

7.2 Overview

This section overviews the hardware and network architectures which are consid-

ered in this work.

7.2.1 Network Model

We consider a network composed of multiple ETs which permanently transfer

energy through RF waves to power a wireless sensor network, as shown in Fig. 7.1.

Each node is equipped with an energy harvesting circuit, which converts RF

energy into DC current. The received power at a sensor node located in an

arbitrary location of the network is the result of the combination of the RF
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Figure 7.2: Low and high power regions of operation of an energy harvester
(denoted as I and II) and benefits of transmitting power with large peak-to-
average power ratios in region I. A duty-cycled transmission of energy is compared
to a constant transmission.

waves that are transmitted from multiple ETs. Due to the propagation path-

loss, sensors will receive a large amount of power from their closest ETs, whereas

the nodes located far from any ET will receive significantly less power that is

generated by the small contributions of many ETs. We show an example of a

network in Fig. 7.1. In the figure we observe that the sensors S1 and S2 are

located at a distance r1 and r3 from their closest ETs, respectively. Then, we

show the distances r2 and r4 which represent the maximum distance where an

ET could generate an RF, such that it can interefere. We see that due to the

short distance r1 between S1 and ET1, S1 only receives power from a single ET.

Alternatively, provided that S2 is located at a further distance from any ET, S2

receives a lower input power, which is the sum of power from ETs with indices

ranging from 1 to 7.

7.2.2 Hardware Considerations

The non-linear behavior of semiconductor devices results in the dependency of

the input impedance with the input power, such that the antenna and energy

harvester impedances match only for a certain input power. The impedance

matching makes two distinguished regions in any real implementation [33], as

shown in Fig. 7.2: Increasing efficiency for low input powers (denoted as region I)

and decreasing efficiency for high input powers (denoted as region II). In region I,

transmitting power in a time-varying manner leads to higher amounts of harvested

energy [14]. On the contrary, in region II the power conversion efficiency at the

high power range decreases with the input power [33], and a low peak-to-average
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Figure 7.3: Time-varying input power improves the efficiency at the low input
powers, whereas it shows lower efficiency at the high input power region.

received power ratio improves the efficiency of the energy harvester.

As an example, Fig. 7.2 also compares two power transmission schemes,

namely continuous and duty-cycled (with a peak-to-average power ratio of 2)

with equal average received power of 1 mW. Without loss of generality, we as-

sume a 40% efficiency for 1 mW input power and a 80% efficiency for 2 mW

input power. Accordingly, in the case of continuous power transmission, a con-

stant power of 0.4 mW would be harvested, while in the case of duty-cycled power

transmission the harvester provides a duty cycled instantaneous power of 0 mW

for an input power of 0 mW and 1.6 mW for an input power of 2 mW. Overall,

this results in 0.8 mW average harvested power. In contrast to this example, if

the efficiency curve decreases with the input power, receiving a constant power

provides a larger efficiency.

7.3 Duty-cycled Random-phase Energy Multi-

plexing

Our proposed Duty-Cycled Random Phase (DCRP) energy multiplexing for wire-

less RF power transmission exploits the two energy regions in order to maximize

the efficiency of the energy harvester at each node. In particular, it generates

time-varying power at the input of the the sensors which receive low power lev-

els and to generate constant input power at the sensors which receive high power

levels. As it is shown in Fig. 7.3, this action optimizes the operation of the energy

harvesters in both low and high power regions. For this, our scheme leverages
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multiple transmissions at the sensors which receive low power levels (i.e., sensors

located at further distances from any ET receive low power and this power is gen-

erated by the combination of multiple ETs) and single transmission at the sensors

which receive high power levels (i.e., sensors located nearby an ET receive high

power from their nearest ET, thus neglecting the combination from further ETs).

To generate time-varying input power, ETs transmit time-synchronized bursts of

power in a duty-cycled manner (each on duration is here referred as a burst).

Each burst is a single frequency, continuous sine wave RF transmission, gener-

ated with a randomly selected phase φjk ∈ (0, 2π]. At the start of every on time,

the ETs select a random, different phase. Fig. 7.4 shows a time-diagram of the

DCRP scheme, where S1 and S2 are nodes in Fig. 7.1, whereas No RP stands for

a generic energy multiplexing for wireless RF power transmission method which

ensures perfect channel orthogonality, such as FDMA or DSSS.

By employing this scheme we modulate the peak-to-average power ratio in two

stages: First, the duty cycled transmission increases the peak-to-average power

ratio of all input powers. Unfortunately, the maximum peak power that can be

transmitted is constrained by regulatory organizations, hence the duty cycle can-

not be arbitrarily reduced to create large peaks of power. Second, the combination

of multiple RF waves with random phases deliberately generates both destructive

and constructive interferences. These interferences modulate the overall received

power at the sensor locations, thus increasing the peak-to-average power ratio.

Given that the time-varying power is generated by intentionally interfering the

RF waves from the ETs, only sensors which receive power as the combination of

multiple ETs receive a time-varying power. Accordingly, it is shown in Fig. 7.4

that S1 receives power only from one source (ET1), thus harvesting from a low

peak-to-average power ratio signal. Alternatively, S2 receives power from many

ETs (ET1 to ET7), thus harvesting from a very large peak-to-average power ratio

signal. We also show the case of a generic orthogonal method, such as FDMA or

DSSS, referred in the figure as No RP (no random-phase). As the figure shows,

the received power at each burst is constant in time, since these methods avoid

both constructive and destructive interferences.

The period T in DCRP depends on the design and circuital properties of

the energy harvesting, as well as it depends the average input power at the sen-

sors. These parameters must be experimentally adjusted for any given technol-
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Figure 7.4: DCRP scheme. Each ET propagates RF waves with random phases
φik in a duty-cycled manner with period T and duty cycle D.

ogy. In particular, we have experimentally found that for a P1100 Powercast

harvester [33], values of T in the order of 10 ms to 100 ms provide a good perfor-

mance. This selected time range is important as the burst must be significantly

larger than the synchronization time, and the transient time of the energy har-

vesters at the receiving node. Note that synchronization errors between ETs can

be kept several orders of magnitude below the time-scale of DCRP. In particu-

lar, a precision of a few tens of microseconds can be achieved using inexpensive

off-the-shelf software over wireless [129, 54]. This precision can be improved to

200 ns if ETs integrate typical GPS receivers [87].

The selection of the duty cycle is constrained due to regulatory organizations.

As a general case, the allocated peak power will be assigned by considering the

maximum permitted transmitted power, either by regulation (e.g., 4 W according

to the FCC [1]). Thereafter, the duty cycle will be assigned, such that it is possible

to meet the power requirements of the deployed sensors with the least amount of

power.

117



7. ENERGY MULTIPLEXING FOR MULTI-ET WIRELESS RF POWER

TRANSMISSION

7.3.1 Analytical Model of DCRP Performance

Combined Input Power

We first model the input power at the sensor node destination. We denote m

as the number of ETs and n as the number of sensors which are deployed over

the networking area. Without loss of generality, we locate the sensor node under

study at the center location of the Cartesian plane. Then, we denote PT as the

average power that is transmitted from an ET (PT i if particularized by the i-th

ET).

We utilize the concept of signal s(t) as the squared-root of the instantaneous

input power, p(t) = |s(t)|2, in W1/2 units. Notice that the concept of signal

does not directly correspond to voltage, since the signal is s(t) =
√

v(t)i(t),

where v(t) is the voltage drop across the terminals, and i(t) is the current flowing

through them. According to operational method of the DCRP scheme, the power

is transmitted in bursts of energy and each ET transmits at the same time with

same frequency and with random phase, the duty cycled signal which is generated

at a given ET can be described as the addition of independent bursts of RF signal

delayed in time:

s(t) =
∞∑

k=0

√
PT g(r)

D
cos (2πf0t+ φk) Π

(
t− kT

DT

)

, (7.1)

where k refers to the burst, PT is the average transmitted power, g(r) stands

for the path loss, which is a function of the distance r, D is the duty cycle, f0

stands for the carrier frequency, φk ∈ (0, 2π] refers to the phase shift of the k-

th burst, Π(x) is the rectangular function (defined as Π = 1 if 0 ≤ x ≤ 1 and

Π = 0 otherwise), finally, T refers to the time period of the duty cycle. Moreover,

the signal parameters D, f0 and T are fixed for all the ETs, such that each ET

concurrently transmits in-time and in-frequency. On the contrary, the sequence

of phase shifts, φk, is random in-time and different ETs have different sequences.

Notice that pure squared signals cannot be effectively modulated, since this

would require infinite bandwidth capabilities. However, given that the timescale

of DCRP is in the order of 100 ms and above, approximating the rise and fall

time of the transmitted bursts by pure squared signals in (7.1) is a reasonable

approximation.
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To reduce further notation, we denote the received power from a given ET as

Pi = PT ig(r). Also, we focus on a specific burst time and use phasor notation,

such that the signal that a sensor receives from a the i-th ET is simplified to:

s =
√

Pi/Dejφi . (7.2)

The received signal, composed as the combination of concurrent m ETs at a

given burst time, is a sine signal of same carrier frequency, amplitude
√
pR and

phase θ, which is given by:

sR =
m∑

i=1

√
Pi/Dejφi =

√
pRe

jθ, (7.3)

where pR is the instantaneous received power and can be easily obtained as:

pR = D−1

m∑

i=1

Pi +D−1
∑

1≤i,j≤m
i 6=j

√
PiPjcos(φi − φj). (7.4)

As observed, the received signal amplitude and instantaneous power depend on

the phases among RF waves. Since these phases are kept constant during the

transmission of each burst, but randomly changed at each one, the received signal

amplitude and its instantaneous power at each burst define decorrelated random

processes.

Given that the input power is a random process, we statistically analyze its

properties. First, we observe that the expected value of the received power at the

sensor node location during the duration of a burst of energy equals to the sum

of the contributions (E[pR] =
∑

i Pi/D), since

E [cos (φi − φj)] = 0, ∀i 6= j. (7.5)

The expected value refers to the received power that a sensor node receives on

average, if the phases are randomly chosen. In DCRP, since the phase shifts

are randomly varied in time, the temporal average tends to the expected value

multiplied by the duty cycle as a consequence of the weak law of large numbers.

Then, the input power in temporal average, PR, equals to the sum of the received
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power from each ET:

PR = D−1

m∑

i=1

Pi. (7.6)

We find that this guarantees that DCRP operates as an energy multiplexing

method for wireless RF power transmission , as it does not suffer from interfer-

ences in temporal average, as the time tends to infinity. Also, we observe that

the use of duty cycled bursts generates large instantaneous power for the same

averaged power.

The variance of the received power, σR, is given by:

σ2
R = E[p2R]− E[pR]

2 = D−2
∑

1≤i,j≤m
i 6=j

E [PiPj] . (7.7)

In order to exemplify this result, if we assume that the received power from each

ET is equal, i.e., P = P1 = P2 = · · · = Pm, we obtain that the relation between

the standard deviation and the average value is given by:

σR

PR

=

√
m− 1

m
. (7.8)

From this example, we observe that as the number of coinciding ETs increases the

variation in the input power becomes larger. Therefore, sensors which are located

near an ET (and, thus, they mostly receive power from a single source) will receive

a less time-varying input power than nodes located at further distances in a real

network deployment (See Fig. 7.1). It is also interesting to observe that (7.8) is a

monotonically increasing function with maximum value 1. The maximum value

is rapidly reached when m > 6. As a result, we can infer that after a reasonable

number of coinciding ETs (approximately m > 6) the received power will show

similar properties than if we assume that the received power comes from the

combination of infinite number of power sources. This will be later addressed in

the section.

Obtaining a closed-form expression for the probability density function (pdf)

of the received power at a given location is valuable in this study, as it can

provide us more information than the expected value and its standard deviation.

Unfortunately, as it is found in [3], there is no general expression for the pdf,
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and its calculation results in non-intuitive and very specific formulas for each

particular case. In this work, we derive the pdf for two particular cases of special

interest, and then show how it can be numerically extended for multiple ETs.

Received Power as the Combination of Two ETs

We first consider the particular case of receiving energy from two ETs, denoted

as ET1 and ET2. Without loss of generality, we assign these indexes as a function

of the recevied power. Then, the sensor receives P1 = P from ET1 and P2 = cP ,

with c ≤ 1, from ET2. From (7.4), we can simplify the received power as:

pR = P
(
1 + c+ 2

√
c cos(∆φ)

)
, (7.9)

where ∆φ = φ1−φ2 is an uniformly distributed random variable in [−π, π), which

refers to the phase difference between both RF waves in reception.

Therefore, the calculation of the cumulative distribution function (cdf) can

be derived from:

FPR
(pR) = Pr {PR < pR} = Pr

{
PR/P − 1− c

2
√
c

< cos∆φ

}

, (7.10)

where if ∆φ is uniformly distributed, the expression is reduced to:

FPR
(pR) =

1

π

∫ π

arccos∆φ′(pR)

d∆φ, (7.11)

where ∆φ′(pR) = (pR/P − 1 − c)/2
√
c. Finally, this integration yields into the

following closed-form expression:

FPR
(pR) =






0 if pR < P ′

1
2
+ 1

π
arcsin

(
pR/P−1−c

2
√

c

)
if P ′ ≤ pR ≤ P ′′

1 if pR > P ′′

, (7.12)

where P ′ = P (1+ c− 2
√
c) and P ′′ = P (1+ c+2

√
c). Notice that the particular

case of c = 1, the received power of the combination of two ETs, results in the

arcsine distribution with normalized parameter pR/4P .
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Received Power as the Combination of Many ETs

We consider the case that the received power is the result of the combination of

an arbitrarily large combination of ETs. Starting with (3), we find that both real

and imaginary parts of the signal can be written as:

ℜ (sR) =
m∑

i=1

√
Pi cos(φi); ℑ (sR) =

m∑

i=1

√
Pi sin(φi), (7.13)

where ℜ and ℑ refer to the real and imaginary operators. Since each phase shift,

φi, is randomly selected, both real and imaginary part can be modeled according

to the central limit theorem (CLT) as a Gaussian variable:

ℜ (sR) , ℑ (sR) ∼ N

(
0,
√

PR/2
)
, (7.14)

where PR stands for the average received power.

Therefore, when both real and imaginary parts of a signal are Gaussian

distributed, it is said that the distribution of the signal is complex Gaussian,

s ∼ CN
(
0,
√
PR

)
.

When a signal is complex Gaussian distributed with s ∼ CN
(
0,
√
PR

)
, its

amplitude, r, is given by the Rayleigh distribution [43]. Accordingly, the pdf of

the signal amplitude is given by:

fR =
r

(σ′)2
e
−

r
2

2(σ′)2 , (7.15)

where σ′ =
√
PR/

√
2.

Likewise, the square or power of a signal that presents a Rayleigh distribution

can be modeled with an exponential distribution with λ = 1/PR [43]:

fPR
(pR) =

1

PR

e−pR/PR.. (7.16)

In order to show the different distributions of the input power, we show in

Fig. 7.5.a a numerical evaluation of the pdf of the received power when this

is generated by 2, 3 and 4 ETs. These results are shown normalized over the

average value of the received power, referred as input power ratio in the figure,

and equal contribution from each ET. As it is observed, the particular case of 2
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Figure 7.5: Distribution of the input power for m = {2, 3, 4, 5} coinciding ETs.

ETs generates the U-shaped arcsine distribution centered in 1. Alternatively, it

is also shown that when the number of ETs increase, the pdf approaches to the

exponential distribution. In Fig. 7.5.b, the particular case of 5 ETs is compared

to an ideal exponential distribution of λ = 1. As observed, the distribution of the

received power is already very similar to the ideal distribution. We consider that,

for a number of coinciding RF waves larger than 5, the exponential distribution

with λ = PR is a good approximation of the received power at a given burst.

7.3.2 Model of the Energy Harvester

We describe the performance of an energy harvester through its efficiency, here

referred as η. We observe that this efficiency is a function of the input power, as

it is described in [106, 33, 13], and it is an increasing function of the input power,

especially for low input power values.

We first consider the contribution of the duty cycle. We find that the duty

cycle shifts the efficiency curve to lower input values. That is, the efficiently

harvested power PH can be expressed as:

PH = η(PR/D)PR. (7.17)

Notice that dividing the received power by the duty cycle can be expressed as a

displacement of the curve of −10 log(D) towards negative values in dB units.

Then we consider the contribution of the random phase by assuming a duty

cycle D = 1. Due to the fact that DCRP intentionally generates both destructive
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Figure 7.6: Contribution of the duty cycle and random phase to the eventual
efficiency curve. The duty cycle shifts the efficiency curve to lower values of
energy by −10 logD dB. The random phase equalizes the curve, thus broadening
the range of admissible input powers.

and constructive interferences over time at the sensor node location, the efficiency

of the energy harvester also presents a time-varying evolution. As a result, we

pursue to find an average efficiency value, here referred as η, such that the average

harvested power, PH , can be expressed as:

PH = E[η(pR)pR] = ηPR. (7.18)

Therefore, to calculate the average efficiency, we find that it can be obtained by:

η =

∫
η(pR)fPR

(pR) dpR
PR

. (7.19)

This integration results in an actual smoothing or equalization of the efficiency

curve, which broadens the range of admissible input powers. To better understand

the contributions of the duty cycle and the random phase, we show in Fig. 7.6

their contributions in tuning and equalizing the efficiency curve. As it is shown,

the duty cycle shifts the efficiency curve down to lower values of input power

by −10 log(D) dB, whereas the random phase broadens the range of admissible

input powers.

In order to better understand the calculation of the temporal average input-

to-output power conversion efficiency of DCRP, we analyze the particular case

example of an energy harvester, such that its efficiency increases as a function

of the input power. We find that this particular case example is of particular
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importance provided that it gives an insight of the performance improvement of

DCRP at the low input power range and it yields into a closed-form expression.

In particular, we consider an energy harvester, which shows an input-to-output

power conversion efficiency given by:

η(pR) = kp
γ
R (7.20)

where k and γ > 0 are constants [106, 33]. Then, if we assume that the energy

is generated by a very large group of ETs (in practice, m > 5), and then the

received power is exponentially distributed, (7.19) can be written as:

η =

∫
∞

0
kp

γ+1
R

1
PR

exp−pR/PR dpR

PR

= kP
γ
RΓ(γ + 2), (7.21)

where Γ stands for the gamma function. We observe that if we compare the

average efficiency to the efficiency that we would obtain if the sensor receives a

constant amount of power, we find that:

η

η(PR)
= Γ(γ + 2) (7.22)

which is always greater than 1. This means that the intentionally generated

interferences of DCRP improve the efficiency at the low input power range in

comparison to receiving power at a constant rate.

A realistic case-study, upon we base our further study, is addressed in the

next section (see Fig. 7.7)

7.4 Node-level Experimental Evaluation

In this section we experimentally evaluate the performance of DCRP in the con-

text of transmitting power from multiple ETs to a single energy harvesting sensor

node.

7.4.1 Numerical Evaluation

We first evaluate DCRP considering the RF-to-DC conversion efficiency of the

off-the-shelf energy harvester Powerharvester P1110 [33], from Powercast Corp.
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Figure 7.7: Efficiency curve as a function of the input power for the DCRP scheme
with two and many ETs, compared to the reception of power from a single ET.

We show the efficiency curve as a function of the input RF power in Fig. 7.7

in gray dashed line. It can be observed that at the low input power range the

efficiency grows with the input power, whereas it stays approximately constant

at the large power range.

In order to show the performance of DCRP in this scenario, we evaluate

(7.19) by considering both the exponential distribution (to consider the reception

from many ETs) and the arcsine distribution (to consider the reception from two

ETs). Provided that the contribution of the duty cycle is reduced to an effective

displacement of the curve, the duty cycle of DCRP has been set to D = 1 during

the numerical evaluation.

The results of these studies are shown in Fig. 7.7. It is shown that the use of

DCRP has a remarkable positive impact upon the efficiency at low input powers.

In particular, with only two ETs, the energy harvester is able to efficiently operate

at lower input powers (from approximately -4 dBm to -6 dBm). In addition, the

use of DCRP not only extends the minimum input power, but it also improves

the efficiency. In fact, the efficiency at -3 dBm is increased from approximately

5% to 40%. However, the major benefits are obtained in the particular case

of many ETs. This is mainly due to the fact that the input power is largely

randomized with large energetic bursts, which can result in high efficiency in the

actual harvested power. In this case, the minimum input power, which enables

the conversion of power, is reduced down to approximately -10 dBm. As a final

observation, DCRP equalizes the efficiency curve, thus providing a consistent
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efficiency level as a function of the input power.

7.4.2 Experimental Evaluation

In this section, we validate the benefit of our approach through an experimental

setup consisting of two ETs and one energy harvesting sensor.

Experimental Setup

To perform the experimental validation of a many-to-one wireless power trans-

mission, we separately implement the transmitters and the receiver. On the

transmitters side, we have employed two USRP Software Radio [118] devices

and GNURadio open source software to create configurable duty-cycled signals,

which emulate the operation of the ETs. The USRP devices can be synchronized

in time, frequency and phase. In this experiment, we have configured the USRPs

to generate sine signals at 915 MHz with random phase at each on duration of the

duty cycle, as defined by the DCRP scheme. The period time for the experiment

has been set to T = 42 ms, with a duty cycle of D = 0.5. To compare our ap-

proach, we have also configured the USRPs to implement an orthogonal method.

Accordingly, these transmit FDMA signals in the 915 MHz ISM band. FDMA

also implements a duty cycle of D = 0.5 (See Fig. 7.4), such that we evaluate the

performance improvement due to the random combination of waves, rather than

the effect of the duty cycle. Provided that the system performance is evaluated as

a function of the input power at the receiver end, distributed beamforming is not

implemented. The gain that these approaches offer is based on the constructive

combination of RF waves over the RF medium. Hence, for a given received power,

distributed beamforming shows no difference with respect to a single, constant

transmission. The performance improvement of these approaches are found at

the transmitter end, where an improvement of m, with m being the number of

ETs can be achieved [94]. The output of USRPs is fed into 3 Watt MPA-0850

RF power amplifiers from RF Bay [62], which amplify the USRP signals and gen-

erate high power RF waves in a range that can be harvested by P1100 Powercast

harvester (i.e., in the order of -10 dBm to 0 dBm at the receiver location).

At the receiver end, a P1100 Powercast energy harvester is connected to a

receiving antenna. This is located at a close distance of the ETs and the re-
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Figure 7.8: Experimental setup block diagram.

ceived power is adjusted by controlling the transmitted power at the ETs. At

the output of the energy harvester, we have connected a 100 mF super-capacitor.

To evaluate the performance of each energy multiplexing method for wireless RF

power transmission, we have calculated the charging time that it takes to charge

the capacitor from 0 V to 3.2 V. The charging time of the capacitor is a valid

metric to evaluate the performance of the energy harvester, since it is inversely

proportional to the output power of the energy harvester [125].

The block diagram of this experimental setup is shown in Fig. 7.8. As de-

picted, two ETs transmit RF waves, which combine over the wireless medium

and arrive at the receiver end.

Experimental Results

We have first evaluated the input power at the energy harvesting sensor. An

example of the received signal can be observed in Fig. 7.9. The figure shows the

whole experiment timeline (top plot) and magnified view of input signal (second

plot from top) in W1/2 units. As predicted, the DCRP generates a random

amplitude signal at the input of the energy harvester. In addition, the figure also

shows the calculation of the input power, and the output power for the P1110

Powercast energy harvester. The positive impact of random amplitudes can be

observed in the figure, since high power bursts are able to deliver output power

and the other bursts are not efficiently converted.

As a second measurement, we compare in Fig. 7.10 the received signal at the

energy harvester when using FDMA and DCRP, both transmitting with a duty

cycle D = 0.5. The obtained results are compared to the ideal results, derived in

Sec. II. The efficiency is estimated through an on-line mapping of the efficiency
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Figure 7.10: Comparison of the extrapolated efficiency curve as a function of the
input power for the experimental evaluation of the DCRP scheme with two ETs
to the orthogonal FDMA scheme.

curve of Powercast P1110 energy havester. As it is shown, the DCRP model

coincides with the obtained results, whereas we observe that FDMA with two ETs

achieve the same performance than using one ET, which transmits energy using

a single frequency. This is because FDMA avoids the generation of interferences.

Notice that there is a down-shift of -3 dBm for both cases, which is given by the

use of a duty-cycled signal of D = 50%.

Finally, we calculate the capacitor charging time. In Fig. 7.11, we show the

charging voltage curve as a function of the time for DCRP and FDMA for the

input RF powers of PR = {−1, −5} dBm. As it is observed, DCRP is able to

charge the capacitor at a faster speed than FDMA. In addition, the time difference

at -5 dBm is very significant. This is consistent with Fig. 7.7, since DCRP is able

to improve the efficiency of the energy harvester efficiency at lower input powers.

In order to better compare these results, Fig. 7.12 shows the charging times

as a function of the input power of the two energy multiplexing methods for

wireless RF power transmission. We observe that DCRP is able to charge the

energy storage capacitor at the sensor node at a faster speed. In fact, DCRP

reduces the charging time by 23%. Alternatively, we observe that the energy

harvester requires approximately from 5 to 6 dB less input RF power to charge the

capacitor considering equal charging times, when comparing the DCRPmethod to

FDMA. This reduction in the required input power is very important and results

in increasing the power transmission distance. For example, an improvement of

6 dB in the path-loss behavior of a wireless power transmission equals to double
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the transmission distance in free-space conditions.

7.5 Network-level Evaluation

In this section, we evaluate the scenarios of many (ETs)-to-many (sensors) power

transmission, and provide results for larger network sizes. The aim of this study is

to model the effective energy that can be harvested at any possible location within

the networking area. The many-to-many level simulation utilizes the experimen-

tal results which have been obtained in the previous sections and extrapolates

the behavior in a networking area. We describe next the simulation setup and
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Figure 7.13: Deployment of ETs in the simulation framework. ETs are deployed
over a larger area than the networking area of the sensors to avoid edge effects
in the simulation.

present the simulation results.

7.5.1 Simulation Setup

We model the spatial distribution of the ETs according to a homogeneous Poisson

point process in the two-dimensional plane. The probability ofm ETs being inside

an area A (not necessarily connected) is given by [75]:

Pr {m in A} =
(λTA)

m

m!
eλTA, m ≥ 0 (7.23)

where λT is the spatial density of ETs, in ETs per unit area. We have deployed

the ETs over an area of 400x400 m2, centered in (0, 0). Recall that the average

distance between neighboring ETs can be approximated by
√
1/λT .

We model the deployment area of sensor nodes as a 100x100 m2 square area

centered in (0, 0). In this area, 400 uniformly distributed “sensors” or probe

points are deployed. These probe points are entitled to model the energy that

would be effectively harvested at any location of the networking area if a sensor

is deployed there. Accordingly, the input power is sensed at each probe point and

the input-to-output power conversion efficiency is computed.
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The deployment area has been intentionally considered to be smaller than the

area of deployment of the ETs. This avoids possible edge effects at the borders

of the area under interest. We repeat each simulation 100 times. Fig. 7.13 shows

an example of a deployment of ETs over the simulated area, for the particular

case of λT = .003 ETs/m2. We have referred the portion of area where the probe

points, or “sensors”, are deployed as networking area.

The ETs implement three energy multiplexing schemes for wireless RF power

transmission. First, an ideal orthogonal method is considered that mitigates

interferences between RF waves and guarantees perfect channel allocations. Ac-

cordingly, it ensures that the overall received power at the node locations equals to

the sum of power of the considered ETs. Then, an ideal distributed beamforming

approach is implemented. This guarantees that RF waves constructively combine

at all node locations, maximizing the power transmission. This approach requires

MISO set-ups (i.e., ETs equipped with multiple antennas and sensors with single

antennas) with a minimum of k antennas at each ET, where k being the number

of nodes, and node to ET data CSI feedback. Given that this optimized ap-

proach requires large hardware complexity and node to ET communication, we

will consider this approach as an upper bound for our considered multple access

method for wireless RF power transmission. Finally, DCRP is implemented. The

three considered approaches assume a duty cycle of D = 0.5. The commercial

site-general [2] channel model has been considered.

The simulation results are evaluated in terms of the percentage of powered

area. This metric evaluates the extent of deployment area, wherein a sensor node

is able to efficiently harvest at least the minimum power required for its operation.

In this work, the minimum required efficiently harvested power has been set to

PH0 = 10 µW, which is a reasonable target for low-power devices [121, 131]. In

order to calculate the powered area, we approximate it to the number of probe

points which are powered, since it is well known that if the number of probe points

is large, and these are uniformly distributed in an area A, the probability that

a probe point receives enough power converges to the following relation between

powered area AP , and the overall area A [143]:

Pr {PHj > PH0} →
AP

A
, (7.24)
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Figure 7.14: Network-level simulation. Input power and achieved efficiency at
the probe point locations.
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where PHj refers to the power that a sensor node harvests at an arbitrary location.

7.5.2 Simulation Results

We first show in Fig. 7.14 a simulation example. This example shows the available

input power at the 400 uniformly located probe points (left). We observe that

the input power is distributed in a wide range, which covers from -5 dBm to more

than 5 dBm. In addition, it also shows the efficiency of the energy harvested at a

given location. As it is observed, the efficiency is largely correlated to the input

power, being maximum in the neighboring of the ETs.

Then, we show in Fig. 7.15 the cdf of the input power at the probe points, for
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Figure 7.16: Simulated efficiency curve in a many-to-many topology as a function
of the input power for the DCRP. It approaches the many ETs and single ET
curves at low and high input powers, respectively.

different channel models, namely free-space, Rayleigh channel and log-distance

path loss model with σ = 9 dB, which is a reasonable value for indoor RF prop-

agation at the 915 MHz band [117]. To obtain these results, we have assumed a

density of λT = .005 ET/m2 (i.e., an average distance between ETs of approxi-

mately 14 m), and that each ET is transmitting a fixed power of PT = 3 W and as

it is observed, the input power present a very large deviation, as predicted from

the α-stable distribution model [143]. This large variation motivates the design

of the DCRP scheme, since the actual received power range in the deployment

area is significantly wide.

We show in Fig. 7.16 the simulated efficiency curve that sensors find in the

network. As observed, the efficiency of the energy harvesting front end approaches

the numerically obtained curve for many ETs at low input powers. This is due to

the fact that low input powers are obtained at probe points which are located at

further distances from the ETs and thus, their received power is the combination

of the action of many ETs. Further, we see that at moderate input powers, the

obtained efficiency is located between the efficiency curves. The reason is that at

moderate distances, the probe points receive power from just a few ETs. Finally,

we observe that the probe points which receive large input powers receive this

power from a single and very close ET. As a result, the efficiency approaches the

one ET case, which at higher input power is slightly better than many ETs case.
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Figure 7.17: Comparison of the powered area as a function of the input power
for the DCRP scheme to a orthogonal power transmission.

In Fig. 17, we show the ratio of area that receives a power larger than the

threshold as a function of the transmitted power. The three considered energy

multiplexing methods have been considered, namely a generic orthogonal method

(referred as orth. methods), DCRP and distributed beamforming methods (re-

ferred as DB methods). As it is observed, orthogonal methods cannot entirely

cover the networking area in our considered set-up. In particular, orthogonal

methods achieve a ratio of approximately 0.8 for a λT = 0.01 m−2 (i.e., an ap-

proximated distance between ETs of 10 m) with an allocated power at the ETs of

PT = 3 W. Distributed beamforming methods show an outstanding performance

in terms of powered ratio, rapidly approaching full coverage. It is observed that

a ratio of powered area of 0.8 is achieved for either values λT = 0.005 m−2 and

PT = 3 W or λT = 0.01 m−2 and PT = 1 W. Accordingly, the major benefit of

distributed beam forming techniques is observed at larger values of λT , since it

is able to constructively combine a larger amount of RF waves. Our proposed

approach shows an intermediate performance, rapidly approaching distributed

beamforming techniques as the density of deployed ETs increases. Accordingly,

DCRP approximately offers the same system performance as orthogonal methods

by requiring just the 50% of the resources employed in orthogonal methods, and

stands as a feasible, cost-effective alternative to distributed beam forming.
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Figure 7.18: Comparison of the powered area as a function of the ET density for
the DCRP scheme to an orthogonal power transmission.

Alternatively, we observe in Fig. 7.18 the ratio of area that receives sufficient

power as a function of the density of ETs. In particular, we see that considering

the DCRP with PT = 1 W offers a similar performance than orthogonal methods

with PT = 3 W. In addition, we observe that the performance of DCRP with

PT = 3 W is lower and upper bounded by distributed beamforming approaches

with transmitted powers PT = 1 W and PT = 3 W, respectively.

To better depict the dependence between the ET density, the transmitted

power and the percentage of powered area, we show in Fig. 7.19 this relation

for the three energy multiplexing approaches for wireless RF power transmission.

As it is observed, the DCRP outperforms orthogonal methods and approaches

the ideal operation of distributed beamforming methods, while requiring relaxed

synchronization between ETs and single transmitting antennas.

Overall, we find that DCRP offers similar performance as CI methods and far

better than classic orthogonal approaches.

DCRP yields significant benefits over orthogonal approaches, since it is pos-

sible to reduce both transmitted power and ET density, while still providing the

same performance. This reduction of transmitted power and ET density is di-

rectly related with the deployment costs of the sensor network, its maintenance

overhead and environmental impact.

137



7. ENERGY MULTIPLEXING FOR MULTI-ET WIRELESS RF POWER

TRANSMISSION

0

0.002

0.004

0.006

0.008

0.01 0
0.5

1
1.5

2
2.5

3

0

0.2

0.4

0.6

0.8

1

 

ET Transmitted Power, P
T
 [W]

Density of ETs [1/m
2
]

 

P
o

w
e

re
d

 A
re

a
 R

a
ti
o

Orth. Methods

Dist. Beamforming

DRAMA

Figure 7.19: Comparison of the powered area as a function of the input power
and ET density.

7.6 Summary and Conclusion

In this chapter, a duty-cycled random-phase energy multiplexing (DCRP) scheme

for wireless RF power transmission is proposed. This scheme optimizes the wire-

less RF power transfer in a many (ETs)-to-many (sensors) transmission, and

enables low-power wireless power transmission in a many-to-one configuration.

The DCRP is compared to orthogonal energy multiplexing schemes for wireless

RF power transmission, namely FDMA, through both real-testbed experiments

and simulations. We demonstrate that, according to our results, the DCRP has

two-fold benefits: first, it can potentially reduce the deployment costs of ETs of

up to 50%, and second, it improves the efficiency of the power conversion at the

node locations. The proposed approach shows 23% increase in the efficiency of

the harvested energy in an experimental setup.
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Chapter 8

Communications over Wireless

RF Power Transmission

8.1 Introduction

Using the RF spectrum for both energy and data transfer may seriously affect

network operations and performance, and require sophisticated hardware and

devices that many systems cannot afford. For instance, transmitting energy and

data on different frequencies [101] would require multiple or broadband access

capabilities, since the frequency gap between energy and data communications

cannot be very small [96]. Alternatively, when both energy and data share a

single band, specialized MAC protocols are required [97]. In both cases, devices

should feature two separate RF front-ends, for decoding the information and

converting RF energy into DC [111]. Therefore, devising methods for energy

provisioning without affecting data communications appears to be the challenge

to tackle [48]. For instance, transmission of both point-to-point energy and data

enables downlink communications from a base station (BS) to a node [82]. This

is also beneficial in terms of hardware costs, since the signal receiver can be

integrated in the energy harvester [149]. For uplink communications full duplex

techniques have been proposed where the BS is able to simultaneously transmit

energy and receive information on the same frequency [72]. However, enabling

communication among network nodes while an ET is transmitting power still

needs to be investigated [144].
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our approach brings towards guaranteeing a successful point-to-point packet

delivery.

The rest of the chapter is so organized. In Section 8.2 we describe the funda-

mentals of our Communications over wireless Energy (CoE) scheme. Section 8.3

presents a communication model for the energy harvester. In Section 8.4 we

experimentally validate the proposed communication model. In Section 8.6 we

describe a physical layer to enable reliable point-to-point communications. The

corresponding link is evaluated in Section 8.7. Finally, Section 8.8 concludes the

chapter.

8.2 Communications over Wireless Energy

This section defines our Communications over wireless Energy (CoE) scheme and

describes the network topology that enables it.

8.2.1 Overview

We consider an RF wireless powered point-to-point link, made up of three com-

ponents: An energy transmitter (ET), a transmitting node, and a receiving node.

The purpose of the ET is to transmit power to the nodes. The nodes implement

CoE to communicate between them.

The key idea of CoE is that of overlapping the simultaneous transmissions

of data and energy in such a way that both transmissions can be successfully

recovered at the receiving node. To do this, the transmitting node superimposes

a low-power RF signal that modulates the envelope of the energy transmission,

basically using the ET as a remote data signal amplifier (RDSA). The energy

transmission is expectedly orders of magnitude larger than the power of the data

transmission. To obviate this imbalance, the receiving node opportunistically

utilizes the nonlinear properties of its energy harvester to intermodulate both

transmissions, extract the data signal and retain the harvested energy.

This approach brings several benefits to the node. First, it reduces system

complexity, as the node can be equipped with only one antenna and a single

RF front-end for both data and energy reception. Second, the action of the

ET as RDSA removes the need for an internal RF amplifier.Third, it enables
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The energy harvester operates as a power processing circuit that converts the

available power received by the antenna into an electrical current, so that an

energy storage unit can be recharged. Unlike signal processing circuits, power

processing circuits maintain the relation between input and output power, de-

termined by a certain efficiency. By assuming a fixed antenna impedance and

a fixed output voltage, we observed that its output current is proportional to

its input power. Therefore: Iout = βV 2

in, where β is a constant that depends

on the electrical properties of the energy harvester (among others, its input-to-

output power conversion efficiency), the input impedance of the circuit and the

impedance matching. The RMS value of the generated voltage at the antenna

Vin is such that Pin = V 2

in/Ra, with Ra being the antenna impedance.

At the receiving node, both energy and data signals are received simultane-

ously. First, the transmitted data signal arrives at the receiving end as:

sd(t) =
√
2Pd [bI(t) cos (2πf0t+ φd)− bQ sin (2πf0t+ φd)] (8.1)

where Pd is power received from the data signal, f0 is the carrier frequency,

and φd is the phase shift of the data at the receiving node. The phase and

quadrature components of the baseband data stream, bI and bQ, are such that

E[B] = E[bI + jbQ] = 0 and E[|B|2] = 1, where E[·] is the statistical expectation.
Then, the transmitted energy, characterized as a large power carrier wave, arrives

at the receiver node as:

se(t) =
√

2Pe cos(2πf0t+ φe), (8.2)

where Pe is the received power from the energy signal and f0 stands for the carrier

frequency. Notice that the carrier frequency of both transmissions are the same.

The energy harvester performs power detection, which is transferred to the

output in form of current. The input power can be calculated as:

x1(t) = |sd(t) + se(t) + z1(t)|2 , (8.3)

where z1(t) is the additive white Gaussian noise (AWGN) generated at the re-

ceiving antenna, with power PN1. By substituting sd and se from equations (8.1)

and (8.2), respectively, neglecting the high-frequency terms (i.e., the terms at
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frequency 2f0), and assuming Pe ≫ Pd, we can approximate Equation (8.3) by:

x1(t) = Pe + 2
√
PdPe ℜ

{
B(t)eφ

}
+ z2(t), (8.4)

where Pe is the data signal received power, B indicates the modulated informa-

tion, φ is the phase shift between the energy and data transmissions, and z2(t) is

the noise at the output of the energy harvester due to the antenna noise, defined

as z2(t) = 2
√
PePN1 ℜ

{
z1e

jφe

}
.

Counter-intuitively, decoding data during the transmission of energy shows

significant benefits, as it performs a coherent reception and because the dual

action of the ET as RDSA amplifies the data signal.

8.3.2 Power-to-current (P-I) gain

The detected signal is converted into small variations of the electrical current

generated by the energy harvester. Even though, this conversion is ideally linear,

it has been experimentally observed that the efficiency of the energy harvester

is input-power dependent [27]. In general, we find that the output current is

characterized by the power to current transconductance g, and it can be written

as:

I0 + x2 = g(Pe + x1(t)), (8.5)

where I0 is the constant component of the output current of the energy harvester

and x2 refers to its small signal fluctuations (Fig. 8.3). To derive the small signal

gain, we approximate this function by its first order Taylor polynomial:

I0 + x2 ≈ g(Pe) +
∂g

∂P
(Pe)x1, (8.6)

where ∂g
∂P

(Pe) is the derivative of g(·) with respect to the input power evaluated

in Pe. As a result, the P-I gain G2 is:

G2 =
∂g

∂P
(Pe). (8.7)

Fig. 8.4 plots the gain G2 (Equation (8.7)) for the Powerharvester P1100 from

Powercast Co. [33].
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Figure 8.4: (a) Characterization of the output current of the Powerharvester
P1100 [33]. (b) Calculation of its small signal gain G2.

To obtain this curve, we have first measured its input power to output current

relation (Fig. 8.4 (a)). The output DC current is modeled by a piece-wise function,

with two distinguishable regions of operation. At input powers < −1dBm the

output current, as a function of the input power (in dBm), can be modeled with

the first order polynomial g1(x). At high input power it can be modeled by a

second order polynomial g2(x):

g1(x) = 2.935x+ 0.2843 [mA/dBm]. (8.8)

g2(x) = 1.912x2 + 0.1058x+ 0.3607 [mA/dBm]. (8.9)

We then calculate G2 as the partial derivative of the obtained piece-wise function

with respect to the input power (Fig. 8.4 (b)). Notice that this must be calculated

in linear units, instead of dBm. We observe that the gain G2 depends on the input

power of the energy signal and it ranges from 200 µA/mW to 600 µA/mW.

8.3.3 Additive noise

As the noise that an energy harvester generates depends on the circuit topology,

devices and design, it is not possible to provide a generic closed-form expression.

As a consequence, the estimation of these values has to be performed either at

circuit design time or by experimentation. Notice that current energy harvesters
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do not target signal processing applications, and therefore, these are not opti-

mized for low-noise. We expect that custom circuit design for CoE applications

will lower the overall noise. According to our experiments (Section 8.4), we have

measured a combined energy harvesting and measurement system noise charac-

terized as AWGN with spectral density of -80 dBmA/Hz.

We refer as Z3 to the overall induced noise of the system, this is given by:

Z3 = ZEH +G2Z2, (8.10)

where ZEH is the internal noise, and G2Z2 represents the contribution of the

antenna noise after the P-I conversion stage.

8.3.4 Output filter

As the main purpose of energy harvesters is to regulate the output voltage, their

circuits contain a relatively large output equivalent capacitance to provide a stable

output. Unfortunately, this parallel capacitance at the output of the energy

harvester limits the bandwidth of the output current, hence limiting the maximum

achievable bit rate. To model this last output stage, we find that the effective

output current of an energy harvester is low-pass filtered by:

H(s) =
Z0

Z0 + Zsense

, (8.11)

with Z0 being the output impedance and Zsense is the associated input impedance

to the current sensing and energy storage unit. According to our experiments,

the output impedance of a Powerharvester P1100 from Powercast Co. [33] is

capacitive with capacitance CL = 5.5 µF. Then, we have utilized a resistor as

Zsense to sense variations in the output current, which has ranged between 1 Ω

and 100 Ω.

In this case, the output filter becomes a first order low-pass filter, given by:

H(s) =
τ

s+ τ
, (8.12)

where τ = RsenseCL. In our experiments, the cut-off frequency of the output

ranges from 11.4 kHz (using Rsense = 1 Ω) to 1.14 MHz (when Rsense = 100 Ω).
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also implemented a BPSK modulation at a rate of 1 kbps for data transmission.

The power of the data signal is in the range from -68 dBm to -48 dBm.

Receiver set-up. We base our signal and energy receiver on off-the-shelf energy

harvester Powerharvester P1100 from Powercast [33]. This circuit offers a rea-

sonable performance in the desired frequency band, with efficiency rates above

50% for input powers ranging from -5 dBm to 20 dBm. The output current as a

function of the input power is shown in Fig. 8.4 (a).

The output of the energy harvester has been connected to a super-capacitor

operating as energy storage and management unit of the overall circuit. This unit

is in charge of providing continuous operation over time, and its design presents

several trade-offs [23]. Given that we are not constrained by the size of the

circuits, in this work we have employed a capacity of 220 mF to ensure a steady

output voltage during data reception.

A series resistor has been employed to sense the output current of the energy

harvester. These resistors provide outstanding current sensing performance due

to their linear properties. Given that the sensing gain is related to the resistance

value, larger values provide a larger gain. However, resistors increase power

losses and increase noise. Through experimentation, we have observed that values

between 1 Ω to 100 Ω offer a reasonable tradeoff between sensing gain and power

losses. In Fig. 8.6 we show the power losses associated with using different resistor

at different input power levels, and compare it to the harvested power considering

a Powerharvester P1100 [33]. In addition, we show the ideal operation of an

energy harvester (i.e., output power equaling input power, dashed line).

Signal decoding. We have implemented a software-defined, computer based signal

receiver. In particular, we have implemented a 16 bit analog-to-digital converter

(ADC) with a sampling frequency of 10 kHz. The combination of the sens-

ing resistor with the ADC provides a signal gain of G3 = 1310 mV/mA units.

We expect baseband signal decoders for sensors used for low-power applications

to be of much lower performance and probably implementing comparator-based

schemes. Once digitized, a matched filter is implemented and the optimum sam-

pling time is computed. Finally, the decision threshold is computed to perform

signal detection, so that the bit error rate (BER) is minimized. Accordingly, this

last communication block converts the sensed voltages into a binary stream.
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Figure 8.6: Power losses with different resistors vs. ideal operations.

8.4.2 Evaluation

To evaluate the validity and performance of this approach, we first perform proof-

of-concept measurements. Then, we validate the communication model by ob-

serving the type of RF-to-baseband conversion and its gain. Finally, we evaluate

the receiver performance as a function of the bit error rate (BER), by assuming

a null phase shift between energy and data transmissions.

Proof of concept. We first validate the key idea that an energy harvester has built-

in properties as a CoE signal receiver. Specifically, we measure the voltage drop

at the current sensing resistor to detect the transmission of binary data. We set

up a transmission of energy with a power of Pe = 2 dBm at a fixed frequency of

915 MHz. Overlapped to this RF wave, we transmit a periodic binary sequence,

using a BPSK modulation with power Pd = −49 dBm and bit rate of 130 bps at

the same center frequency of 915 MHz. This periodic binary sequence emulates

actual data transmission.

Fig. 8.7 depicts the sensed voltage drop at the resistor.

The binary sequence can be recovered, showing two distinguishable voltage

levels centered at 0 mV and with a voltage difference of approximately 8 mV

(i.e., approximately 4 mV signal amplitude). This signal is compared to the

expected sensed voltage according to the communication model (Section 8.4.2).
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Figure 8.7: Recovered signal from an energy harvester used as data receiver.

In addition, we observe a certain ripple in the voltage levels of approximately

2 mV, which is a combination of the antenna, energy harvester and sensing noise.

Model validation. In Fig. 8.8 we show the sensed peak-to-peak voltage at the

input of the signal decoding unit.
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Figure 8.8: Peak-to-peak voltage difference at the input of the signal decoder as
a function of the input power of both data and energy transmissions.

We observe the operation of the ET as RDSA, since the sensed voltage is

effectively modulated by the received input power. In Fig. 8.9 we compare the

sensed peak-to-peak voltage to the expected value according to our model. Our

observation shows that the model is effective in predicting the sensed value with

great accuracy in case for power Pe = 1 dBm. We also observe that as this power
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grows, there appears a noticeable mismatch among the values. This is due to

the fact that the small-signal approximation no longer applies for large values.

Nonetheless, the value provided by the model is still within the same order of

magnitude, thus still being useful for link budget calculations.
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Figure 8.9: Model validation for the peak-to-peak voltage difference at the input
of the signal decoder.

Calculation of the BER. We next evaluate the performance of the receiver for CoE.

In particular, we measure the bit error rate (BER) observed when transmitting

a raw binary sequence encoded in a BPSK modulation at a bit rate of 1 kbps.

Given that a BER < 10−2 can be considered enough in the context of device-

to-device communications (when considering packet sizes of around 100 bits and

implementing simple repetition coding [84]), we consider a BER = 10−2 as our

target. Additionally, we will refer as receiver sensitivity (in power units) as the

minimum power that is required in order to obtain the targeted BER.

Fig. 8.10 shows the BER as a function of the power of the data transmission,

for different values of power in the overlapped transmission of data and energy.

In our experimental setup, we have obtained BERs confined around 10−3. This

has two main reasons: 1) The appearance of flicker noise in our current sens-

ing platform, and 2) the lack of implemented delay-locked loop components to

overcome temporal drifts. Implementing a signal amplification stage before the

ADC unit can significantly improve the signal quality at the cost of higher power

consumption. As shown by the figure, the intermodulation between energy and

152



8. COMMUNICATIONS OVER WIRELESS RF POWER TRANSMISSION

data plays a key role in the performance of the device. Particularly, we observe

that sensitivities of -53 dBm are required if the device is harvesting a power of

Pe = −1 dBm, whereas this is reduced down to -65 dBm if the harvested power

is increased just by 2 dB. The achieved performance using off-the-shelf hardware

proves the feasibility of this approach and motivates further research in joint

energy-data hardware design.
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Figure 8.10: BER as a function of the input power of the data signal.

8.5 All-digital Design of a CoE Receiver

High-efficient energy harvesters integrate switch-mode DC-DC converters to op-

timize the operation of the rectifying stage [56, 34]. Their operation is based

on harvesting an amount of energy and temporarily storing it in a low-leakage

small capacitor. Once enough energy has been harvested, this is transferred in

a form of a high amplitude, short time-scale energy pulse to the energy storage

unit. Unfortunately, the non-linear packetization of the energy modifies the re-

ceived waveform, hence making it difficult to integrate classical approaches for

data reception in the energy harvester, such as the one presented in [149].

Here, we present an all-digital receiver architecture for low-bit-rate, ultra-

low-power applications, where the digital signal used to control the switch-mode

operation of the energy harvester is opportunistically employed to allow signal
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reception through a digital counter. The key idea here is to leverage the period

of the control signal to estimate the received information bit, by counting the

number of times the current spikes are injected by the circuit.

8.5.1 Received signal

At the receiver end, an RF wave with incident average power PH is sensed at the

antenna. The average power is related to the required power to transmit a logical

‘1’ and ‘0’ as P1 and P0, respectively, by:

PH =
1

2
(P1 + P0). (8.13)

As a measure to relate the amount of energy that is being devoted to effectively

modulate the information, we employ the modulation depth index, defined as:

h =
P1 − P0

P1 + P0

, (8.14)

such that if h = 1 the transmission of a logical ‘0’ is done through silence, whereas

for 0 < h < 1, the allocated power in P0 accomplishes P1 > P0 > 0.

8.5.2 All-digital design

The considered energy harvester integrates two separated and generic stages for

energy optimization [56]. First, a rectifying circuit is employed that can convert

with very high efficiency the harvested power. Then, a DC-DC boost converter

operating in discontinuous conduction mode (DCM) is considered to transfer

the accumulated energy in a temporal capacitor towards the energy storage unit

(i.e., a super-capacitor or battery). The control unit handles the operation of

this converter. The configuration of the considered energy harvester topology is

described in Fig. 8.11.

The aim of this dual-stage design is to optimize the transfer of energy by ac-

curately matching the input impedance of the rectifying stage, which depends on

its output load [100]. In particular, when connecting a rectifying stage for energy

harvesting applications to an energy buffer, it shows a time-variable conversion

efficiency, showing poor performance when the output capacitor voltage is either
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Figure 8.12: Block diagram of the integrated, all-digital receiver for SWIPT. It
is based on counting the number of activations of the energy harvester control
signal.

constant efficiency, η. Hence:

∆E = ηPiT (8.16)

where Pi stands for the harvested power at a given time. By combining (8.15)

and (8.16), we find that the period of the sawtooth depends on the input power

as:

T =
1

2ηPi

Ccap

(
V 2

high − V 2

low

)
. (8.17)

We find that there exist 3 system parameters that can be tuned to optimize the

operation of the energy harvester for both data and energy purposes, which are

the selection of Vhigh and Vlow, and the temporal capacitor Ccap. On the one hand,

large values of Ccap or Vhigh − Vlow will increase the period time, hence reducing

the eventual data-rate. On the contrary, reducing these values will increase the

switching times and reduce the ∆E, hence potentially making the process less

energy efficient.

The architecture of the all-digital receiver is shown in Fig. 8.12. It is com-

posed of three separate units, namely a counter, a threshold comparator and a

synchronization unit. The all-digital receiver leverages the control signal of the

energy harvester that activates the DC-DC boost converter stage to estimate the

power of the given symbol. To do this, the receiver simply counts the number of

times that the control signal, Vcontr, has been activated during the reception of a

given bit, Tbit. The timing is provided by the synchronization unit through the

Synch signal. Afterwards, the number of counts, s[n], is compared to a threshold
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Figure 8.13: Internal operation waveforms of the all-digital receiver.

that decides whether the received symbol is a one or a zero. This last signal is

referred as b̂[n]. The synchronization unit is rendered key in the system func-

tionality and it aims to determine the optimal sampling point. For this, similar

digital-based approaches as in [91] may be implemented. However, this has been

considered ideal in this work.

Fig. 8.13 describes the logical operation of the all-digital receiver. In the

figure, we show the received signal at the antenna Vant. This signal is harvested

through the rectifying stage of the energy harvester and its power is transferred

to the temporal capacitor. The control unit of the energy harvester activates the

DC-DC boost converter through Vcontr, which rapidly discharges the temporal

capacitor and showing a saw-tooth signal in Vcap. This control signal Vcontr is also

used to estimate the power of the symbol in the all-digital receiver. In particular,

the output of the counter unit, s[n] shows the number of times that the control

signal has been activated during a Tbit time. According to the depicted example,

during the reception of a symbol ‘0’, Vcontr has been activated 3 times, whereas

it has been activated 6 times to represent the symbol ‘1’.

Provided that the period of the control signal is independent of Tbit, the num-

ber of times that the control signal becomes active during Tbit is variable, even in

a noise-free environment. In order to successfully receive information, we must

guarantee that the number of control pulses during the reception of a ‘0’, in the

worst case, needs to be lower than the number of pulses during the reception of a

‘1’ in the worst case. As such, Tbit is constrained such that the following condition
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Figure 8.15: Input power dependence of the period of the control signal. Com-
parison between predicted model and actual operation.

storage. As it is shown, the variation of the input power effectively modulates the

period of the generated spikes at the output current, showing a period of 7.7 ms

and 3.4 ms for P0 and P1, respectively.

We then show in Fig. 8.15 the relation between the input power at the energy

harvester and the period of the control signal (and, hence, the period of the

current spikes). As it is shown, the predicted behavior of this period in (8.17) is

consistent with the obtained results, showing that, in our experimental test-bed,

the period can be approximated by: T [ms] ≈ 10/P [mW]. The observed mismatch

between curves is due to the dependence of the efficiency with the input power,

as reported in [27].

Rate-Energy Trade-off

Given that the maximum allowed transmitting power is constrained by external

regulation, a trade-off between achievable rate and transferred energy appears.

That is, the transmission of the logical ‘1’ is set to the maximum power, whereas

the modulation depth will determine the allocated power of the logical ‘0’. Low

values of modulation depth maximizes the energy transfer, since the average

power PH is larger. However, as the distance between symbols is reduced, the

quantization errors of counting periods during Tbit requires longer Tbit times to
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detect a significant difference at the output of the digital counter, s[n]. Notice

that since we are considering an off-the-shelf energy harvester, the remainder

parameters (i.e., Vhigh, Vlow and Ccap) are fixed by the initial application and

cannot be further optimized.

We have evaluated the maximum bit-rate that can be achieved by following

this approach. For this, we have calculated the minimum Tbit that be utilized at

given input powers P1 and P0, such that it is certain that the number of con-

trol actions detected during this the reception of a logical ‘0’ is smaller than the

number of actions of a logical ‘1’. To bound this bit rate, we have considered per-

fect bit-level synchronization and a noise-free environment, such that the derived

bit-rate is constrained by the internal limitations of our approach.

We show in Fig. ?? the maximum achievable bit-rate as a function of the

modulation depth index, for different values of P1. These set of values aim to

evaluate the maximum bit rate at a different distance between transmitter and

receiver. As it can be observed, higher values of the index between, achieve higher

bit-rates, reaching up to 422 bps with an index h = 1 and P1 = 10 mW, that is

the total harvested power equals to 5 mW. The effect of the period quantization

shows a noticeable compression of the maximum achievable bitrate. Alternatively,

we show that as this ratio increases, the maximum bit-rate rapidly drops. In

particular, we observe that the bit-rate significantly drops for all values of input

powers for modulation depth indices below h < 0.1.

8.6 Physical Layer Design

In this section, we devise a physical layer for CoE, which aims to guarantee that

the transmitted information can be successfully decoded at the destination node.

The main aim of this layer is to handle the phase shift misalignment between the

received transmissions of data and energy through time-multiplexing techniques.

8.6.1 Time-multiplexing coherent reception

The properties as 1D homodyne receiver of an energy harvester enables coherent

reception using power-saving, and even power generating, components. However,

given that the phase shift between data and energy transmissions cannot be
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controlled, there appears a distinct possibility that the modulated transmission

cannot be received.

Implementing simple retransmissions of data packets can improve the even-

tual packet error rate (PER). We show in Fig. 8.16 the cumulative distribution

function (CDF) of the packet error rate, when a data packet is being retransmit-

ted assuming two different retransmission policies, namely reassigning a random

phase shift and retransmitting the packet with a phase shift of π/2.
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Figure 8.16: CDF of the PER for simple retransmissions of data packets.

Although this approach can achieve relatively low PER values, this solution

renders inefficient in terms of energy consumption. For this, we implement a

time-multiplexed coherent reception. To implement this concept, each symbol

transmission is divided into two time epochs, namely eI and eQ. Both time epochs

contain the same symbol, but with a phase shift of π/2 rad. In phasor notation,

the transmitted symbol during the time epochs can be written as sI = b = bI+jbQ

and sQ = −jb = bQ − jbI . This approach lets the receiver to project the received

symbol into two orthogonal axis. By assuming a generic phase shift between data

and energy, φ, the received symbol at each epoch is given by:

ŝI = ℜ
{
sIe

φ
}
= bI cos(φ)− bQ sin(φ) (8.19)

ŝQ = ℜ
{
sQe

φ
}
= bQ cos(φ) + bI sin(φ). (8.20)

Then, by estimating this phase misalignment, the transmitted symbol can be
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successfully recovered. For this, the received symbol must be multiplied by the

rotation matrix, b̂ = Rŝ, the rotation matrix is defined as:

R =

[
cos(φ̂)− sin(φ̂)

sin(φ̂) cos(φ̂)

]

(8.21)

where φ̂ refers to the estimated phase shift. An error in the phase estimation

ǫ = φ̂− φ will eventually impact upon the received symbol by:

b̂ =

[
bI cos(ǫ)− bQ sin(ǫ)

bQ cos(ǫ) + bI sin(ǫ)

]

(8.22)

We next show the separated implementation of the physical layer at both the

transmitting and receiving ends.

8.6.2 Transmitter

Fig. 8.17 illustrates the block diagram of the operation of the transmitter node

implementing time-multiplexed coherent transmission.

1, 1, 0, 1, · · · 1,−j, · · · 1, 0,−j, 0, · · · hT 1, j,−j, 1, · · ·

hTBPSK
1, 0,−1, 0, · · ·1,−1, · · ·1, 0, · · · 1, j,−1,−j, · · ·

Complex DomainBinary Domain RF Domain

a)

b)

Figure 8.17: PHY-Layer of the transmitter. (a) BPSK modulation and (b) QPSK
modulation.

The transmitter encodes the bit stream d[n] at a rate of r bits per second into

either a BPSK (Fig. 8.17 (a)) or a QPSK (Fig. 8.17 (b)) signal at a rate of r or

r/2 symbols per second, respectively. Then, the signal is interpolated by two,
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such that samples are placed between zeros. Afterwards, the signal is convoluted

with the interpolator filter hT , defined as:

hT =

[
1

−j

]

. (8.23)

Finally, the signal is IQ modulated and transferred to the antenna. By employing

this physical layer, we time multiplex the two dimensions of a coherence transmis-

sion (i.e., the I-Q components). Using one or the other modulation will depend

on the receiving capabilities of the destination node.

8.6.3 Receiver

A block diagram of the operations of the receiver node is shown in Fig. 8.18.

S

P
R

IQ
Dem

QPSK−1

d̂[n]

r baud
r

2
baud r bps

Figure 8.18: PHY-Layer of the receiver for both BPSK and QPSK modulations
(QPSK case).

The received signal first passes through a 1D homodyne demodulator, rep-

resented as the IQ dem block.. This unit represents the action of the energy

harvester as a signal receiver, which is able to only collect the projection of the

data signal over the phase of the energy signal). Provided that the Q component

is transmitted through time-multiplexing, the I component is passed through a 1-

input-2-output serial-parallel to emulate the reception of both components. This

signal is then multiplied by the aforementioned matrix R which is used to correct

the phase shift between the energy and data signals.

8.6.4 Packet framing and data-energy phase-shift estima-

tion

A physical layer header is considered in the transmission of each data packet.

This header must include a known binary sequence used to perform the estima-
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tion of the channel state information (CSI) at the receiver (i.e., the matrix R).

In particular, the data-energy phase shift is estimated by calculating the scalar

product between the known sequence and the received signal.

8.7 Physical Layer Evaluation

We emulate the proposed physical layer for data and energy phase misalignment

mitigation using MATLAB software and evaluate its performance. For this, we

first evaluate the BER as a function of the ratio between the energy per bit and

the noise level, Eb/N0. This is a standard metric that allows us to better compare

the performance of our approach against conventional receivers.

To derive the BER calculations, we evaluate the model, i.e., equations from (8.19)

to (8.22) with modulations BPSK and QPSK, considering both comparator or

ADC based receivers. To derive generic results, we have considered generic

AWGN antenna noise (the internal noise of the receiver has not been consid-

ered).

8.7.1 Comparator-based receiver

Given that simple communication schemes based on energy detection can only

recover non-coherent amplitude shift keying (ASK) modulations, we compare in

Fig. 8.19 the BER as a function of the Eb/N0 with a preamble of 4, 8 and 16

bits and compare the obtained results to the BER of theoretical non-coherent

ASK [74]. In addition, we also show the obtained BER if the proposed physical

layer is not implemented and the theoretical BER for coherent ASK [74].

It is first observed that CoE requires a physical layer to operate well. Then,

we find that CoE outperforms in terms of BER non-coherent detection for values

of Eb/N0 below 10.5 dB. In addition, we find that CoE improves the sensitivity of

our system (fixing a threshold of BER < 10−2) by 0.6 dB. Finally, we observe that

the obtained BER is lower bounded by the theoretical coherent ASK reception.

8.7.2 ADC-based receiver

Analog-to-digital converters can offer higher accuracy and performance during the

signal detection process at the cost of higher power consumption. By using this
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Figure 8.19: Comparison of the obtained BER between a comparator-based re-
ceiver for CoE and classical communication schemes.

approach, we can leverage signal processing techniques and to use CSI estimation

techniques to correct the phase shift between the data and the energy signal. We

find that on the one hand, we can transmit information using QPSK modulations

(i.e., we can double the achievable throughput of a sensor node), as well as to

approach the theoretical limit in BER as a function of the Eb/N0 ratio.

We show in Fig. 8.20 the obtained BER as a function of the Eb/N0 ratio for

BPSK and QPSK modulations. In the figure, we compare the performance as a

function of the number of quantization bits employed in the ADC. In addition,

we show the theoretical bound for BPSK and QPSK, as well as the coherent ASK

bound in the BER.

We observe that the BPSK modulation is more robust to a low number of

quantization bits than QPSK. We also note that this curve approaches the the-

oretical bound for coherent ASK when the number of quantization bits becomes

sufficiently large. That is, there is a loss of 3 dB compared to ideal BPSK due to

the fact that each symbol is transmitted twice using the time-multiplexed I and

Q components. However, given that this approach enables low-power coherent

detection through the energy detection mechanism of an energy harvester, this

performance is still remarkable and better than non-coherent energy detection

mechanisms.

Alternatively, we see that QPSK shows less resilience to a low number quanti-

zation bits. Nonetheless, we observe that the set of QPSK curves approaches the

theoretical bound for BPSK and QPSK when the number of quantization bits
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Figure 8.20: Comparison of the obtained BER between a comparator-based re-
ceiver for CoE and classical communication schemes.

becomes sufficiently large. That is, the proposed physical layer overcomes the

phase misalignment between data and energy transmissions, and permits a near

optimal operation if an ADC-based CoE receiver is implemented.

8.8 Summary and Conclusion

This chapter introduces Communications over wireless Energy (CoE) as a method

to enable simultaneous energy and data transfer for the wireless networked sys-

tems such as Internet of Things. We show that transmission of in-time, in-band

data and energy permits uninterrupted transmission of energy, as well as a re-

duction of system design redundancy. To accomplish the successful reception of

data, energy transmitters (ETs) have shown a key role to enhance the signal qual-

ity at the receiver, which decodes the information through its energy harvester.

To validate this approach, we have modeled and implemented a proof-of-concept

receiver, which has been validated through extensive experimentation. A phys-

ical layer is proposed to mitigate the energy and data phase misalignment. We

provided quantitative results to demonstrate the viability of our joint energy and
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data transfer approach, offering sensitivity below -60 dBm with off-the-shelf en-

ergy harvesters. Our results open the door to the design of future joint energy

and data RF harvesters.
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Chapter 9

Conclusions and Future Work

Energy Harvesting has been considered as the key-enabling-technology of the In-

ternet of Things and promises to change the way the considered devices make

use of the energy. Through this technique, the considered sensors have a time-

unlimited access to a scarce source of energy, which relaxes the need for large

energy storage units and manual re-charging. Unfortunately, the available en-

ergy is not controllable, and often not even predictable, hence showing significant

variations in the expected harvested energy in terms of both space and time. In

this sense, spatial energy shadowing causes that certain areas of the network may

render disconnected from normal operation, whereas temporal fadings may tem-

porarily inhibit sensing operations, temporarily interrupt the network operation

or to cause excessive traffic delays.

This thesis has studied the access of energy at the sensors and has considered

dual approach to guarantee a successful network operation. First, the impact

of energy harvesting has been studied at both sensor node and network levels.

This has permitted the understanding of the dynamics of the entire system and

oriented the design of future networks by providing guidelines that help reducing

the temporarily interruption of the nodes and the eventual network. The derived

knowledge of this first part has allowed the research on the second part. Here,

it has been studied how to generate controllable, synthetic energy fields with the

help of Energy Transmitters (ETs). This has allowed us to guarantee the deliver

of wireless power to all those sensor nodes that may render inactive due to the

lack of alternative sources in its close environment.

As a first step towards analyzing the performance of the IoT powered by en-
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ergy harvesting, chapter 3 has introduced the basic principles and definitions.

Accordingly, a general-purpose energy-source-agnostic definition of the ambient

energy by defining the energy field, and it has provided an implementation-

independent system model, through the energy path function. This has enabled a

generic framework to model arbitrary sources of energy and to characterize the ac-

cess that sensors do with it. As the main outcome, a Markov-based model defined

with negative-energy packets has been proposed that inverts the energy queue to

provide a one-to-one mapping of the queue with communication queues. This

has provided a high level of duality between both worlds. To evaluate the system

performance Energy-erlang, a statistical unit for energy harvesting resources has

been presented.

The derived models have been considered in chapter 4 to study the bounds

for throughput capacity of energy-harvesting-enabled wireless sensor networks.

These bounds set an important guideline for feasibility and deployability dur-

ing the design process of a network powered by energy harvesting. It has been

shown that such bound can be defined by Θ̃
(
f
(
n−α/2

)
n(α−1/2)

)
, where n refer

to the number of nodes and f is the energy path function. It has been shown

that such expression coincides with the bounds in power constrained networks

when the energy conversion is ideal. Non-ideal factors during the energy ac-

quisition and buffering can alter the scalability of such networks, making them

less resilient to node failure (the throughput capacity scales as Θ̃
(
n(2α−1)/2

)
if

employing battery-less sensors) or even non-scalable (it scales as Θ̃(1) if sensors

are overdimensioned). This chapter has overviewed the main factors which affect

the proper scalability of these networks and motivates a joint network deploy-

ment and sensor co-design in order to guarantee a successful operation of energy

harvesting powered wireless sensor networks.

The scalability analysis has proven that increasing the number of nodes help

improving the performance of wireless communications when nodes are powered

by ambient energy sources. To derive this conclusion, the harvested energy has

been considered ideal, showing a flat behavior in both time and space domains.

Chapter 5 has explored the spatio-temporal character of the energy harvesting

sources, and its impact on the sensor node performance. To do this, the negative-

energy queue model has been implemented and the system performance has been

evaluated as a function of the defined Energy-Erlang unit. On the one hand,
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temporal variations and the compression of energy has shown a trade-off between

eitherincreasing the capacity of the energy storage or implementing multi-source

and self-tunable energy harvesters. On the other hand, the correlation of the

energy state, as a function of the spatial correlation among nodes has shown

design trade-offs that will affect the upper layers in the network design.

Overall, energy harvesting is posed as a feasible key enabling technology. The

first part of this thesis has described this process and provided energy-source-

agnostic guidelines for the design of both sensors and networks. Here, the in-

terrelation between the different system design layers have been shown. Among

others, it is shown that optimal routing in non-ideal sensor nodes has fixed dis-

tance between hops, regardless of the considered deployed node density. As such,

joint design of the sensor nodes and the network protocol stack has shown manda-

tory to optimize the end network performance.

In these lines, improving the harested energy rates by combining multiple

sources or adapting the energy harvester circuit has shown a large potential. This

thesis has overviewed their benefits and presented a first order model to capture

the essence of generic multi-source and self-tunable energy harvesters. Develop-

ing accurate models for these energy harvesting platforms, as well as considering

these novel models in the analysis will have a realistic impact and determine the

joint design of the sensor nodes and the deployed network. To further improve

the energy harvesting rates, we advocate for developing algorithms to track the

spectral power density in self-tunable energy harvesting. In this context, opti-

mizing the sensing time, estimatint the energy burst length or developing energy

models to optimize the frequency band switching are some of the research topics

that need to be addressed. For this, cognitive-radio inspired approaches can be

implemented.

The second alternative to cope with spatial unavailability of energy is covered

in the latter part of this thesis. Wireless RF power transmission has shown its po-

tential as a feasible, energy efficient, manner to power the deployed nodes. Given

that the propagation distance of the energy is rather limited. We have opted for

the simultaneous transmission of power from multiple energy transmitters (ETs)

to cover arbitrariliy large networking areas. The first question that has been ad-

dressed in these directions has been presented in Chapter 6 and is as follows: In

order to guarantee sufficient power at the deployed nodes, is it better to increase
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the number of ETs, to increase their transmitted power or to increase their system

complexity? The main findings of our work have shown that this power metric

is bounded, in its worst case, by O(s1−α/2), where α refers to the propagation

path-loss exponent. By implementing optimal power transmission schemes, this

bound scales up to approximately s times faster in ideal transmission channels,

whereas this improvement becomes less noticeable at higher values of the path-

loss exponent. In summary, two main conclusions are derived. First, increasing

the number of deployed ETs reduce the aggregated transmitted power. Then, re-

searching and developing sophisticated interference-aware schemes for near-ideal

channel conditions poser large benefits, while these do not show a clear perfor-

mance improvement against simple approaches when the channel degrades.

Coordinating the multiple transmissions of power has shown a potential gain

of s with respect to orthogonal methods, especially in near-ideal conditions and

line-of-sight environments. Unfortunately, these approaches generally require ex-

pensive hardware and complex optimization software that needs to be runing on

real time. Chapter 7 has provided a method to schedule transmissions of en-

ergy such that channel orthogonality is achieved in long term. This guarantees

that there are no spots in the networking area where transmissions destructively

combine. The transmission of energy is performed in a duty cycled manner, and

with an allocated randonm phase. This generates a time-varying power profile at

the sensors, which has proven to be converted with significantly higher efficiency

than simple orthogonal methods. In particular, we have shown that this method

offers a performance improvement of an additional equivalent gain of 5 dB at the

receiver input power.

Employing the wireless medium with transfers of power, however, restrain the

communication capabilities of the deployed nodes. Chapter 8 has presented a

communication scheme, referred as communications over wireless energy (CoE)

that enables simultaneous downlink wireless transmission of power and inter-

node data communication. This approach permits uninterrupted transmission

of energy, as well as a reduction of system design redundancy. To accomplish

the successful reception of data, energy transmitters (ETs) have non-intuitively

shown a key role to enhance the signal quality at the receiver, which decodes the

information through its energy harvester. A proof-of-concept receiver has been

implemented to validate this approach, offering a sensitivity below -60 dBm with
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off-the-shelf energy harvesters.

Operating multiple ETs as a method to synthesize an arbitrary energy field

over the networking area has been demonstrated as a scalable solution to power

and re-charge the deployed wireless sensor nodes. It has been shown that defin-

ing sophisticated multiple access methods for energy multiplexing can provide a

significant gain. Accordingly, an opportunistic method has been designed that

leverages inter-ET interferences to provide a 5 dB gain. Finally, a method to

compatibilize the simultaneous transmission of ET-to-sensor energy and sensor-

to-sensor information has been proposed.

This thesis has opened the door to the research in the field of communications

over wireless energy. This research field remains unexplored. The demonstrated

uniqueness of the underlying physical channel imposes opposed viewpoints at

the entire protocol stack. Examples of the open research problems cover, at the

PHY-layer, sensors can optimize the communication channel by leveraging the

transmissions of power as remote data signal amplifiers (RDSA). Optimal power

allocation for CoE needs to be investigated. MAC protocols for CoE need to

guarantee active transmissions of energy, as a first step in the communication.

As such, these not only cannot aim at finding idle channels, but need to find

channels, which are being occupied by an active transmission of energy. Nodes

which are being actively recharged have higher signal sensitivity due to the effect

of the RDSA. Route optimization not only needs to consider the remaining energy

of the nodes, but also their instantaneous recharging power. Finally, provided that

only the projection of the data over the transmission of energy can be recovered

at the receiving end, only half of the information can be successully receiver at

any point of the network. This fact can be used to implement built-in security

during the communication.

In summary, this thesis explores the manners to circunvent the lack of spatio-

temporal availability of environmental energy. The focus is set in two main ap-

proaches, namely design guidelines through analysis of the energy harvesting

sources and manually operated wireless RF power tranmission. Key performance

metrics have been defined in each scenario and their scalability as a function of

both number of nodes and energy transmitters has been evaluated. These results

establish a general framework which may serve designers as a guide to implement

autonomous wireless sensor networks with perpetual operation.
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